The disclosure relates a device, particularly, the disclosure relates to an electronic device.
Antenna pixel circuit supplies a bias voltage to a varactor to control its permittivity with a storage capacitor (Cst). To keep the bias voltage within a specific range, the voltage needs to be re-stored (refresh) by data scan to compensate voltage drop by a leakage current of the varactor. However, there is a problem that higher leakage current requires higher refresh rates and/or larger storage capacitors to keep the bias voltage within a specific range, but which would be obstacles for commercialization.
The electronic device of the disclosure includes a tunable component and a first source follower circuit. The tunable component is electrically connected to a circuit node. The first source follower circuit is electrically connected to the circuit node. The first source follower circuit includes a first control terminal and a first terminal. The first control terminal is electrically connected to the first terminal.
Based on the above, according to the electronic device of the disclosure, the electronic device can effectively compensate the leakage current of the tunable component.
To make the aforementioned more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to the exemplary embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers are used in the drawings and the description to refer to the same or like components.
Certain terms are used throughout the specification and appended claims of the disclosure to refer to specific components. Those skilled in the art should understand that electronic device manufacturers may refer to the same components by different names. This article does not intend to distinguish those components with the same function but different names. In the following description and rights request, the words such as “comprise” and “include” are open-ended terms, and should be explained as “including but not limited to . . . ”.
The term “coupling (or electrically connection)” used throughout the whole specification of the present application (including the appended claims) may refer to any direct or indirect connection means. For example, if the text describes that a first device is coupled (or connected) to a second device, it should be interpreted that the first device may be directly connected to the second device, or the first device may be indirectly connected through other devices or certain connection means to be connected to the second device. The terms “first”, “second”, and similar terms mentioned throughout the whole specification of the present application (including the appended claims) are merely used to name discrete elements or to differentiate among different embodiments or ranges. Therefore, the terms should not be regarded as limiting an upper limit or a lower limit of the quantity of the elements and should not be used to limit the arrangement sequence of elements. In addition, wherever possible, elements/components/steps using the same reference numerals in the drawings and the embodiments represent the same or similar parts. Reference may be mutually made to related descriptions of elements/components/steps using the same reference numerals or using the same terms in different embodiments.
The electronic device of the disclosure may include, for example, an antenna pixel circuit, and the tunable component may correspond to an antenna unit of one pixel of the antenna pixel. The tunable component of the disclosure may be a voltage-controlled device, and the voltage-controlled device may include, for example, a varactor, a resistor, an inductor or a capacitor. In the embodiment of the disclosure, the constant voltage source circuit of the disclosure may provide a voltage that can be efficiently restored (refreshed) through data scanning to compensate for the voltage drop caused by the leakage current of the varactor of the tunable component.
It should be noted that in the following embodiments, the technical features of several different embodiments may be replaced, recombined, and mixed without departing from the spirit of the disclosure to complete other embodiments. As long as the features of each embodiment do not violate the spirit of the disclosure or conflict with each other, they may be mixed and used together arbitrarily.
In the embodiment of the disclosure, the drive transistor Td may be operated as a source follower amplifier. The compensation transistor Tc is configured to let the drive transistor Td to form a diode unit when the compensation transistor Tc is turned on. The bias transistor Tb is configured to provide the driving voltage (e.g., the operation voltage VDD) to the drive transistor Td when the bias transistor Tb is turned on. The storage capacitor Cst is configured to hold the voltage for the control terminal of the drive transistor Td. In the embodiment of the disclosure, a control terminal of the compensation transistor Tc and a control terminal of the scan transistor Ts may receive a scan signal SS. A control terminal of the bias transistor Tb may receive a bias signal SB. The data line DL may transmit a data signal SD. In the embodiment of the disclosure, the first terminal of the drive transistor Td may be, for example, a drain electrode of the transistor. The second terminal of the drive transistor Td may be, for example, a source electrode of the transistor. The control terminal of each transistor in the embodiment may be, for example, a gate electrode of the transistor.
In the embodiment of the disclosure, the constant voltage source circuit 110 may effectively and automatically compensate the leakage current of the tunable component 120, and at the same time, the threshold voltage Vth of the driving transistor Td may also be compensated, so that the bias voltage (Vbias) of the tunable component 120 may be effectively maintained.
