This relates generally to electronic devices and, more particularly, to electronic devices with wireless communications circuitry.
Electronic devices often include wireless communications circuitry. Radio-frequency transceivers are coupled to antennas to support communications with external equipment. During operation, a radio-frequency transceiver uses an antenna to transmit and receive wireless signals.
It can be challenging to incorporate wireless components such as antenna structures within an electronic device. If care is not taken, an antenna may consume more space within a device than desired or may exhibit unsatisfactory wireless performance.
It would therefore be desirable to be able to provide improved antennas for electronic devices.
An electronic device may be provided with electrical components mounted in a housing. The electrical components may include a wireless transceiver, an antenna, and other wireless circuitry.
A display may be mounted in the housing. The electronic device may have opposing front and rear faces. The display may form the front face of the device and the housing may have a rear wall that forms the rear face of the device. The display may have a transparent layer such as display cover layer that is mounted to housing sidewalls.
The display cover layer may have an inner surface with a recess. The recess may have the shape of a groove that runs along a peripheral edge of the display cover layer.
An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a plastic antenna support structure. The metal trace and support structure may be mounted in the groove with adhesive. The housing may be a metal housing that forms an antenna ground. An inverted-F antenna may be formed from the metal antenna trace in the groove and the metal housing serving as antenna ground.
Springs may be used in forming an antenna feed and an antenna return path. An antenna feed terminal may be formed using a spring on a flexible printed circuit. A return path that couples the antenna resonating element to ground may be formed from another spring. The return path spring may be embedded within a plastic spring biasing structure. The spring biasing structure may be secured to the metal housing using screws. When the spring biasing structure is attached to the housing, the springs may be pressed against contacts formed from portions of the metal trace on the plastic antenna support structure.
An electronic device such as electronic device 10 of
Electronic device 10 may be a computing device such as a laptop computer, a computer monitor containing an embedded computer, a tablet computer, a cellular telephone, a media player, or other handheld or portable electronic device, a smaller device such as a wrist-watch device, a pendant device, a headphone or earpiece device, a device embedded in eyeglasses or other equipment worn on a user's head, or other wearable or miniature device, a television, a computer display that does not contain an embedded computer, a gaming device, a navigation device, an embedded system such as a system in which electronic equipment with a display is mounted in a kiosk or automobile, equipment that implements the functionality of two or more of these devices, or other electronic equipment. In the illustrative configuration of
In the example of
Device 10 may have opposing front and rear faces surrounded by sidewalls. Display 14 may have a planar or curved outer surface that forms the front face of device 10. The lower portion of housing 12, which may sometimes be referred to as rear housing wall 12R, may form the rear face of housing 12. Rear housing wall 12R may have a planar exterior surface (e.g., the rear of housing 12 may form a planar rear face for housing 12) or rear housing wall 12R may have a curved exterior surface or an exterior surface of other suitable shapes. Sidewalls 12W may have vertical exterior surfaces (e.g., surfaces that run vertically between display 14 and rear housing wall 12R), may have curved surfaces (e.g., surfaces that bow outwardly when viewed in cross section), may have beveled portions, may have profiles with straight and/or curved portions, or may have other suitable shapes. Device 10 may have a rectangular display and rectangular outline, may have a circular shape, or may have other suitable shapes.
Display 14 may be a touch screen display that incorporates a layer of conductive capacitive touch sensor electrodes or other touch sensor components (e.g., resistive touch sensor components, acoustic touch sensor components, force-based touch sensor components, light-based touch sensor components, etc.) or may be a display that is not touch-sensitive. Capacitive touch screen electrodes may be formed from an array of indium tin oxide pads or other transparent conductive structures.
Display 14 may include an array of display pixels formed from liquid crystal display (LCD) components, an array of electrophoretic display pixels, an array of plasma display pixels, an array of organic light-emitting diode display pixels or other light-emitting diodes, an array of electrowetting display pixels, or display pixels based on other display technologies.
