This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2015-167934, filed Aug. 27, 2015, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to an electronic device comprising an antenna.
An electronic device comprising an antenna inside a housing is well known. The antenna is in contact with an inner surface of the housing.
When heat is generated at the antenna during operations, the heat of the antenna is directly transferred to the housing and a surface of the housing may be locally heated at a high temperature. If a heat radiating member is additionally provided to suppress the rise in temperature on the local surface of the housing, space for containing the heat radiating member needs to be secured in the housing. Therefore, the mounting space is increased and space in the housing is reduced.
A general architecture that implements the various features of the embodiments will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate the embodiments and not to limit the scope of the invention.
Various embodiments will be described hereinafter with reference to the accompanying drawings.
In general, according to one embodiment, an electronic device includes a housing, an antenna, and a sheet metal member. The antenna is contained in the housing with a gap formed between the antenna and the housing. The sheet metal member is supporting the antenna to be thermally connected with the antenna.
An electronic device of a first embodiment will be explained hereinafter with reference to
As shown in
The display panel 3 is shaped in a rectangular flat plate, and comprises a display surface 3A on which information such as a character and an image is displayed and a back surface 3B located on a side opposite to the display surface 3A.
The antenna 4 is arranged in close vicinity to an edge portion of the display panel 3. The antenna 4 used to, for example, high-speed transmission standards such as WiGig and WirelessHD, and the antenna itself generates heat during the operation. The temperature of the antenna 4 of the present embodiment is often raised to, for example, 80° C. and the generated heat amount is larger than that of a conventional antenna.
As shown in
The front wall 16 extends on substantially the same plane as the display surface 3A. An outer surface of the front wall 16 is an example of a first surface 2A of the housing 2. The front wall 16 includes a rectangular opening portion 16A which exposes the display surface 3A of the display panel 3. The back wall 17 extends parallel to the front wall 16. An outer surface of the back wall 17 is an example of a second surface 2B of the housing 2. The peripheral wall 18 connects an edge portion of the front wall 16 and an edge portion of the back wall 17.
In the example shown in
The cover 22 comprises an antenna cover 24 and a cover body 25. The antenna cover 24 is formed of, for example, a synthetic resin material. The antenna cover 24 is provided at a position opposed to the antenna 4.
The cover body 25 is a portion of the cover 22 excluding the antenna cover 24. The cover body 25 is formed of, for example, a magnesium alloy. The material of the cover body 25 is not limited to a magnesium alloy, but the cover body 25 may also be formed of, for example, a synthetic resin material. In this case, the antenna cover 24 and the cover body 25 can be formed as an integrated structure.
It should be noted that the electronic device 1 may further comprise a transparent glass panel 27. The glass panel 27 shown in
The chip sets 33 are, for example, elements which control the operations of the display panel 3, etc., and supply the power of the battery pack 35 to the display panel 3, etc.
The middle frame 28 is formed in a rectangular shape smaller than the mask 21 of the housing 2, and has a heat capacity larger than the sheet metal member 30. The middle frame 28 is fixed to the mask 21 by a plurality of fastening portions 42. A plurality of screw holes 44 and bosses 45 for positioning are provided on the middle frame 28.
The middle frame 28 is formed of, for example, a magnesium alloy. If the middle frame 28 is formed of a magnesium alloy, a thermal conductivity is in a range of, for example, 40 to 150 W/(m·K). The middle frame 28 can be formed of not only a magnesium alloy, but, for example, aluminum or a synthetic resin material.
The sheet metal member 30 comprises an antenna support portion 51, a heat diffusion portion 52 continuous to the antenna support portion 51, and a pair of fixing portions 53 provided at the heat diffusion portion 52. The antenna support portion 51 is an element which supports the antenna 4, and has, for example, substantially the same size as the antenna 4. The heat diffusion portion 52 is formed to be larger than the antenna support portion 51. The heat diffusion portion 52 includes a first surface 52A located on the side of the first surface 2A of the housing 2, and a second surface 52B located on an opposite side to the first surface 52A.
