Electronic device, such as a switch, router, server etc., may include a chassis. Inside the chassis, there may be a backplane, a power supply, and cards arranged in an orthogonal architecture in front of and behind the backplane. To facilitate heat dissipation, a fan may be provided inside the chassis of the electronic device. Accordingly, an air path for flow of air driven by the fan may be formed inside the chassis.
Features of the present disclosure are illustrated by way of example and not limited in the following figure(s), in which like numerals indicate like elements, in which:
a shows an example structure of an electronic device according to the present disclosure;
b shows another example structure of an electronic device according to the present disclosure;
a shows an example structure of a backplane of the electronic device according to the present disclosure;
b shows another example structure of a backplane of the electronic device according to the present disclosure; and
c shows still another example structure of a backplane of the electronic device according to the present disclosure.
Hereinafter, the present disclosure is described in further detail with reference to the accompanying drawings and examples.
For simplicity and illustrative purposes, the present disclosure is described by referring to examples. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some structures have not been described in detail so as not to unnecessarily obscure the present disclosure. As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on. In addition, the terms “a” and “an” are intended to denote at least one of a particular element.
a and 1b show example structures of an electronic device according to the present disclosure. As shown in
It should be noted that, in this example, the plurality of first cards 21 are arranged in a vertical direction and the plurality of second cards 22 are arranged in a horizontal direction. The vertical direction meaning that the plane of the cards extends in direction from top to bottom of the chassis. The horizontal direction meaning that the plane of the cards extends in the direction from front to back or side to side of the chassis. The vertical direction and the horizontal direction mentioned in this example are determined by a placed direction of the chassis of the electronic device. If the chassis is turned over, the vertical direction and the horizontal direction may exchange or have offsets with a same angle.
The orthogonal connection of the group of first cards 21 and the group of second cards 22 may be implemented by a matrix of orthogonal connectors 23. An orthogonal connector is a connector which connects the cards in an orthogonal manner. There may be a space between the orthogonal connectors 23 in the matrix to allow flow of air along the air path. If the electronic device has a backplane 24 (shown by dotted lines in
In addition, fans 20 may be positioned on both sides of the group of second cards 22 of the electronic device. That is the fans may be positioned between a side wall of the chassis and the second group of cards, rather than behind the second group of cards between the ends of the second group of cards and the back wall of the chassis. Openings 220 may be provided in some or all of the second cards 22 to connect an air inlet of the fan 20 with the air path extending between the front part and the rear part of the chassis.
It should be noted that, in this example, one fan 20 is provided on each side of the group of second cards 22. In another example, the fan 20 may be provided on only one side of the group of second cards 22. Whether the fan 20 is provided on one or two sides, there may be more than one fan 20 on each side.
Thus, air may be driven by the fan 20 on the side of the group of second card 22, so that air flows from the front part of the chassis to the group of first cards 21 and the group of second cards 22, and then turns to two sides of the group of second cards 22 at the openings 220 in the group of second cards 22, and finally flows out from the rear part of the chassis through the fan 20 on the side of the group of second cards 22. Thus, heat dissipation is realized.
In
In view of the above, in the example, the fan 20 is provided on the side of the group of the second cards 22 and is connected with the air path from the front to rear of the chassis via the openings 220 processed on the second cards 22. Thus, heat may be dissipated by the fan. In addition, positioning the fan 20 on the side of the group of the second cards 22, rather than at the rear of the group of second cards, makes it possible to perform a plug operation at the rear side of the group of the second cards 22. Thus there may be easy access to the second group of cards so that cards in the second group may be plugged or unplugged from the orthogonal connectors or backplane without first moving a fan. This arrangement may allow for more convenient plug and maintenance of the group of the second cards 22.
Accordingly, since the fan 20 does not affect the plug and replacement of the group of the second cards 22, if there is more than one fan 20 on each side, the plurality of fans 20 need not be integrated into a fan box to facilitate assembling and disassembling operations of the fans 20. Instead, each fan may form an independent fan box. Thus, maintenance cost of the fans may be reduced.
Besides making way for the plug operation at the rear side of the group of the second cards 22, positioning the fan 20 on the side of the group of the second cards 22 may allow for electrical connection space between the group of second cards and the back wall of the chassis. Thus, the group of the second cards may be electrically connected with the back wall of the chassis. In this case, a port connected with a card 22 of the group of the second cards may be configured on the back wall of the chassis.
In another example, the PCB 22b may be not indented towards the front part of the tray 22a. Instead, the opening 220 may extend through both the tray 22a and the PCB 22b. Thus, the size of the PCB 22b may be as large as possible.