Device 10 may include buttons such as button 16. There may be any suitable number of buttons in device 10 (e.g., a single button, more than one button, two or more buttons, five or more buttons, etc. Buttons may be located in openings in housing 12 or in an opening in a display (as examples). Buttons may be rotary buttons, sliding buttons, buttons that are actuated by pressing on a movable button member, etc. Button members for buttons such as button 16 may be formed from metal, glass, plastic, or other materials.
A schematic diagram showing illustrative components that may be used in device 10 is shown in
Storage and processing circuitry 30 may be used to run software on device 10. For example, software running on device 10 may be used to process input commands from a user that are supplied using input-output components such as buttons, a touch screen such as display 14, force sensors (e.g., force sensors that are activated by pressing on display 14 or portions of display 14), accelerometers, light sensors, and other input-output circuitry. To support interactions with external equipment, storage and processing circuitry 30 may be used in implementing communications protocols. Communications protocols that may be implemented using storage and processing circuitry 30 include internet protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols—sometimes referred to as WiFi®), protocols for other short-range wireless communications links such as the Bluetooth® protocol, etc.
Device 10 may include input-output circuitry 44. Input-output circuitry 44 may include input-output devices 32. Input-output devices 32 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Input-output devices 32 may include user interface devices, data port devices, and other input-output components. For example, input-output devices may include touch screens, displays without touch sensor capabilities, buttons, force sensors, joysticks, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, buttons, speakers, status indicators, light sources, audio jacks and other audio port components, digital data port devices, light sensors, motion sensors (accelerometers), capacitance sensors, proximity sensors (e.g., a capacitive proximity sensor and/or an infrared proximity sensor), magnetic sensors, and other sensors and input-output components.
Input-output circuitry 44 may include wireless communications circuitry 34 for communicating wirelessly with external equipment. Wireless communications circuitry 34 may include radio-frequency (RF) transceiver circuitry formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, one or more antennas, transmission lines, and other circuitry for handling RF wireless signals. Wireless signals can also be sent using light (e.g., using infrared communications).
Wireless communications circuitry 34 may include radio-frequency transceiver circuitry 90 for handling various radio-frequency communications bands. For example, circuitry 34 may include wireless local area network transceiver circuitry that may handle 2.4 GHz and 5 GHz bands for WiFi® (IEEE 802.11) communications, wireless transceiver circuitry that may handle the 2.4 GHz Bluetooth® communications band, cellular telephone transceiver circuitry for handling wireless communications in communications bands between 700 MHz and 2700 MHz or other suitable frequencies (as examples), or other wireless communications circuits. If desired, wireless communications circuitry 34 can include circuitry for other short-range and long-range wireless links if desired. For example, wireless communications circuitry 34 may include 60 GHz transceiver circuitry, circuitry for receiving television and radio signals, paging system transceivers, near field communications (NFC) circuitry, satellite navigation system receiver circuitry, etc. In WiFi® and Bluetooth® links and other short-range wireless links, wireless signals are typically used to convey data over tens or hundreds of feet. In cellular telephone links and other long-range links, wireless signals are typically used to convey data over thousands of feet or miles. To conserve power, it may be desirable in some embodiments to configure wireless communications circuitry 34 so that transceiver 90 handles exclusively short-range wireless links such as 2.4 GHz links and/or 5 GHz links (e.g., Bluetooth® and/or WiFi® links). Other configurations may be used for wireless circuitry 34 if desired (e.g., configurations with coverage in additional communications bands).
Wireless communications circuitry 34 may include one or more antennas such as antenna 40. Antenna 40 may be formed using any suitable antenna type. For example, antenna 40 may be an antenna with a resonating element that is formed from loop antenna structures, patch antenna structures, inverted-F antenna structures, slot antenna structures, planar inverted-F antenna structures, helical antenna structures, hybrids of these designs, etc.
