The present invention relates to an electronic device including a coaxial cable connected to an antenna.
Some electronic devices include antennas for radio communication. Such electronic devices relay radio signals transmitted and received by the antennas through feeders, such as coaxial cables, connected to the antennas.
In such an electronic device according to the related art, electromagnetic waves radiating from the antenna sometimes propagate along an external conductor of the coaxial cable as a leakage current. The generation of such a leakage current causes electromagnetic waves to be radiated from the external conductor of the coaxial cable due to the influence of the antenna even. The electromagnetic waves radiated around the coaxial cable are undesirable because they may act as noise affecting circuit components disposed near the coaxial cable and other coaxial cables.
An object of the present invention, which has been conceived in consideration of the above-described circumstances, is to provide an electronic device that can reduce electromagnetic waves generated from a coaxial cable connected to an antenna.
An electronic device according to the present invention includes a coaxial cable connected to an antenna, and at least one conductive body having a strip-like shape and electrically coupled to an external conductor of the coaxial cable, one end of the conductive body not being electrically connected to a ground connected to the coaxial cable.
Embodiments of the present invention will now be described in detail with reference to the drawings.
The antenna 10 transmits and/or receives radio signals to establish radio communication between the electronic device 1 and other electronic devices. For example, the antenna 10 may be used for wireless local area network (LAN) communication or Bluetooth (registered trademark) communication in accordance with the Institute of Electrical and Electronics Engineers (IEEE)802.11 standard.
Hereinafter, the representative frequency value used by the antenna 10 in radio communication is denoted as communication frequency f. The communication frequency f is the frequency of the radio signals transmitted and received by the antenna 10 and is determined in accordance with the standard of the radio communication. Note that, in general, the antenna 10 transmits and receives radio signals having frequencies in a predetermined frequency band. The communication frequency f in this case is defined by a median of the frequency band to be used. In specific, the communication frequency f is defined as f=(fmax+fmin)/2, where fmax is the maximum value in the frequency band used for radio communication by the antenna 10 and fmin is the minimum value.
The coaxial cable 20 includes an internal conductor passing through the center of the coaxial cable 20 and an external conductor surrounding the internal conductor. The coaxial cable 20 is used as a feeder for the antenna 10. In specific, an end portion of the coaxial cable 20 is electrically connected to the antenna 10 to serve as a relay between the antenna 10 and the RF module 41. Note that in the present embodiment, the antenna 10 is disposed outside the substrate 40. Thus, a portion of the coaxial cable 20 is also disposed outside the substrate 40.
When the antenna 10 transmits or receives a radio signal, a leakage current flows to the external conductor of the coaxial cable 20. This may cause the external conductor to radiate electromagnetic waves that act as noise to the surroundings. The electronic device 1a according to the present embodiment includes a conductive body 30 for suppressing radiation of electromagnetic waves from the external conductor.
The conductive body 30 is composed of a conductive material, such as sheet metal or copper foil tape, and has a thin strip-like shape. One end of the conductive body 30 is electrically connected to the external conductor of the coaxial cable 20 at a position outside the substrate 40. In detail, a portion of a covering of the external conductor of the coaxial cable 20 is removed at the connection with the conductive body 30 such that the one end of the conductive body 30 is fixed to the exposed external conductor. Hereinafter, the connection between the conductive body 30 and the external conductor of the coaxial cable 20 is referred to as base point B. The conductive body 30 is electrically connected with no other conductive member at positions other than base point B. The end of the conductive body 30 opposite the base point B (the end portion of the conductive body 30) is an open end. Hereinafter, the end of the conductive body 30 opposite the base point B is referred to as an open end O. More specifically, the base point B is defined to be an end point closest to the antenna 10 and adjacent to the open end O in the area in which the conductive body 30 is in contact with the external conductor of the coaxial cable 20. The open end O is defined to be an end point adjacent to the antenna 10 in the end portion of the conductive body 30 farthest from the coaxial cable 20.