During a scan period PS from time t2 to time t3, the bias transistor Tb is turned off by the bias signal SB with a low voltage level, and the scan transistor Ts and the compensation transistor Tc are turned on by the scan signal SS with the high voltage level, so that the drive transistor Td is operated as a diode unit. The data line DL may provide the data signal SD to the scan transistor Ts which is turned on, so the voltage Vs of the second terminal of the drive transistor Td may be a data voltage Vdata. At the same time, due to the operation voltage VDD is higher than the data voltage Vdata (VDD>Vdata>VSS), a current may be transmitted from the control terminal of the drive transistor Td to the second terminal of the drive transistor Td through the compensation transistor Tc. Thus, the drive transistor Td is operated in a conducting state like a diode unit, so that the voltage Vg of control terminal of the drive transistor Td may be a voltage of Vdata+|Vth|, where Vth is a threshold voltage of the drive transistor Td. Moreover, the voltage Vd of the first terminal of the drive transistor Td may also be the voltage of Vdata+|Vth|.
During a bias period PB from time t4 to time t5, the bias transistor Tb is turned on by the bias signal SB with the high voltage level, and the scan transistor Ts and the compensation transistor Tc are turned off by the scan signal SS with a low voltage level. Since the bias transistor Tb is turned on, the voltage Vd of the first terminal of the drive transistor Td may be the operation voltage VDD. The voltage Vg of control terminal of the drive transistor Td may be maintained the voltage of Vdata+|Vth|. The voltage Vs of the second terminal of the drive transistor Td may be the data voltage Vdata. At the same time, the tunable component 120 is operated in a working state, and the second terminal of the drive transistor Td provides a source current SC to the tunable component 120 according to the operation voltage VDD. It should be noted that, when the tunable component 120 occurs a leakage current, a bias voltage (Vbias) of the tunable component 120 may drop (Vbias-dV), and the voltage Vs of the second terminal of the drive transistor Td may also drop, where the symbol “dV” means a delta voltage. Therefore, the drive transistor Td may provide more current to the tunable component 120 to compensate the leakage current of the tunable component 120, and at the same time, the threshold voltage Vth of the driving transistor Td can be compensated, so that the bias voltage (Vbias) of the tunable component 120 may be effectively maintained during the bias period PB.
In the embodiment of the disclosure, the drive transistor Td may be operated as a source follower amplifier. The compensation transistor Tc is configured to let the drive transistor Td to form a diode unit when the compensation transistor Tc is turned on. The bias transistor Tb is configured to provide a first operation voltage (e.g., the operation voltage VDD) to the drive transistor Td when the bias transistor Tb is turned on. The storage capacitor Cst is configured to hold the voltage for the control terminal of the drive transistor Td. The reset transistor Tr is configured to reset the voltage of the control terminal of the drive transistor Td. In the embodiment of the disclosure, a control terminal of the compensation transistor Tc and a control terminal of the scan transistor Ts may receive a scan signal SS. A control terminal of the bias transistor Tb may receive a bias signal SB. A control terminal of the reset transistor Tr may receive a reset signal SR. The data line DL may transmit a data signal SD.
In the embodiment of the disclosure, the constant voltage source circuit 310 may effectively and automatically compensate the leakage current of the tunable component 320, and at the same time, the threshold voltage Vth of the driving transistor Td may also be compensated, so that the bias voltage (Vbias) of the tunable component 320 may be effectively maintained.
During a scan period PS from time t4 to time t5, the reset transistor Tr and the bias transistor Tb are turned off by the bias signal SB and the reset signal SR with the low voltage level, and the scan transistor Ts and the compensation transistor Tc are turned on by the scan signal SS with the high voltage level, so that the drive transistor Td is operated as a diode unit. The data line DL may provide the data signal SD to the scan transistor Ts which is turned on, so the voltage Vs of the second terminal of the drive transistor Td may be the data voltage Vdata. At the same time, due to the operation voltage VDD is higher than the data voltage Vdata (VDD>Vdata>VSS), a current may be transmitted from the control terminal of the drive transistor Td to the second terminal of the drive transistor Td through the compensation transistor Tc. Thus, the drive transistor Td is operated in a conducting state like a diode unit, so that the voltage Vg of control terminal of the drive transistor Td may be a voltage of Vdata+|Vth|, where Vth is a threshold voltage of the drive transistor Td. Moreover, the voltage Vd of the first terminal of the drive transistor Td may also be the voltage of Vdata+|Vth|.