Transmission line paths such as transmission line 92 may be used to couple antenna 40 to transceiver circuitry 90. Transmission line 92 may be coupled to antenna feed structures associated with antenna structures 40. As an example, antenna structures 40 may form an inverted-F antenna or other type of antenna having an antenna feed with a positive antenna feed terminal such as terminal 98 and a ground antenna feed terminal such as ground antenna feed terminal 100. Positive transmission line conductor 94 may be coupled to positive antenna feed terminal 98 and ground transmission line conductor 96 may be coupled to ground antenna feed terminal 92. Other types of antenna feed arrangements may be used if desired. The illustrative feeding configuration of
Transmission line 92 may include coaxial cable paths, microstrip transmission lines, stripline transmission lines, edge-coupled microstrip transmission lines, edge-coupled stripline transmission lines, transmission lines formed from combinations of transmission lines of these types, etc. Filter circuitry, switching circuitry, impedance matching circuitry, and other circuitry may be interposed within the transmission lines, if desired. Circuits for impedance matching circuitry may be formed from discrete components (e.g., surface mount technology components) or may be formed from housing structures, printed circuit board structures, traces on plastic supports, etc. Components such as these may also be used in forming filter circuitry.
Electrical components for forming circuitry such as storage and processing circuitry 30 and input-output circuitry 44 of
Device 10 may have inner housing structures that provide structural support to device 10 and/or that serve as mounting platforms for printed circuits and other structures. Structural internal housing members may sometimes be referred to as housing structures and may be considered to form part of housing 12.
Electrical components 106 for forming circuitry such as circuitry 30 and 44 may be mounted within the interior of housing 12. Components 106 may be mounted to printed circuits such as printed circuit 104. Printed circuit 104 may be a rigid printed circuit board (e.g., a printed circuit board formed from fiberglass-filled epoxy or other rigid printed circuit board material) or may be a flexible printed circuit (e.g., printed circuit formed from a sheet of polyimide or other flexible polymer layer). Patterned metal traces within printed circuit board 104 may be used to form signal paths between components 106. If desired, components such as connectors may be mounted to printed circuit 104. Cables such as one or more flexible printed circuit cables may have mating connectors and may couple circuitry on printed circuits such as printed circuit 104 to display 102, to antenna(s) 40 (
The outermost layer of display 14 such as display cover layer 112 is preferably a transparent display layer that is formed from transparent structures that allow light from display 102 to pass through layer 112. This allows images on display 102 to be viewed by viewer 108 in direction 110 during operation of device 10.
In the example of
As shown in
It may be desirable to create recesses in structures such as housing 12 and/or display 14. As an example, a recess such as groove 116 of
One or more antennas for device 10 may be formed from an antenna resonating element that is fully or partly mounted in a recess such as recess 116. In the illustrative configuration of
Arm 120 may be formed from a metal trace on an antenna support. Metal trace 120 may be coupled to ground 124 by return path 126. Return path 126 may be formed from a metal spring or other conductive structure. Antenna feed 128 may include positive antenna feed terminal 98 and ground antenna feed terminal 100 and may be coupled parallel to return path 126 between the metal trace of resonating element arm 120 and ground 124. If desired, inverted-F antennas such as illustrative antenna 40 of
The bandwidth of antennas such as antenna 40 of
A cross-sectional side view of antenna 40 taken through an edge portion of device 10 is shown in
A near-field communications loop antenna may be formed under display 102. The near-field communications loop antenna may be formed from metal traces 132 on a substrate such as printed circuit 130. Metal traces 132 may be coils that form multiple concentric loops for the near-field communications loop antenna. Metal traces 132 may be overlapped by active area AA and/or inactive area IA of display 102. A magnetic shielding layer such as ferrite layer 134 may be formed under printed circuit 130 and may prevent magnetic fields from the near-field communications antenna from inducing eddy currents in underlying conductive structures such as metal traces in printed circuit 104.
