This relates to electronic devices, and more particularly, to antennas for electronic devices with wireless communications circuitry.
Electronic devices such as portable computers and cellular telephones are often provided with wireless communications capabilities. To satisfy consumer demand for small form factor wireless devices, manufacturers are continually striving to implement wireless communications circuitry such as antenna components using compact structures. At the same time, there is a desire for wireless devices to cover a growing number of communications bands.
Because antennas have the potential to interfere with each other and with components in a wireless device, care must be taken when incorporating antennas into an electronic device. Moreover, care must be taken to ensure that the antennas and wireless circuitry in a device are able to exhibit satisfactory performance over a range of operating frequencies.
It would therefore be desirable to be able to provide improved wireless communications circuitry for wireless electronic devices.
An electronic device may have a metal housing that forms a ground plane. The ground plane may, for example, be formed from a rear housing wall and sidewalls. The ground plane and other structures in the electronic device may be used in forming antennas.
The electronic device may include one or more hybrid antennas. The hybrid antennas may each include a slot antenna resonating element formed from a slot in the ground plane and a planar inverted-F antenna resonating element. The planar inverted-F antenna resonating element may serve as indirect feed structure for the slot antenna resonating element.
A planar inverted-F antenna resonating element may have a planar metal member that overlaps one of the slot antenna resonating elements. The slot of the slot antenna resonating element may divide the ground plane into first and second portions. A return path and feed may be coupled in parallel between the planar metal member and the first portion of the ground plane.
Tunable components such as tunable inductors may be used to tune the hybrid antennas. A tunable inductor may bridge the slot in a hybrid antenna, may be coupled between the planar metal member of the planar inverted-F antenna resonating element and the ground plane, or multiple tunable inductors may bridge the slot on opposing sides of the planar inverted-F antenna resonating element.
An electronic device such as electronic device 10 of
The wireless circuitry of device 10 may handles one or more communications bands. For example, the wireless circuitry of device 10 may include a Global Position System (GPS) receiver that handles GPS satellite navigation system signals at 1575 MHz or a GLONASS receiver that handles GLONASS signals at 1609 MHz. Device 10 may also contain wireless communications circuitry that operates in communications bands such as cellular telephone bands and wireless circuitry that operates in communications bands such as the 2.4 GHz Bluetooth® band and the 2.4 GHz and 5 GHz WiFi® wireless local area network bands (sometimes referred to as IEEE 802.11 bands or wireless local area network communications bands). Device 10 may also contain wireless communications circuitry for implementing near-field communications at 13.56 MHz or other near-field communications frequencies. If desired, device 10 may include wireless communications circuitry for communicating at 60 GHz, circuitry for supporting light-based wireless communications, or other wireless communications.
Electronic device 10 may be a computing device such as a laptop computer, a computer monitor containing an embedded computer, a tablet computer, a cellular telephone, a media player, or other handheld or portable electronic device, a smaller device such as a wrist-watch device, a pendant device, a headphone or earpiece device, a device embedded in eyeglasses or other equipment worn on a user's head, or other wearable or miniature device, a television, a computer display that does not contain an embedded computer, a gaming device, a navigation device, an embedded system such as a system in which electronic equipment with a display is mounted in a kiosk or automobile, equipment that implements the functionality of two or more of these devices, or other electronic equipment. In the illustrative configuration of
In the example of
Display 14 may be a touch screen display that incorporates a layer of conductive capacitive touch sensor electrodes or other touch sensor components (e.g., resistive touch sensor components, acoustic touch sensor components, force-based touch sensor components, light-based touch sensor components, etc.) or may be a display that is not touch-sensitive. Capacitive touch screen electrodes may be formed from an array of indium tin oxide pads or other transparent conductive structures.
Display 14 may include an array of display pixels formed from liquid crystal display (LCD) components, an array of electrophoretic display pixels, an array of plasma display pixels, an array of organic light-emitting diode display pixels, an array of electrowetting display pixels, or display pixels based on other display technologies.