During a bias period PB from time t6 to time t7, the bias transistor Tb is turned on by the bias signal SB with the high voltage level, and the reset transistor Tr, the scan transistor Ts and the compensation transistor Tc are turned off by the reset signal SR and the scan signal SS with a low voltage level. Since the bias transistor Tb is turned on, the voltage Vd of the first terminal of the drive transistor Td may be the operation voltage VDD. The voltage Vg of control terminal of the drive transistor Td may be maintained the voltage of Vdata+|Vth|. The voltage Vs of the second terminal of the drive transistor Td may be the data voltage Vdata. At the same time, the tunable component 320 is operated in a working state, and the second terminal of the drive transistor Td provides a source current SC to the tunable component 320 according to the operation voltage VDD. It should be noted that, when the tunable component 320 occurs a leakage current, a bias voltage (Vbias) of the tunable component 120 may drop (Vbias-dV), and the voltage Vs of the second terminal of the drive transistor Td may also drop. Therefore, the drive transistor Td may provide more current to the tunable component 320 to compensate the leakage current of the tunable component 320, and at the same time, the threshold voltage Vth of the driving transistor Td can be compensated, so that the bias voltage (Vbias) of the tunable component 320 may be effectively maintained during the bias period PB.
In the embodiment of the disclosure, the drive transistor Td may be operated as a source follower amplifier. The compensation transistor Tc is configured to let the drive transistor Td to form a diode unit when the compensation transistor Tc is turned on. The bias transistor Tb is configured to provide a second operation voltage (e.g., voltage VSS) to the drive transistor Td when the bias transistor Tb is turned on. In the embodiment of the disclosure, the storage capacitor Cst is configured to hold the voltage for the control terminal of the drive transistor Td.
In the embodiment of the disclosure, a control terminal of the compensation transistor Tc and a control terminal of the scan transistor Ts may receive a scan signal /SS. A control terminal of the bias transistor Tb may receive a bias signal /SB. The data line DL may transmit a data signal SD. In the embodiment of the disclosure, the first terminal of the drive transistor Td may be, for example, a source electrode of the transistor. The second terminal of the drive transistor Td may be, for example, a drain electrode of the transistor. The control terminal of each transistor in the embodiment may be, for example, a gate electrode of the transistor.
In the embodiment of the disclosure, the constant voltage source circuit 510 may effectively and automatically compensate the leakage current of the tunable component 520, and at the same time, the threshold voltage Vth of the driving transistor Td may also be compensated, so that the bias voltage (Vbias) of the tunable component 520 may be effectively maintained.
During a scan period PS from time t2 to time t3, the bias transistor Tb is turned off by the bias signal /SB with a high voltage level, and the scan transistor Ts and the compensation transistor Tc are turned on by the scan signal /SS with the low voltage level, so that the drive transistor Td is operated as a diode unit. The data line DL may provide the data signal SD to the scan transistor Ts which is turned on, so the voltage Vs of the first terminal of the drive transistor Td may be a data voltage Vdata. At the same time, due to the data voltage Vdata is higher than (VDD>Vdata>VSS) the voltage VSS, a current may be transmitted from the first terminal of the drive transistor Td to the control terminal of the drive transistor Td through the compensation transistor Tc. Thus, the drive transistor Td is operated in a conducting state like a diode unit, so that the voltage Vg of control terminal of the drive transistor Td may be a voltage of Vdata−|Vth|, where Vth is a threshold voltage of the drive transistor Td. Moreover, the voltage Vd of the second terminal of the drive transistor Td may also be the voltage of Vdata−|Vth|.
During a bias period PB from time t4 to time t5, the bias transistor Tb is turned on by the bias signal /SB with the low voltage level, and the scan transistor Ts and the compensation transistor Tc are turned off by the scan signal /SS with a high voltage level. Since the bias transistor Tb is turned on, the voltage Vd of the second terminal of the drive transistor Td may be the voltage VSS. The voltage Vg of control terminal of the drive transistor Td may be maintained the voltage of Vdata−|Vth|. The voltage Vs of the second terminal of the drive transistor Td may be the data voltage Vdata. At the same time, the tunable component 520 is operated in a working state, and the first terminal of the drive transistor Td generates a sink current SC from the tunable component 520. It should be noted that, when the tunable component 520 occurs a leakage current, a bias voltage (Vbias) of the tunable component 520 may increase (Vbias+dV), and the voltage Vs of the second terminal of the drive transistor Td may also increase. Therefore, the drive transistor Td may generate more current to the voltage VSS through the bias transistor Tb, so that the leakage current of the tunable component 520 may be compensate automatically. At the same time, the threshold voltage Vth of the driving transistor Td can be compensated, so that the bias voltage (Vbias) of the tunable component 520 may be effectively maintained during the bias period PB.