Components may be mounted in the interior of device 10 between ferrite layer 134 and printed circuit 104. As shown in
Antenna 40 may be coupled to electrical components 106 on printed circuit 104 using cable 150. Cable 150 may be a flexible printed circuit cable, a coaxial cable, or other signal path (e.g., a path forming transmission line 92). Connector 153 may be used to couple cable 150 to printed circuit 104. Antenna 40 may be formed from an antenna resonating element such as antenna resonating element 122 of
The antenna resonating element for antenna 40 may be formed from metal traces on a plastic antenna support structure such as antenna trace support structure 148. To hide internal device components from view in direction 110 by user 108, peripheral portions of the inner surface of display cover layer 112 may be coated with a layer of opaque masking material. For example, portions of display cover layer 112 that overlap inactive border region IA of display 102 may be covered with opaque masking layer 146. Layer 146 may overlap inactive display border IA and may cover groove 116 and portions of housing 12 up to the outermost edge of display cover layer 112 (as an example). Opaque masking layer 146 may be formed from black ink, white ink, polymers that are black, white, or have other colors, metals, etc.
As shown in
Antenna trace support structure 148 may be formed from a plastic carrier structure such as a polymer structure formed from liquid crystal polymer or other dielectric support structure. Metal traces on flexible printed circuit cable 150 may form transmission line 92.
As shown in
Adhesive 152 may be thermally cured adhesive and/or adhesive that is cured by application of light (e.g., ultraviolet light). Support structure 148 may have an elongated shape extending along a longitudinal axis (into the plane in the example of
Adhesive gap formation structures such as protrusions 154 may be formed at one or more locations along the length of support structure 148. Protrusions 154 may have heights equal to the amount of gap that is desired between the surface of support structure 148 and inner surface 156 of groove 116. If insufficient space is provided or if too much space is provided for adhesive 152, the joint formed by adhesive 152 may not be satisfactory. By including protrusions 154 along the surface of support structure 148, a desired gap will be created between support structure 148 and groove surface 156 prior to adhesive curing. Protrusion 154 therefore serves as an adhesive gap spacer that ensures that plastic antenna trace support structure 148 is separated from the interior surface of groove 116 by an appropriately sized adhesive gap. The adhesive gap will be filled with a suitable amount of adhesive 152 by virtue of the fixed spacing established by the size of protrusions 154. If desired, other techniques may be used to help ensure that a satisfactory amount of adhesive 152 is interposed between support structure 148 (and therefore metal trace 120 of resonating element 122) and inner surface 156 of groove 116 in display cover layer 112. The configuration of
A perspective view of structures associated with antenna 40 is shown in
Conductive structures such as metal springs 162 and 164 may be used to form connections with antenna resonating element 120. Metal spring 162 may, for example, be used in forming return path 126, whereas metal spring 164 may be used in forming antenna feed 128 (
Flexible printed circuit 150 may have metal traces for signal paths such as positive signal path 94 and ground signal path 96 for transmission line 92. With one suitable arrangement, spring 162 is partly embedded within a plastic support structure such as plastic spring biasing structure 170 and is electrically coupled to metal housing 12 via screws 160, whereas spring 164 is soldered to a contact on flexible printed circuit 150 and is pressed towards trace 120 via spring biasing structure 170. If desired, both spring 162 and spring 164 may be soldered to respective contacts on flexible printed circuit 150, both spring 162 and spring 164 may be fully and/or partly embedded within plastic spring biasing structure 170, or spring 162 and/or spring 164 may be supported using other mounting structures (e.g., metal brackets, dielectric supports, printed circuit substrates, etc.).
If desired, filter circuitry, impedance matching circuitry, and/or other circuit components may be interposed in transmission line path 92. For example, circuitry such as circuitry 158 (e.g., an impedance matching circuit or other circuitry such as filter circuitry, antenna tuning circuitry, switching circuitry, etc.) may be mounted to printed circuit 150 and coupled to the signal lines in transmission line path 92.
Spring biasing structure 170 may have an opening such as opening 176. Flexible printed circuit 150 may have an opening such as opening 182. Spring 162 may have an opening such as opening 174. Metal housing 12 may have an opening such as threaded opening 178. Openings such as openings 176, 182, 174, and 178 may be circular, semicircular, or may have other suitable shapes and may be aligned with each other to receive the shaft of screw 160 during assembly. When screws 160 are screwed into housing 12, the return path and antenna feed connections for antenna 40 may be formed using springs 162 and 168 and the metal traces of flexible printed circuit 150.