The fixing portions 53 are provided at positions remote from the antenna 4. In the example shown in
An example of the first heat transfer member 61 is a thermally conductive double-sided tape. The first heat transfer member 61 may be a thermally conductive sheet or thermally conductive grease. If the first heat transfer member 61 is not a thermally conductive double-sided tape, the antenna 4 may be fixed to the antenna support portion 51 by auxiliary means such as a screw.
A second heat transfer member 62 is adhered to the first surface 52A of the heat diffusion portion 52. An example of the second heat transfer member 62 is a thermally conductive sheet. The second heat transfer member 62 is not limited to a thermally conductive sheet, but may also be a thermally conductive double-sided tape or thermally conductive grease.
In the first embodiment, a gap G is formed between the antenna cover 24 of the housing 2 and the antenna 4. The gap G has a length of, for example, 0.5 mm.
The antenna 4 executes signal transmission to or reception from the antenna cover 24. No element to disturb the signal transmission/reception is provided in the gap G. An air layer extending the gap G shuts out to prevent the heat of the antenna 4 from transferring to the antenna cover 24.
Furthermore, a gap H is also formed between the cover body 25 of the housing 2 and the heat diffusion portion 52 of the sheet metal member 30. The cover 22 is therefore thermally separated from the sheet metal member 30. In the example shown in
The heat generating portion 63 is electrically connected to the antenna 4 via a cable 66 shown in
A third heat transfer member 69 is adhered to the heat generating portion 63 of the wireless module 32. The third heat transfer member 69 is interposed between the sheet metal member 30 and the middle frame 28 to make thermal connection between the wireless module 32 and the middle frame 28.
An example of the third heat transfer member 69 is a thermally conductive sheet. The third heat transfer member 69 is not limited to a thermally conductive sheet, but may also be a thermally conductive double-sided tape or thermally conductive grease.
In the electronic device 1 of the present embodiment configured as explained above, direct transfer of the heat generated at the antenna 4 to the housing 2 can be suppressed since the gap G is formed between the antenna 4 and the antenna cover 24 of the housing 2. Since the antenna 4 is thermally connected to the sheet metal member 30, the heat generated by the antenna 4 can be dissipated and diffused to the sheet metal member 30 inside the housing 2. For this reason, even if the communication speed becomes higher and the amount of the heat generation at the antenna 4 is increased, rise in temperature on a local surface of the housing 2 can be suppressed.
Furthermore, the sheet metal member 30 comprises both the function of supporting the antenna 4 and the function of diffusing the heat of the antenna 4. For this reason, a space for mounting the antenna 4 can be compacted as compared with a case of providing the support member which supports the antenna and the heat radiating member which radiates the heat of the antenna, separately, on the housing 2.
In the present embodiment, the thermal connection between the antenna 4 and the antenna support portion 51 is more strengthened due to the presence of the first heat transfer member 61. For this reason, the heat of the antenna 4 can be certainly dissipated to the sheet metal member 30.
In the present embodiment, the antenna 4 executes signal transmission to or reception from the antenna cover 24 of the housing 2. The gap G extends between the antenna 4 and the antenna cover 24 in a direction of executing communication by the antenna 4. For this reason, communication of the antenna 4 is not disturbed inside the housing 2.
In the present embodiment, the sheet metal member 30 is fixed to the middle frame 28 having a larger heat capacity than the sheet metal member 30. For this reason, the heat transferred from the antenna 4 to the sheet metal member 30 can be efficiently dissipated and diffused to the middle frame 28.
Furthermore, in the present embodiment, the thermal connection between the sheet metal member 30 and the middle frame 28 is more strengthened due to the presence of the second heat transfer member 62. For this reason, the heat of the antenna 4 transferred to the sheet metal member 30 can be certainly dissipated to the middle frame 28.
In addition, the heat of the wireless module 32 can be efficiently transferred to the middle frame 28 due to the presence of the third heat transfer member 69. As a result, the operation of the wireless module 32 can be made stable and the reliability of communication of the antenna 4 can be increased.