In the embodiment of the disclosure, the drive transistor Td may be operated as a source follower amplifier. The compensation transistor Tc is configured to let the drive transistor Td to form a diode unit when the compensation transistor Tc is turned on. The bias transistor Tb is configured to provide a second operation voltage (e.g., the voltage VSS) to the drive transistor Td when the bias transistor Tb is turned on. The storage capacitor Cst is configured to hold the voltage for the control terminal of the drive transistor Td. The reset transistor Tr is configured to reset the voltage of the control terminal of the driver transistor Td. In the embodiment of the disclosure, a control terminal of the compensation transistor Tc and a control terminal of the scan transistor Ts may receive a scan signal /SS. A control terminal of the bias transistor Tb may receive a bias signal /SB. A control terminal of the reset transistor Tr may receive a reset signal /SR. The data line DL may transmit a data signal SD.
In the embodiment of the disclosure, the constant voltage source circuit 710 may effectively and automatically compensate the leakage current of the tunable component 720, and at the same time, the threshold voltage Vth of the driving transistor Td may also be compensated, so that the bias voltage (Vbias) of the tunable component 720 may be effectively maintained.
During a scan period PS from time t4 to time t5, the reset transistor Tr and the bias transistor Tb are turned off by the bias signal /SB and the reset signal /SR with the high voltage level, and the scan transistor Ts and the compensation transistor Tc are turned on by the scan signal /SS with the low voltage level, so that the drive transistor Td is operated as a diode unit. The data line DL may provide the data signal SD to the scan transistor Ts which is turned on, so the voltage Vs of the second terminal of the drive transistor Td may be a data voltage Vdata. At the same time, due to the data voltage Vdata is higher than the ground voltage VSS (VDD>Vdata>VSS), a current may be transmitted from the first terminal of the drive transistor Td to the control terminal of the drive transistor Td through the compensation transistor Tc. Thus, the drive transistor Td is operated in a conducting state like a diode unit, so that the voltage Vg of control terminal of the drive transistor Td may be a voltage of Vdata−|Vth|, where Vth is a threshold voltage of the drive transistor Td. Moreover, the voltage Vd of the first terminal of the drive transistor Td may also be the voltage of Vdata−|Vth|.
During a bias period PB from time t6 to time t7, the bias transistor Tb is turned on by the bias signal /SB with the low voltage level, and the reset transistor Tr, the scan transistor Ts and the compensation transistor Tc are turned off by the reset signal SR and the scan signal SS with the high voltage level. Since the bias transistor Tb is turned on, the voltage Vd of the first terminal of the drive transistor Td may be the voltage VSS. The voltage Vg of control terminal of the drive transistor Td may be maintained the voltage of Vdata−|Vth|. The voltage Vs of the first terminal of the drive transistor Td may be the data voltage Vdata. At the same time, the tunable component 720 is operated in a working state, and the first terminal of the drive transistor Td generates a sink current SC from the tunable component 720. It should be noted that, when the tunable component 720 occurs a leakage current, a bias voltage (Vbias) of the tunable component 720 may increase (Vbias+dV), and the voltage Vs of the first terminal of the drive transistor Td may also increase. Therefore, the drive transistor Td may generate more current to the voltage VSS through the bias transistor Tb, so that the leakage current of the tunable component 720 may be compensate automatically. At the same time, the threshold voltage Vth of the driving transistor Td can be compensated, so that the bias voltage (Vbias) of the tunable component 720 may be effectively maintained during the bias period PB.
In the embodiment of the disclosure, the drive transistor Td may be operated as a source follower amplifier. The compensation transistor Tc is configured to let the drive transistor Td to form a diode unit when the compensation transistor Tc is turned on. The bias transistor Tb is configured to provide a first operation voltage (e.g., the operation voltage VDD) to the drive transistor Td when the bias transistor Tb is turned on. In the embodiment of the disclosure, the storage capacitor Cst is configured to hold the voltage for the control terminal of the drive transistor Td. In the embodiment of the disclosure, a control terminal of the compensation transistor Tc and a control terminal of the scan transistor Ts may receive a scan signal SS. A control terminal of the bias transistor Tb may receive a bias signal SB. A radio frequency signal RF-in is transmitted from the radio frequency input node N3 to the circuit node N1.