Metal traces on flexible printed circuit 150 may be used in forming an electrode such as pad 184. Spring 164 may be mounted on flexible printed circuit 150 by soldering an end of spring 164 to pad 184 (as an example). Metal traces on flexible printed circuit 150 may also be used in forming electrodes such as electrodes 180. Electrodes 180 may, as an example, form semicircular contacts surrounding semicircular screw hole openings 182 one on or both exterior surfaces of flexible printed circuit 150. When installed in device 10, extended portion 150T may be coupled to a connector on printed circuit board 104 such as connector 153.
A cross-sectional side view of a portion of antenna 40 when spring biasing structure 170 is mounted to housing 12 is shown in
The foregoing is merely illustrative and various modifications can be made by those skilled in the art without departing from the scope and spirit of the described embodiments. The foregoing embodiments may be implemented individually or in any combination.
Number | Name | Date | Kind |
---|---|---|---|
5768217 | Sonoda et al. | Jun 1998 | A |
6825751 | Kita et al. | Nov 2004 | B1 |
7233291 | Elkobi et al. | Jun 2007 | B2 |
7506436 | Bachman | Mar 2009 | B2 |
7815820 | Tan et al. | Oct 2010 | B2 |
8502739 | Ollikainen et al. | Aug 2013 | B2 |
8679393 | Willwerth et al. | Mar 2014 | B1 |
8766858 | Li et al. | Jul 2014 | B2 |
8780581 | Merz et al. | Jul 2014 | B2 |
8803745 | Dabov | Aug 2014 | B2 |
20100193972 | Yamamoto et al. | Aug 2010 | A1 |
20110186324 | Hur et al. | Aug 2011 | A1 |
20110210825 | Murakami et al. | Sep 2011 | A1 |
20110222248 | Sakai et al. | Sep 2011 | A1 |
20110241949 | Nickel et al. | Oct 2011 | A1 |
20120028679 | Ozasa | Feb 2012 | A1 |
20120133597 | Chen | May 2012 | A1 |
20120223865 | Li | Sep 2012 | A1 |
20130044074 | Park et al. | Feb 2013 | A1 |
20130052947 | Kole et al. | Feb 2013 | A1 |
20130078917 | Cho et al. | Mar 2013 | A1 |
20130140965 | Franklin et al. | Jun 2013 | A1 |
20130229362 | Liu et al. | Sep 2013 | A1 |
20130234910 | Oh et al. | Sep 2013 | A1 |
20130300618 | Yarga et al. | Nov 2013 | A1 |
20130321216 | Jervis et al. | Dec 2013 | A1 |
20140080411 | Konanur et al. | Mar 2014 | A1 |
20140112511 | Corbin | Apr 2014 | A1 |
20140132462 | Ying | May 2014 | A1 |
20140133074 | Zahler et al. | May 2014 | A1 |
20140170975 | Liao | Jun 2014 | A1 |
20140209691 | Finn et al. | Jul 2014 | A1 |
20140213178 | Wolff et al. | Jul 2014 | A1 |
20140218250 | Kim et al. | Aug 2014 | A1 |
20140226291 | Gibbs et al. | Aug 2014 | A1 |
20140232609 | Lee | Aug 2014 | A1 |
20150035709 | Lim et al. | Feb 2015 | A1 |
20150207913 | Nakano et al. | Jul 2015 | A1 |
20150311960 | Samardzija | Oct 2015 | A1 |
20150351292 | Chang et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2302658 | Mar 2011 | EP |
2474872 | Jul 2012 | EP |
2869398 | May 2015 | EP |
10-2014-0024543 | Mar 2014 | KR |
2009014366 | Jan 2009 | WO |
2013149515 | Oct 2013 | WO |
2013190119 | Dec 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20160056526 A1 | Feb 2016 | US |