In the present embodiment, the conductive body 30 has a substantially linear shape and extends in a direction substantially orthogonal to the extending direction of the coaxial cable 20. The length from the base point B to the open end O of the conductive body 30 is determined in accordance with the wavelength of the electromagnetic waves of which radiation is to be suppressed. Hereinafter, the path length L is defined as the physical length from the base point B to the open end of the conductive body 30. More specifically, the path length L is defined to be the length along the outer circumference of the conductive body 30 from the base point B to the open end O of the conductive body 30 on the side adjacent to the antenna 10. The electrical length Le is defined to be the electrical length of the conductive body 30 from the base point B to the open end O corresponding to the path length L.
It is preferred that the path length L of the conductive body 30 be determined such that the electrical length Le approximates Le=(¼+n/2)λ, where λ is the wavelength of the electromagnetic waves corresponding to the communication frequency f of the antenna 10 and n is an integer larger than or equal to zero. More specifically, it is preferred that the electrical length Le of the conductive body 30 satisfy (⅛+n/2)λ≤Le≤(⅜+n/2)λ. In this way, electromagnetic waves having a wavelength λ propagating from the antenna 10 can be efficiently suppressed. The electrical length Le of the conductive body 30 matches the path length L unless the conductive body 30 is disposed in contact with a dielectric body, such as resin material. Thus, the path length L of the conductive body 30 should be within the range mentioned above. In the case where the conductive body 30 is disposed in contact with a dielectric body, the electrical length Le is larger than the actual path length L. Thus, the dimensions of the conductive body 30 can be reduced.
It is preferred that a width W of the conductive body 30 in the lateral direction (i.e., the direction along the extending direction of the coaxial cable 20) be sufficiently smaller than λ/4. Thus, it is preferred that the width W be at least ½ or less of the path length L of the conductive body 30.
The conductive body 30 may be connected to the coaxial cable 20 at a position a certain distance from the antenna 10. Hereinafter, the length of the coaxial cable 20 from the antenna 10 to the position where the conductive body 30 is connected (the position of the base point B) is denoted by distance d. In the present embodiment, the distance d is larger than λ/4. The presence of the conductive body 30 suppresses the generation of electromagnetic waves at a portion of the coaxial cable 20 on a side of the conductive body 30 opposite to the side of the antenna 10, regardless of the distance d.
As illustrated in the drawing, negative peaks at which the electric field intensity is particularly small are observed at path lengths L substantially λ/4 and ¾λ. The electric field intensity is small within the range of ±λ/8 of these negative peaks. However, the electric field intensity is large outside these ranges and not much different from that when the conductive body 30 is absent. Consequently, the conductive body 30 has a significant advantageous effect when the electrical length Le of the conductive body 30 is within ranges at a λ/2 cycle, such as within the range of λ/8 to ⅜λ, ⅜λ to ⅞λ, and so on, as described above.
In the electronic device 1a according to the above-described embodiment, the conductive body 30 can be electrically connected to the external conductor of the coaxial cable 20 to suppress radiation of electromagnetic waves from the external conductor of the coaxial cable 20 caused by the influence of the antenna 10. This can prevent the electromagnetic waves from affecting the areas around the coaxial cable 20.
In some cases, the electronic device 1a may include a plurality of the antennas 10 and a single RF module 41 controlling the radio communication of the antennas 10. In such a case, even when the antennas 10 are disposed apart from each other, the coaxial cables 20 connecting the antennas 10 and the RF module 41 approach each other near the RF module 41. Thus, the electromagnetic waves generated at the coaxial cables 20 may interfere with each other unless a measure is taken. In the electronic device 1a according to the present embodiment, conductive bodies 30 are connected to the coaxial cables 20 to prevent interference of nearby coaxial cables 20 in portions of the coaxial cables 20 closer to the RF module 41 than the conductive bodies 30.
An electronic device 1b according to a second embodiment of the present invention will now be described with reference to
As illustrated in
In the electronic device 1b according to the present embodiment, the conductive body 30 can suppress radiation of electromagnetic waves from the coaxial cable 20, as in the first embodiment. Furthermore, the meander shape of the conductive body 30 allows the open end O to be disposed not too far from the coaxial cable 20 compared to a linear conductive body 30 having the same path length L. Thus, the conductive body 30 occupies a smaller space in the electronic device 1b.
