1. Technical Field
The present disclosure generally relates to electronic devices, particularly, to an electronic device with a charging assembly.
2. Description of Related Art
Various of electronic devices, such as mobile phones, PDAs (personal digital assistants), MP4 players, are popular because of the convenience or entertainment they provide. A user must often take along a charger or ensure that the electronic device has sufficient power.
A typical electronic device includes a main body, a pair of pins rotatably and foldably mounted to the main body, two engaging nuts, and two electrode plates with different polarities. The main body has a casing in which the engaging nuts and electrode plates are received. When the pins are rotated to be substantially perpendicular to an outer surface of the casing, an end of each of the pins can be pressed to engage one engaging nut and connected with one of the electrode plates. In this state, the electronic device is capable of being charged. When the electronic device is fully charged, the user needs to pull the pins to disengage the ends of the pins from the engaging nuts. Then the pins can be folded over the outer surface of the casing.
However, the user needs to push the pins to engage with the engaging nuts when the electronic device needs to be charged, and pull the pins to disengage from the engaging nuts when the electronic device is fully charged, thus the electronic device is inconvenient for use.
Therefore, there is room for improvement within the art.
Many aspects of the embodiments can be better understood with references to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout several views, and all the views are schematic.
The present electronic device may be a mobile phone, a PDA and so on. In the illustrated exemplary embodiment, the electronic device is a mobile phone. Referring to
Referring to
Each of the first receiving grooves 13 is defined by a first slot 131 and a second slot 133 communicating with each other. The main body 10 further defines two depressions 1311 at opposite sides of each first slot 131, therefore, fingers of a user can extend into the depressions 1311 to pull an end of each pin 30 out of the first slot 131. The second slot 133 is bonded by cooperation of a bottom wall 1331 and four sidewalls 1333 perpendicular to the bottom wall 1331. Two of the sidewalls 1333 opposite to each other each define an engaging hole 1335.
Each of the second receiving grooves 15 is defined in one corresponding bottom wall 1333 and communicates with the inside of the main body 10. In the illustrated embodiment, the diameter of each of the second receiving grooves decreases from the end adjacent to the first receiving grooves 13 to the end away from the first receiving grooves 13, therefore, the conductive assemblies 50 can be securely received in the second receiving grooves 15.
Each of the pins 30 includes a conductive electrode 31, an insulating member 33, and a pivot shaft 35 running through the conductive electrode 31 and the insulating member 33.
The conductive electrode 31 has an end 311 received in the second slot 133, and defines a notch 3111 and a pivot hole 3113. The notch 3111 is defined at the end 311 of the conductive electrode 31, an inside surface of the notch 3111 curved. The pivot hole 3113 is adjacent to the end 311.
The insulating member 33 defines a through slot 331 and a through hole 333. The end 311 of the conductive electrode 31 is partially received in the through slot 331, and part of an end surface 3115 of the end 311 is exposed out of the insulating member 33. Two sides of the insulating member 33 resist the two of the sidewalls 1333 defining the engaging holes 1335.
The pivot shaft 35 runs through the pivot hole 3113 of the conductive electrode 31, the through hole 333 in the insulating member 33, and the engaging holes 1335 of the sidewalls 1333, such that the conductive electrode 31 and the insulating member 33 are rotatably connected on the main body 10. The insulating member 33 is made of insulating materials. In the illustrated embodiment, the insulating member 33 is made of plastic.
Each of the conductive assemblies 50 includes a resilient member 51 and a locking member 53. An end of the resilient member 51 resists the locking member 53, and the other end of the resilient member 51 resists the circuit board 17 in the main body 10. A surface of the locking member 53 is curved. The conductive assemblies 50 are correspondingly received in the second receiving grooves 15, and capable of contacting with the pins 30. In the illustrated embodiment, the resilient member 51 is a compression spring. The locking member 53 is a metallic ball. The diameter of the locking member 53 is larger than the diameter of each of the second receiving grooves 15 adjacent to the second slot 133, and smaller than the diameter of the resilient member 51, therefore, the conductive assemblies 50 are securely received in the second receiving grooves 15.
Referring to
Referring to
When the electronic device is fully charged, the user pushes the conductive electrode 31 with a force greater than the locking force between the conductive electrode 31 and the locking member 53, and the conductive electrode 31 is rotated and wholly received in the first receiving groove 13 again.
When the mobile phone 100 needs to be charged, the locking member 53 is partially engage with the notch 3111 and locked with the conductive electrode 31 by the resistance of the resilient member 51, therefore, the conductive electrode 31 can be securely positioned in the charging state. In addition, since the surface of the locking member 53 and the surface in the notch 3111 are curved, when the conductive electrode 31 is pushed by a large enough force, the locking member 53 can slide out of the notch 3111 and be unlocked from the locking member 53. Furthermore, the insulating member 33 resists two of the sidewalls 1331 of the second slot 133, thereby, minimizing or preventing vibration of the end 311 of the conductive electrode 31 and the insulating member 33 received in the second slot 133.
In alternative embodiments, the number of the pins 30 may be three. Correspondingly, the number of the conductive assemblies 50 may also be three. The second slot 133 may be defined by cooperation of the bottom wall 1331 and a continuous curved sidewall. The resilient member 51 may be a resilient piece. One of the surfaces of the notch 3111 and the surface of the locking member may not be curved, but instead, for example, the notch 3111 or the locking member 53 may be reversed V-shaped.
Finally, while various embodiments have been described and illustrated, the disclosure is not to be construed as being limited thereto. Various modifications can be made to the embodiments by those skilled in the art without departing from the true spirit and scope of the disclosure as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0306260 | Dec 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3519914 | Fujimaki et al. | Jul 1970 | A |
3930309 | Collins | Jan 1976 | A |
4086523 | Izumi | Apr 1978 | A |
5220152 | Doran | Jun 1993 | A |
5494449 | Chioo | Feb 1996 | A |
5635814 | Afzal et al. | Jun 1997 | A |
6494727 | Wen-Ching | Dec 2002 | B2 |
7197965 | Anderson | Apr 2007 | B1 |
20020119687 | Wen-Ching | Aug 2002 | A1 |
20060089026 | Song | Apr 2006 | A1 |
20090061666 | Yu | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100148722 A1 | Jun 2010 | US |