In the embodiment of the disclosure, the transistors of the electronic device 900 may operate according to the embodiment of
In the embodiment of the disclosure, the drive transistor Td may be operated as a source follower amplifier. The compensation transistor Tc is configured to let the drive transistor Td to form a diode unit when the compensation transistor Tc is turned on. The bias transistor TbA and the bias transistor TbB are configured to provide a first operation voltage (e.g., the operation voltage VDD) to the tunable component 1020 through the drive transistor Td when the bias transistor TbA and the bias transistor TbB are turned on. The reset transistor TrA is configured to reset the voltage of the control terminal of the drive transistor Td. The reset transistor TrB is configured to reset the tunable component 1020. In the embodiment of the disclosure, the storage capacitor Cst is configured to hold the voltage for the control terminal of the drive transistor Td. In the embodiment of the disclosure, a control terminal of the compensation transistor Tc and a control terminal of the scan transistor Ts may receive a scan signal SS. A control terminal of the bias transistor TbA and a control terminal of the bias transistor TbB may receive a bias signal SB. A control terminal of the reset transistor TrA and a control terminal of the reset transistor TrB may receive a reset signal SR. The data line DL may transmit a data signal SD.
In the embodiment of the disclosure, the transistors of the electronic device 1000 may operate according to the embodiment of
In the embodiment of the disclosure, the constant voltage source circuit 1010 may effectively and automatically compensate the leakage current of the tunable component 1020, and at the same time, the threshold voltage Vth of the driving transistor Td may also be compensated, so that the bias voltage (Vbias) of the tunable component 1020 may be effectively maintained.
In the embodiment of the disclosure, a first terminal of the first drive transistor Td1 is electrically connected to a first terminal of the first compensation transistor Tc1. A control terminal of the first drive transistor Td is electrically connected to a second terminal of the first compensation transistor Tc1. A second terminal of the first drive transistor Td1 is electrically connected to a circuit node N1. A first terminal of the first bias transistor Tb1 is electrically connected to an operation voltage VDD. A second terminal of the first bias transistor Tb1 is electrically connected to the first terminal of the first drive transistor Td1. A first terminal of the first storage capacitor Cst1 is electrically connected to the operation voltage VDD, and a second terminal of the first storage capacitor Cst1 is electrically connected to the second terminal of the first compensation transistor Tel and the control terminal of the first drive transistor Td1. A first terminal of the scan transistor Ts is electrically connected to the data line DL. A second terminal of the scan transistor Ts is electrically connected to the circuit node N1.
In the embodiment of the disclosure, a first terminal of the second drive transistor Td2 is electrically connected to the circuit node N1. A second terminal of the second drive transistor Td2 is electrically connected to a first terminal of the second bias transistor Tb2, and a first terminal of the second compensation transistor Tc2. A control terminal of the second drive transistor Td2 is electrically connected to a second terminal of the second compensation transistor Tc2. A first terminal of the second bias transistor Tb2 is electrically connected to the second terminal of the second drive transistor Td2. A second terminal of the second bias transistor Tb2 is electrically connected to a voltage VSS. A first terminal of the second storage capacitor Cst2 is electrically connected to the control terminal of the second drive transistor Td2 and a second terminal of the second compensation transistor Tc2, and a second terminal of the second storage capacitor Cst2 is electrically connected to the voltage VSS. In the embodiment of the disclosure, the tunable component 1120 is electrically connected between the circuit node N1 and a radio frequency input node N3. An input capacitor Cin is electrically connected to the tunable component 1120 in parallel, or equivalent to parasitic capacitance of the tunable component 1120. In the embodiment of the disclosure, a radio frequency signal RF-in is transmitted from a radio frequency input node N3 to the tunable component 1120.
In the embodiment of the disclosure, the first drive transistor Td1 may be operated as a source follower amplifier. The first compensation transistor Tel is configured to let the first drive transistor Td1 to form a diode unit when the first compensation transistor Tel is turned on. The first bias transistor Tb1 is configured to provide a first operation voltage (e.g., the operation voltage VDD) to the first drive transistor Td1 when the bias transistor Tb1 is turned on. In the embodiment of the disclosure, the first storage capacitor Cst1 is configured to hold the voltage for the control terminal of the first drive transistor Td1. In the embodiment of the disclosure, the second drive transistor Td2 may be operated as another source follower amplifier. The second compensation transistor Tc2 is configured to let the second drive transistor Td2 to form a diode unit when the second compensation transistor Tc2 is turned on. The second bias transistor Tb2 is configured to provide a second operation voltage (e.g., the voltage VSS) to the second drive transistor Td2 when the second bias transistor Tb2 is turned on. In the embodiment of the disclosure, the second storage capacitor Cst2 is configured to hold the voltage for the control terminal of the second drive transistor Td2. In the embodiment of the disclosure, a control terminal of the first compensation transistor Tc1 and a control terminal of the scan transistor Ts may receive a scan signal SS. A control terminal of the first bias transistor Tb1 may receive a bias signal SB. A control terminal of the second compensation transistor Tc2 may receive a scan signal SS. A control terminal of the second bias transistor Tb2 may receive a bias signal SB. In the embodiment of the disclosure, the data line DL may transmit a data signal SD.