In yet another example, the second card 22 may not include the tray but merely a PCB. Accordingly, an opening 220 is simply provided on the PCB.
Thus, since the air inlet 26 of the centrifugal fan 20a faces the openings 220 of the plurality of second cards 22, air may flow under the drive of the centrifugal fan 20a from the front part of the chassis to the plurality of first cards 21 and the plurality of second cards 22, and turn to two sides of the plurality of the second cards 22 via the openings 220 of the second cards, flow into the centrifugal fan 20a, and flow out via the air outlet 28 facing the back wall of the chassis after passing through the centrifugal fan 20a.
Thus, the axial fan 20b on each side is able to form a negative pressure area 50 on this side of the second cards 22. Therefore, due to the existence of the negative pressure area 50, the air may flow from the front part of the chassis to the first cards 21 and the second cards 22, turn to two sides of the second cards via the openings 220 of the second cards 22, enter into the negative pressure area 50 and is absorbed into air inlet of the axial fan 20b, and then flow out from the air outlet 27 of the axial fan 20b.
The axial fan 20b on each side absorbs via the openings 220 the air from the second cards 22 to outside of the second cards 22, and vents the air from the side wall of the chassis (an air outlet may be configured on the side wall).
Thus, in this example the axial fan 20b, which is positioned at angle to the cards, performs approximately the deflecting function of the deflector 60 as shown in
The above examples describe the air path in the chassis and the deflection of the air path in the front and rear direction from the second openings to the fan 20 utilizing the openings 220. Hereinafter, examples of the structure of the electronic device, including the backplane and the power supply, which may support the above described air paths are described.
As shown in
If the electronic device is a network device such as a switch or a router, the group of first cards 21 may include a service card and/or a main control card, the group of second cards 22 may include a switch network card. If the electronic device is a device implementing other functions, the group of first cards 21 and the group of second cards 22 may be cards with other functions. In addition, in an example, a plurality of independent fans may be provided instead of the fan box 500.
As shown in
In this example, a plurality of power supplies 400 are arranged in a row below the group of second cards 22. The number of the power supplies and the number of rows may vary depending on the power requirements.
Thus, space in front of the backplane 24 may be completely utilized to arrange the group of first cards 21. Behind the backplane 24, the upper space and the middle space which account for majority of the space behind the backplane 24 are utilized to arrange the group of second cards 22. The lower space which accounts for minority of the space behind the backplane 24 is utilized to place the power supply 400. Thus, a compact orthogonal architecture is formed inside the chassis.
Referring to
Accordingly, as to the compact orthogonal architecture, by positioning the fan box 500 on at least one side of the second cards 22, including openings 220 on the second cards 22 and including openings on the upper and middle parts of the backplane 24 corresponding to the second cards 22, an air path is formed which begins from the front end of the backplane 24, goes through to the rear end of the backplane 24, and turns to at least one side where the fan box 500 is located via the openings 220 of the second cards 22. The compact orthogonal architecture is realized. In this way, heat may be dissipated via the air path extending from the front to rear of the chassis.
In this example, the second cards 22, the openings 220, the relative positions of the second cards 22, the openings 220 and the fan box 500, and the type of the fans in the fan box 500 may be modified according to the air path and configurations described in the above examples. If a deflector is used, the deflector may be provided as described in the above examples.
At least one first card 21 may have a front panel 212. The front panel 212 of the first card 21 may include at least one physical port. Since the space in front of the backplane 24 is utilized to arrange the first cards 21 with the physical ports, a port density on a front wall of the chassis may be increased.
In addition, openings 216 may be formed in the front panel 212 to act as an air inlet. Thus, air outside the chassis may flow into the air path as shown in
The group of first cards 21 may be plugged in a front side of the backplane 24 via sockets on the front side. The group of second cards 22 may be plugged in a rear side of the backplane 24 via sockets on the rear side. The first cards 21 and the second cards 22 may be connected via a plurality of orthogonal connectors to realize the orthogonal connection. Power supply 400 may be plugged in the rear side of the backplane 24 via sockets on the rear side.
Referring to
Referring to
Referring to
In addition, if electrical connection is required between the two boards 24′, lines may be placed between the two boards 24′. In an example, the backplane 24 may contain more than two boards which form the backplane 24 via various manners.
While in the above description a chassis is only illustrated in
What has been described and illustrated herein is an example of the disclosure along with some of its variations. The terms, descriptions and figures used herein are set forth by way of illustration. Many variations are possible within the spirit and scope of the disclosure, which is intended to be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201320291581.X | May 2013 | CN | national |
201320478767.6 | Aug 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/078099 | 5/22/2014 | WO | 00 |