Display 14 may be protected using a display cover layer such as a layer of transparent glass or clear plastic. Openings may be formed in the display cover layer. For example, an opening may be formed in the display cover layer to accommodate a button such as button 16. An opening may also be formed in the display cover layer to accommodate ports such as a speaker port. Openings may be formed in housing 12 to form communications ports (e.g., an audio jack port, a digital data port, etc.). Openings in housing 12 may also be formed for audio components such as a speaker and/or a microphone.
Antennas may be mounted in housing 12. For example, housing 12 may have four peripheral edges as shown in
Slot 122 may extend across rear housing wall 12R and, if desired, an associated sidewall such as sidewall 12W. Rear housing wall 12R may be planar or may be curved. Sidewall 12W may be an integral portion of rear wall 12R or may be a separate structure. Housing wall 12R (and, if desired, sidewalls such as sidewall 12W) may be formed from aluminum, stainless steel, or other metals and may form a ground plane for device 10. Slots in the ground plane such as slot 122 may be used in forming antenna resonating elements.
In the example of
Slot 122 may be divided into two shorter slots using a conductive structure such as conductive member 124. Conductive member 124 may be formed from metal traces on a printed circuit, metal foil, metal portions of a housing bracket, wire, a sheet metal structure, or other conductive structure in device 10. Conductive member 124 may be shorted to metal housing wall 12R on opposing sides of slot 122.
In the presence of conductive member 124, slot 122 may be divided into first and second slots 122L and 122R. Ends 122-1 of slots 122L and 122R are surrounded by air and dielectric structures such as glass or other dielectric associated with a display cover layer for display 14 and are therefore sometimes referred to as open slot ends. Ends 122-2 of slots 122L and 122R are terminated in conductive structure 124 and therefore are sometimes referred to as closed slot ends. In the example of
Slot 122 may be fed using an indirect feeding arrangement. With indirect feeding, a structure such as a planar-inverted-F antenna resonating element may be near-field coupled to slot 122 and may serve as an indirect feed structure. The planar inverted-F antenna resonating element may also exhibit resonances that contribute to the frequency response of the antenna formed from slot 122 (i.e., the antenna may be a hybrid planar-inverted-F-slot antenna).
A cross-sectional side view of device 10 in the vicinity of slot 122 is shown in
A schematic diagram showing illustrative components that may be used in device 10 is shown in
Storage and processing circuitry 28 may be used to run software on device 10, such as internet browsing applications, voice-over-internet-protocol (VOIP) telephone call applications, email applications, media playback applications, operating system functions, etc. To support interactions with external equipment, storage and processing circuitry 28 may be used in implementing communications protocols. Communications protocols that may be implemented using storage and processing circuitry 28 include internet protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols—sometimes referred to as WiFi®), protocols for other short-range wireless communications links such as the Bluetooth® protocol, cellular telephone protocols, MIMO protocols, antenna diversity protocols, etc.
Input-output circuitry 44 may include input-output devices 32. Input-output devices 32 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Input-output devices 32 may include user interface devices, data port devices, and other input-output components. For example, input-output devices may include touch screens, displays without touch sensor capabilities, buttons, joysticks, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, buttons, speakers, status indicators, light sources, audio jacks and other audio port components, digital data port devices, light sensors, motion sensors (accelerometers), capacitance sensors, proximity sensors, etc.
Input-output circuitry 44 may include wireless communications circuitry 34 for communicating wirelessly with external equipment. Wireless communications circuitry 34 may include radio-frequency (RF) transceiver circuitry formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, one or more antennas, transmission lines, and other circuitry for handling RF wireless signals. Wireless signals can also be sent using light (e.g., using infrared communications).