It can be explained from the other viewpoint that the antenna 4 is thermally separated from the housing 2, in the electronic device 1 of the present embodiment. Since the antenna support portion 51 of the sheet metal member 30 supporting the antenna 4 is sequential with the heat diffusion portion 52 of the sheet metal member 30, the heat generated by the antenna 4 can be dissipated and diffused from the antenna support portion 51 to the heat diffusion portion 52. As a result, even if the communication speed becomes higher and the amount of the heat generation at the antenna 4 is increased, rise in temperature on a local surface of the housing 2 can be suppressed.
Moreover, in the present embodiment, the heat diffusion portion 52 of the sheet metal member 30 is fixed to the middle frame 28. Thus, the heat transferred from the antenna 4 to the antenna support portion 51 can be diffused to the heat diffusion portion 52 and then dissipated to the middle frame 28, and rise in temperature on a part of the middle frame 28 can be suppressed.
In other words, the heat generated at the antenna 4 is diffused to the sheet metal member 30 formed of a material having a high thermal conductivity and then dissipated to the middle frame 28. For this reason, the heat from the antenna 4 can be diffused to the middle frame 28 in a wider area as compared with a case where the antenna 4 is directly supported by the middle frame 28. As a result, the heat radiation property of the antenna 4 can be further increased.
In the present embodiment, the heat diffusion portion 52 is larger in size than the antenna support portion 51, and secures sufficient heat capacity and heat radiation property. For this reason, rise in temperature on a local surface of the housing 2 can be suppressed more certainly.
An electronic device 100 of a second embodiment will be explained hereinafter with reference to
As shown in
The display 103 comprises a second housing 108, and a display panel 110 and an antenna 111 which are contained in the second housing 108. The antenna 111 is located on an opposite side to the hinge 104, in the second housing 108.
The second housing 108 is constituted by a combination of a cover 116 which includes an antenna cover 114 and a cover body 115, and a mask 117. The antenna cover 114 is provided at a position opposed to the antenna 111 in a thickness direction of the second housing 108. The antenna cover 114 and the antenna 4 are provided remote from each other so as to be thermally separated from each other.
The sheet metal member 120 shown in
The multilayered portion 121 comprises an antenna support portion 126 which supports the antenna 111, and a pair of fixing portions 127 provided remote from the antenna support portion 126. In the example shown in
The heat diffusion portion 122 is formed to be thinner and larger than the antenna support portion 126, and extends along an inner surface of the cover body 115.
In the second embodiment constituted as explained, the heat generated at the antenna 111 can be dissipated and diffused to the heat diffusion portion 122, similarly to the first embodiment. For this reason, even if the communication speed becomes higher and the amount of the heat generation at the antenna 111 is increased, rise in temperature on a local surface of the second housing 108 can be suppressed.
Furthermore, in the second embodiment, the second housing 108 can be made further thinner since the middle frame of the first embodiment can be omitted.
In addition, the heat of the antenna 111 can be smoothly diffused by the greatly extending heat diffusion portion 122. Furthermore, the heat diffusion portion 122 can be made thinner and the second housing 108 can be thinned. In contrast, the antenna 111 can be certainly supported since the antenna support portion 126 is provided on the multilayered portion 121 which is formed to be thicker than the heat diffusion portion 122. Since the multilayered portion 121 is formed to be thick but arranged at a position displaced from the display panel 3, the second housing 108 can be maintained in a thin form.
Some embodiments of the present invention have been described, but these embodiments are presented as examples, and are not intended to limit the scope of the invention. These novel embodiments can be carried out in various other forms, and can be omitted, replaced and changed in a variety of ways without departing from the spirit of the invention. These embodiments and modifications thereof are included in the claims and spirit of the invention, and also included in the inventions described in the claims and their equivalents. For example, the antenna and the sheet metal member may be contained not in the second housing, but in the first housing, in the second embodiment. If the antenna and the sheet metal member are contained in the first housing, the display may be removed from the electronic device 1.
Number | Date | Country | Kind |
---|---|---|---|
2015-167934 | Aug 2015 | JP | national |