The present disclosure generally pertains to the field of vehicular communication, in particular to an electronic device, a system and a method for vehicular communication.
Vehicular communication (also called car-to-car communication or vehicle-to-vehicle communication) relates to networks in which vehicles and roadside units are the communicating nodes, providing each other with information, such as safety warnings and traffic information. They can be effective in avoiding accidents and traffic congestion.
Vehicular Ad Hoc Networks (VANETs) are created by applying the principles of Mobile Ad Hoc Networks (MANETs)—the spontaneous creation of a wireless network for data exchange—to the domain of vehicles. Vehicular Ad Hoc Networks are a key component of intelligent transportation systems (ITS).
In Intelligent Vehicular Ad Hoc Networks (InVANET) or intelligent transportation systems (ITS), vehicles are enabled to communicate among themselves (vehicle-to-vehicle, V2V) and via roadside access points (vehicle-to-roadside, V2R) also called Road Side Units (RSUs).
Vehicular communication can contribute to safer and more efficient roads by providing timely information to drivers, and also to make travel more convenient. Vehicular communication also contributes to autonomous and semi-autonomous vehicles.
Although there exist techniques for vehicle communication, it is generally desirable to provide more developed techniques for vehicle communication.
According to a first aspect the disclosure provides an electronic device that is configured as a host of a distributed ledger, the permission to access the distributed ledger being location based.
According to a further aspect the disclosure provides a system comprising nodes that are configured as hosts of a distributed ledger, the permission to access the distributed ledger being location based.
According to a further aspect the disclosure provides a method of providing a distributed ledger, the permission to access the distributed ledger being location based.
Further aspects are set forth in the dependent claims, the following description and the drawings.
Embodiments are explained by way of example with respect to the accompanying drawings, in which:
The embodiments disclose an electronic device that is configured as a host of a distributed ledger, the permission to access the distributed ledger being location based. A distributed ledger is a type of database that is spread across multiple sites. According to some embodiments, records are stored one after the other in a distributed ledger when the participants of the ledger reach consensus. A distributed ledger may for example store rules for making a consensus of autonomous vehicles' behaviors in a certain geographical area such as a motorway junctions and intersections. A distributed ledger may be used to allow for distributed transaction processing.
The electronic device may for example be a node of a network that hosts a distributed ledger. A node of the distributed ledger may store a full copy of the database, or it may store only parts of the database.
The electronic device may for example be integrated in a road side unit. A road side unit may be located at the side of a road and control a defined section of the road, or it may be located near a crossing, or the like. The road side unit may have geographical information indicating the types and parameters of the actual place near the road side unit such as 200 meters before a motorway junction that has two lanes, junction from right side lane and 100 meters acceleration lane from the junction point. In particular, the electronic device may be a server that is located, together with other servers, along a road.
The distributed ledger may be a shared ledger. A shared ledger refers to any database and application that is shared by a group of participants, or that is open to the public. A shared ledger may use a distributed ledger as its underlying database.
The electronic device may for example be a node of a Vehicular Ad Hoc Network. A Vehicular Ad Hoc Network can use any wireless networking technology as its basis. The most prominent are short range radio technologies like WLAN (either standard Wi-Fi or the vehicle-specific IEEE 802.11p), Bluetooth, Visible Light Communication (VLC), Infrared, and ZigBee. In addition, cellular technologies like UMTS, LTE, or WiMAX IEEE 802.16 can support VANETs, forming heterogeneous vehicular networks.
Permission of read access to the distributed ledger may depend on location. For example, the permission to access the distributed ledger may depend on physical closeness. For example, a vehicle group can be defined as a group of vehicles that are within a certain distance from the electronic device storing the distributed ledger. Such a group of vehicles that are within a certain distance may proceed the read access to the distributed ledger. The location based permission may be limited to read access. The distributed ledger may be updated remotely through a network.
Alternatively, a vehicle may also be assigned to a group based on its distance to a road side unit. For instance, a vehicle may be assigned to group A if its closest road side unit is road side unit A.
Physical closeness may be verified by sensors and/or communications via short range radio technologies between a vehicle and an electronic device storing the distributed ledger. For example, the devices at a location may verify each other's physical closeness by means of radio communication (Vehicular Ad Hoc Network, WLAN), cameras (CCD, TOF etc.), and the like.