Wireless communications circuitry 34 may include radio-frequency transceiver circuitry 90 for handling various radio-frequency communications bands. For example, circuitry 34 may include transceiver circuitry 36, 38, and 42. Transceiver circuitry 36 may be wireless local area network transceiver circuitry that may handle 2.4 GHz and 5 GHz bands for WiFi® (IEEE 802.11) communications and that may handle the 2.4 GHz Bluetooth® communications band. Circuitry 34 may use cellular telephone transceiver circuitry 38 for handling wireless communications in frequency ranges such as a low communications band from 700 to 960 MHz, a midband from 1500 to 2170 MHz (e.g., a midband with a peak at 1700 MHz), and a high band from 2170 or 2300 to 2700 MHz (e.g., a high band with a peak at 2400 MHz) or other communications bands between 700 MHz and 2700 MHz or other suitable frequencies (as examples). Circuitry 38 may handle voice data and non-voice data. Wireless communications circuitry 34 can include circuitry for other short-range and long-range wireless links if desired. For example, wireless communications circuitry 34 may include 60 GHz transceiver circuitry, circuitry for receiving television and radio signals, paging system transceivers, near field communications (NFC) circuitry, etc. Wireless communications circuitry 34 may include satellite navigation system circuitry such as global positioning system (GPS) receiver circuitry 42 for receiving GPS signals at 1575 MHz or for handling other satellite positioning data. In WiFi® and Bluetooth® links and other short-range wireless links, wireless signals are typically used to convey data over tens or hundreds of feet. In cellular telephone links and other long-range links, wireless signals are typically used to convey data over thousands of feet or miles.
Wireless communications circuitry 34 may include antennas 40. Antennas 40 may be formed using any suitable antenna types. For example, antennas 40 may include antennas with resonating elements that are formed from loop antenna structures, patch antenna structures, inverted-F antenna structures, slot antenna structures, planar inverted-F antenna structures, helical antenna structures, hybrids of these designs, etc. Different types of antennas may be used for different bands and combinations of bands. For example, one type of antenna may be used in forming a local wireless link antenna and another type of antenna may be used in forming a remote wireless link antenna.
As shown in
To provide antenna structures 40 with the ability to cover communications frequencies of interest, antenna structures 40 may be provided with circuitry such as filter circuitry (e.g., one or more passive filters and/or one or more tunable filter circuits). Discrete components such as capacitors, inductors, and resistors may be incorporated into the filter circuitry. Capacitive structures, inductive structures, and resistive structures may also be formed from patterned metal structures (e.g., part of an antenna). If desired, antenna structures 40 may be provided with adjustable circuits such as tunable components 102 to tune antennas over communications bands of interest. Tunable components 102 may include tunable inductors, tunable capacitors, or other tunable components. Tunable components such as these may be based on switches and networks of fixed components, distributed metal structures that produce associated distributed capacitances and inductances, variable solid state devices for producing variable capacitance and inductance values, tunable filters, or other suitable tunable structures.
During operation of device 10, control circuitry 28 may issue control signals on one or more paths such as path 104 that adjust inductance values, capacitance values, or other parameters associated with tunable components 102, thereby tuning antenna structures 40 to cover desired communications bands.
Path 92 may include one or more transmission lines. As an example, signal path 92 of
Transmission line 92 may be directly coupled to an antenna resonating element and ground for antenna 40 or may be coupled to near-field-coupled antenna feed structures that are used in indirectly feeding a resonating element for antenna 40. As an example, antenna structures 40 may form an inverted-F antenna, a slot antenna, a hybrid inverted-F slot antenna or other antenna having an antenna feed with a positive antenna feed terminal such as terminal 98 and a ground antenna feed terminal such as ground antenna feed terminal 100. Positive transmission line conductor 94 may be coupled to positive antenna feed terminal 98 and ground transmission line conductor 96 may be coupled to ground antenna feed terminal 92. Antenna structures 40 may include an antenna resonating element such as a slot antenna resonating element or other element that is indirectly fed using near-field coupling. In a near-field coupling arrangement, transmission line 92 is coupled to a near-field-coupled antenna feed structure that is used to indirectly feed antenna structures such as an antenna slot or other element through near-field electromagnetic coupling.