An electronic device 1c according to a third embodiment of the present invention will now be described with reference to
The two conductive bodies 30 have the same path length L and are connected to the coaxial cable 20 at different positions. Since the conductive bodies 30a and 30b have the same path length L, they also have the same electrical length Le. Thus, the conductive bodies 30a and 30b have an advantageous effect on electromagnetic waves in the same frequency band. A plurality of conductive bodies 30 having the same electrical length in this way can suppress the propagation of leakage currents from the antenna 10 more effectively than a single conductive body 30.
Here, two conductive bodies 30 are connected to the coaxial cable 20. Alternatively, three or more conductive bodies 30 may be connected. Here, the two conductive bodies 30 extend in opposite directions from the coaxial cable 20. Alternatively, the two conductive bodies 30 may be extend in the same direction. Furthermore, the two conductive bodies 30 may be disposed on the coaxial cable 20 at the same distance d from the antenna 10 but extend in different directions.
An electronic device 1d according to a fourth embodiment of the present invention will now be described with reference to
In such a case, the conductive body 30c has an advantageous effect on electromagnetic waves having a wavelength four times larger than the path length La. The conductive body 30d has an advantageous effect on electromagnetic waves having a wavelength four times larger than the path length Lb. That is, as a whole, radiation of electromagnetic waves of several different wavelengths are suppressed. Thus, in the case where the antenna 10 of the electronic device 1d according to the present embodiment is, for example, a multi-resonance antenna having multiple resonance frequencies, leakage currents of multiple frequencies propagating from the antenna 10 can be effectively suppressed.
Here, two conductive bodies 30 are connected to the coaxial cable 20. Alternatively, three or more conductive bodies 30 having different electrical lengths may be connected to the coaxial cable 20. Here, the two conductive bodies 30 extend in the same directions from the coaxial cable 20. Alternatively, the two conductive bodies 30 may be extend in different directions. Furthermore, the two conductive bodies 30 may be disposed on the coaxial cable 20 at the same distance d from the antenna 10 but extend in different directions.
An electronic device 1e according to a fifth embodiment of the present invention will now be described with reference to
In the present embodiment, the conductive body 30 extends in a direction substantially orthogonal to the extending direction of the coaxial cable 20 from the base point B to the bending point C, as illustrated in
The effect of the conductive body 30 in this example will now be described on the basis results of a simulation performed under varying conditions. In specific, the inventor varied the length L1 in a stepwise manner while maintaining a constant path length L and varied the connecting points of the conductive body 30 and the coaxial cable 20 (i.e., the distance d from the antenna 10 to the conductive body 30), to study the effect of the conductive body 30.
The horizontal axis in the drawings represents the distance d from the antenna 10 to the conductive body 30, and the vertical axis represents the electric field intensity indicating the intensity of the electromagnetic waves generated at a measuring point X, as in
The graphs illustrated in
In the graph in
With reference to
As described above, the shape of the conductive body 30 and the connecting position to the coaxial cable 20 can be appropriately adjusted to increase the effect of the conductive body 30 on suppressing electromagnetic waves.
An electronic device 1f according to a sixth embodiment of the present invention will now be described with reference to
In
As illustrated in
In the present embodiment, the width W in the lateral direction (a direction parallel to the extending direction of the coaxial cable 20) of the conductive body 30 should be large enough to establish capacitance coupling of the conductive body 30 and the external conductor 20b.
In the embodiments described above, the width W of the conductive body 30 is constant. Alternatively, the width W of the conductive body 30 may not be constant. In particular in the sixth embodiment, the width W of the conductive body 30 should be large at the position overlapping with the coaxial cable 20, as described above. Thus, the width W of the conductive body 30 at the position overlapping with the coaxial cable 20 may be large, and the width W of other portions may be relatively small.