According to an embodiment, one or more vehicles provide information about the current driving and/or the future plan of driving such as the situation to follow the vehicle in front under a certain speed limit to the road side unit and the road side unit determines a behavior direction for the next actions of the one or more vehicles based on this information and rules stored on the distributed ledger on the road side unit. The one or more vehicles may then confirm the behavior direction for the next actions. The road side unit may then store the result of the behavior direction and utilize the stored the precedent vehicles' behaviors as additional information for determining next behavior direction on the time base. The rules may be stored as smart contracts in the distributed ledger and each of the electronic devices has geographical information indicating the type of the actual place near the electronic device. The geographical information is used for selecting a rule from the set of rules stored on the electronic device. In the case that the rule is stored as smart contract, the geographical information and received information from the one or more vehicles may be input to the smart contract to get the behavior direction for the next actions of the one or more vehicles. The precedent vehicles' behaviors may be an additional input to the smart contract.
In another embodiment, one or more vehicles provide information about the current driving and/or the future plan of driving such as the situation to follow the vehicle in front under a certain speed limit to the road side unit and the road side unit provides rules stored on the distributed ledger on the road side unit along with the received information to each of the one or more vehicles. Then, each of the one or more vehicles may determine the behavior for the next actions based on the information and the rules. The one or more vehicles may transmit the own behavior to other vehicles by means of radio communication. Each of the electronic devices has geographical information indicating the place type of the electronic device and the rules provided from the road side unit may be selected from a set of rules based on the geographical information.
According to some embodiments, the distributed ledger is designed as a block chain. A block chain is a type of database that takes a number of records and puts them in a block. Each block is then linked to the next block, using, e.g. a cryptographic signature. This allows block chains to be used like a ledger, which can be shared and corroborated by anyone with the appropriate permissions.
The distributed ledger may be open to the public or may layer on permissions for different types of users. For example, police cars and ambulance cars may have higher permissions than private cars.
The distributed ledger may be a private permissioned ledger for a location. Permissioned ledgers may have one or many owners. When a new record is added, the ledger's integrity may be checked by a limited consensus process. This may be carried out by trusted actors—government departments, for example traffic authorities, police or the like. A permissioned block chain may provide highly-verifiable data sets because the consensus process creates a digital signature, which can be seen by all parties.
A distributed ledger may store vehicular communication data, in particular consensus information related to actions and behavior of vehicles. For example, a group of vehicles achieves consensus on their actions on the road. For this purpose, consensus may be achieved on the actions to be taken.
There are many ways to corroborate the accuracy of a ledger, but they are broadly known as consensus (the term ‘mining’ is used for a variant of this process in the cryptocurrency Bitcoin). The embodiments may use any of the known consensus techniques, for example a mining process. The length of longest chain may determine the ledger state. Still further, a Practical Byzantine Fault tolerance consensus protocol may be used as consensus mechanism.
The mechanism holding rules for making a consensus of autonomous vehicles' behaviors in a certain geographical area on distributed ledger has several advantages. For example, government authority and the likes can easily control and renew unified rules. Furthermore, when the distributed ledger is designed as a block chain and the rules are described as smart contracts, the rules for determining autonomous vehicle's behavior direction in a certain area may be secured while having the advantages of a blockchain (e.g. transparency and immutability). Furthermore, the mechanism to permit a read access to the distributed ledger, based on the physical distance between the electronic device storing the distributed ledger and vehicles, contributes to the secure data access control to the distributed ledger. According to some embodiments, the vehicles receive a basic rule for their behavior and they determine actual behaviors based on the basic rule by communicating with other vehicles in the area.