Antennas 40 may include hybrid antennas formed both from inverted-F antenna structures (e.g., planar inverted-F antenna structures) and slot antenna structures. An illustrative configuration in which device 10 has two hybrid antennas formed from the left and right portions of slot 122 in housing 12 is shown in
Antennas 40 of
Left antenna 40F and right antenna 40R may be hybrid planar-inverted-F-slot antennas each of which has a planar inverted-F antenna resonating element and a slot antenna resonating element.
The slot antenna resonating element of antenna 40L is formed by slot 122L. Planar-inverted-F resonating element 130L serves as an indirect feeding structure for antenna 40L and is near-field coupled to the slot resonating element formed from slot 122L. During operation, slot 122L and element 130L may each contribute to the overall frequency response of antenna 40L. As shown in
The slot antenna resonating element of antenna 40R is formed by slot 122R. Planar-inverted-F resonating element 130R serves as an indirect feeding structure for antenna 40R and is near-field coupled to the slot resonating element formed from slot 122R. Slot 122R and element 130R may both contribute to the overall frequency response of hybrid planar-inverted-F-slot antenna 40R. Antenna 40R may have an antenna feed such as feed 136R. Feed 136R is coupled to planar inverted-F antenna resonating element 130R. A transmission line such as transmission line 92 may be coupled between transceiver circuitry 90 and antenna feed 136R. Feed 136R may have positive antenna feed terminal 98R and ground antenna feed terminal 100R. Ground antenna feed terminal 100R may be shorted to ground (e.g., metal wall 12R-1). Positive antenna feed terminal 98R may be coupled to planar metal element 132R of planar-inverted-F antenna resonating element 130R. Planar-inverted-F antenna resonating element 130R may also have a return path such as return path 134R that is coupled between planar element 132R and antenna ground (metal housing 12R-1).
Slots 122L and 122R may have lengths (quarter wavelength lengths) that support a native resonance at about 1.1 GHz or other suitable frequency. The presence of planar-inverted-F elements 130L and 130R and other components (e.g., tuning components) may lower the frequency of the slot resonance to cover a low communications band (e.g., a low band at frequencies between 700 and 960 MHz). Mid-band coverage (e.g., for a mid-band centered at 1700 MHz) may be provided by the resonance exhibited by planar inverted-F antenna resonating elements 130L and 130R. High band coverage (e.g., for a high band centered at 2400 MHz) may be supported using harmonics of the slot antenna resonating element resonance (e.g., a third order harmonic, etc.).
Once way to lower the slot resonance to cover desired low band frequencies involves incorporating inductive components into antennas 40L and 40R (e.g., fixed and/or tunable components such as tunable components 102 of
Another potential tuning arrangement for antennas 40L and 40R is shown in
As shown in the illustrative configuration of
The number of tuning states for the inductor circuitry of antennas 40L and 40R may be selected based on the bandwidth of the slot 122 and the frequency range to be covered. Low band tuning with tunable inductors preferably does not significantly impact mid-band and high band coverage, so tunable inductors can be adjusted to ensure that the slot resonance from the slot-antenna resonating element structures covers the low band without disrupting mid-band and high band operation. Two or more tuning states, three or more tuning states, or four or more different tuning states may be used to cover the low band with the slot resonances of the antennas.
Consider, as an example, a tuning arrangement of the type shown in
As another example, consider tunable inductor 190 of
Discrete inductors for tunable inductor components can be incorporated into the same package or die as switching circuitry or may be mounted as separate parts on a shared printed circuit (as examples).
Antenna tuning results of the type that may be achieved using tunable inductors such as inductors 186 and 190 are shown in
Using a tunable antenna such as the antenna of
Using a tunable antenna such as the antenna of
The foregoing is merely illustrative and various modifications can be made by those skilled in the art without departing from the scope and spirit of the described embodiments. The foregoing embodiments may be implemented individually or in any combination.