In the embodiments described above, an end of the conductive body 30 opposite the open end O is electrically coupled to the coaxial cable 20. Alternatively, a midway position of the conductive body 30 may be electrically coupled to the coaxial cable 20.
In particular, in the sixth embodiment, a cable connected to the ground of the substrate 40 can function as the conductive body 30 because the conductive body 30 is not electrically connected to the external conductor 20b of the coaxial cable 20.
In this example, the ground of the circuit board of the peripheral device 50 is electrically separated from the ground of the substrate 40. Thus, the open end O of the conductive body 30 is not electrically connected to the ground of the substrate 40 connected to the coaxial cable 20 and thus prevents propagation of electromagnetic waves having a wavelength λ corresponding to the path length L, in view of the coaxial cable 20. In this way, a cable overlapping the coaxial cable 20 functions as the conductive body 30 if one end of the cable functions as an open end O not electrically connected to the ground connected to the coaxial cable 20. In such a case, the end of the conductive body 30 opposite the open end O may be electrically connected to the ground connected to the coaxial cable 20.
Note that the embodiments of the present invention are not limited to those described above. For example, in the descriptions above, the antenna 10 performs radio communication in accordance with a wireless LAN standard or a Bluetooth standard. Alternatively, the conductive body may be connected to a coaxial cable connected to an antenna of any other type besides those described above. Furthermore, the conductive body may be provided in any number or shape besides those described above to achieve similar advantageous effects.
The aspects of multiple embodiments described above may be combined and applied to a single electronic device. For example, in the third and fourth embodiments described above, some or all conductive bodies 30 may have a meander shape. Furthermore, in the sixth embodiment, multiple conductive bodies 30 electrically coupled to the coaxial cable 20 through capacitance coupling may be provided, and the conductive bodies 30 may have an L-shape or a meander shape.
1
a, 1b, 1c, 1d, 1e, if Electronic device, 10 Antenna, 20 Coaxial cable, 30 Conductive body, 40 Substrate, 41 Communication module, 50 Peripheral device.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/005337 | 2/14/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/150468 | 8/23/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5764193 | Uchino | Jun 1998 | A |
6917333 | Ikegaya | Jul 2005 | B2 |
9300037 | Hiroiku | Mar 2016 | B2 |
20030090425 | Ikegaya | May 2003 | A1 |
20120280879 | Zimmerman et al. | Nov 2012 | A1 |
20130082898 | Asanuma | Apr 2013 | A1 |
20140176391 | Tayama | Jun 2014 | A1 |
20150054702 | Rogers | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
1417886 | May 2003 | CN |
102959802 | Mar 2013 | CN |
103703618 | Apr 2014 | CN |
61099402 | May 1986 | JP |
62177106 | Nov 1987 | JP |
10233619 | Sep 1998 | JP |
11340710 | Dec 1999 | JP |
3165653 | May 2001 | JP |
3165653 | May 2001 | JP |
2004343193 | Dec 2004 | JP |
2005191792 | Jul 2005 | JP |
2011142414 | Jul 2011 | JP |
2015073239 | Apr 2015 | JP |
2013047033 | Apr 2013 | WO |
Entry |
---|
Notice of Reasons for Refusal for corresponding JP Application No. 2019-500071, 5 pages, dated Oct. 8, 2020. |
Office Action for corresponding CN Application No. 201780085886.6, 16 pages, dated Aug. 24, 2020. |
International Preliminary Report on Patentability and Written Opinion for corresponding PCT Application No. PCT/2017/005337, 11 pages, dated Aug. 29, 2019. |
International Search Report for corresponding PCT Application No. PCT/2017/005337, 4 pages, dated Mar. 21, 2017. |
Extended European Search Report for corresponding EP Application No. 17896773.3, 44 pages, dated Sep. 28, 2020. |
Decision to Grant a Patent for corresponding JP Application No. 2019-500071, 5 pages, dated Apr. 12, 2021. |
The Second Office Action for corresponding CN Application No. 201780085886.6, 19 pages, dated Apr. 20, 2021. |
Number | Date | Country | |
---|---|---|---|
20200044302 A1 | Feb 2020 | US |