In the embodiment of the disclosure, the operation manner of the electronic device 1100 can be inferred from the description of the above-mentioned embodiments. In the embodiment of the disclosure, the tunable component 1120 may alternately receive the source current SC1 and the sink current SC2 in an oscillating manner, and the input node N3 may receive the radio frequency signal RF-in (AC signal) during the bias period PB, so that the radio frequency signal RF-in may be modulated with the voltage Vdata (DC bias voltage) of the circuit node N1 with capacitive coupling with the input capacitor Cin (AC coupling) to generate a modulated signal (DC+AC) to the tunable component 1120. In the embodiment of the disclosure, the voltage Vdata may higher than the voltage of the radio frequency signal RF-in, and the first drive transistor Td1 may compensate the leakage current of the tunable component 1120 by automatically adjusting the source current SC1 accordingly. The current direction of the leakage current may toward to output to the input node N3. In one embodiment of the disclosure, the voltage of the radio frequency signal RF-in may higher than the voltage Vdata, and the second drive transistor Td2 may compensate the leakage current of the tunable component 1120 by automatically adjusting the source current SC2 accordingly. The current direction of the leakage current may toward to output to the circuit node N1.
In the embodiment of the disclosure, the constant voltage source circuit 1110 may effectively and automatically compensate the leakage current of the tunable component 1120, and at the same time, the threshold voltages Vth of the first driving transistor Td1 and the second driving transistor Td2 may also be compensated, so that the bias voltage (Vbias) of the tunable component 1120 may be effectively maintained.
In addition, in other embodiments of the disclosure, the radio frequency signal RF-in may be replaced by a direct current signal (DC-in). The direct current signal (DC-in) may be transmitted from the input node N3 to the tunable component 1120. Thus, in other embodiments of the disclosure, when the voltage Vdata is higher than the voltage of the direct current signal (DC-in), the first drive transistor Td1 may compensate the leakage current of the tunable component 1120 by automatically adjusting the source current SC1 accordingly. The current direction of the leakage current may toward to output to the input node N3. Moreover, in other embodiments of the disclosure, when the voltage of the direct current signal (DC-in) is higher than the voltage Vdata, the second drive transistor Td2 may compensate the leakage current of the tunable component 1120 by automatically adjusting the source current SC2 accordingly. The current direction of the leakage current may toward to output to the circuit node N1.
In the embodiment of the disclosure, the drive transistor Td may be operated as a source follower amplifier. The compensation transistor Tc is configured to let the drive transistor Td to form a diode unit when the compensation transistor Tc is turned on. The bias transistor Tb is configured to provide a first operation voltage (e.g., the operation voltage VDD) to the drive transistor Td when the bias transistor Tb is turned on. The storage capacitor Cst is configured to hold the voltage for the control terminal of the drive transistor Td. The reset transistor Tr is configured to reset the voltage of a control terminal of the drive transistor Td. In the embodiment of the disclosure, a control terminal of the compensation transistor Tc and a control terminal of the scan transistor Ts may receive a scan signal SS. A control terminal of the bias transistor Tb may receive a bias signal SB. A control terminal of the reset transistor Tr may receive a reset signal SR. The data line DL may transmit a data signal SD.
In the embodiment of the disclosure, the constant voltage source circuit 1210 may effectively and automatically compensate the leakage current of the tunable component 1220, and at the same time, the threshold voltage Vth of the driving transistor Td may also be compensated, so that the bias voltage (Vbias) of the tunable component 1220 may be effectively maintained.
In summary, the electronic device of the disclosure is capable of effectively compensating the leakage current of the tunable component without requiring the electronic device to operate at a higher refresh rate nor use a larger storage capacitor. Furthermore, in some embodiments of the disclosure, the electronic device also has the advantage that the stress of the transistor can be effectively relieved.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure covers modifications and variations provided that they fall within the scope of the following claims and their equivalents.
This application claims the priority benefit of U.S. provisional application Ser. No. 63/244,725, filed on Sep. 16, 2021. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
63244725 | Sep 2021 | US |