The rules stored by the distributed ledger may comprise a smart contract which is a kind of script program outputting vehicles' behavior direction to transmit vehicles near the electronic device storing the distributed ledger. The smart contract may have a set of rules for different geographical types. The input to the smart contract may include geographical type information stored on the electronic device, which may be used for selection of appropriate rule. The input to the smart contract may include received information from one or more vehicles near the electronic device or the preceding vehicles' behavior information stored on the electronic device having the distributed ledger. Smart contracts are contracts whose terms are recorded in a computer language instead of legal language. According to embodiments, smart contracts can be automatically executed by a computing system. By means of a location based distributed ledger, the electronic device may for example provide a behavioral direction for automated vehicles by using smart contracts stored in the distributed ledger which is accessible in a certain distance. Consensus, directions or confirmation results of the directions from the automated vehicles may be recorded into the electronic device. For example, in a merging area of a road, the vehicles in a certain area may get a direction based on a rule on smart contract and make a consensus of their behavior in the area or make a decision of their behaviors in the area based on the direction.
Still further, an ambulance vehicle may broadcast or inform an approach to a certain area to the electronic device. Then the electronic device may select a rule to make a priority on the ambulance vehicle and provide a behavior direction of vehicles near the area based on the rule.
The electronic device may record geographical information, previous behavior directions, and/or feedback on the execution of the directions. Such feedback or directions may be used to assign priorities for future actions taken by vehicles. For instance, when a vehicle has not been able to execute the actions based on the received behavior direction, the vehicle may be given a lower priority for future actions. Another option is that the vehicle owner pays a fine. The vehicle may receive and store the fine information on a storage associated with the vehicle. In another case, the electronic device may collect the actual behavior result by sensors or report from the vehicle and transmit the vehicle identification information and the fact that the vehicle did not follow the behavior direction to a server.
The smart contracts itself may include computer code that is used to output behavior directions based on inputted information such as the vehicles' situation in a certain area, geographical information stored on the electronic device, and/or previous behavior directions.
The embodiments also disclose a system comprising nodes that are configured as hosts of a distributed ledger, the permission of a read access to the distributed ledger being location based. The nodes may for example be nodes of one or more Vehicular Ad Hoc Networks. Still further, in another embodiment that each autonomous vehicle may have a distributed ledger, for each relevant location, a different P2P network may be dynamically created. In that scenario, the records of ledgers are not the same. Nodes of the system may join a process of making a consensus about the behaviors of the vehicles for each of the different locations. The vehicles may update the own distributed ledger to store the past behavior information, which may be different use case of the ledger from the road side unit storing behavior related rules as smart contracts on its own distributed ledger.
The architecture of the distributed ledger may scale up. However, the distributed ledger can also be used in a scenario where one or multiple nodes are central servers. A central server may for example store all the local records which may store on a distributed ledger of an electronic device as a road side unit and transmit to the central server.
The embodiments also disclose a method of providing a distributed ledger, the permission or a read access to the distributed ledger being location based.
Permission to access the distributed ledger may for example depend on physical closeness. For example, when a group of vehicles is in a certain area, a nearest road side unit may cognize the vehicles by sensors and/or communications via short range radio technologies between a vehicle and the road side unit storing the distributed ledger. The road side unit may determine whether the vehicles are enough close to the road side unit. If one or more vehicles are in a certain area, in another word enough close to the road side unit, the road side unit may access to a smart contract associated with the ledger and may share the output of the smart contract with the one or more vehicles. In such way all vehicles in a certain area may know the actions to be performed in an efficient. The smart contracts may be prepared and stored rules of autonomous vehicles' behaviors for several types of geographical information such as motorway junctions and merging area of roads. The smart contract on the distributed ledger of road side units may be managed and updated by government authority and the like.
The embodiments disclosed herein may also be used for fleet management of some vehicles, e.g. for fleet management of delivery drones, e.g. unmanned aerial vehicles (UAV) utilized to transport packages, food or other goods.
An additional use for a location based distributed ledger is envisioned for shops and shopping malls. A location based distributed ledger can be set up which is permissioned for shops in e.g. a shopping mall. Users may access the distributed ledger once they are close to the shopping mall. With access to the ledger users can directly buy and pay for products. Furthermore, advertising for products and corresponding discounts may be published on the block chain in the form of smart contracts. A user may also use a second distributed ledger, and assets may be transferred from this ledger to the location based distributed ledger. This is useful to pay for instance for products that are advertised on the location based ledger. Smart contracts can handle the interaction between these ledgers through the user that has received permission to access the location based distributed ledger.
An example of a basic rule defines that a) the faster vehicle has a priority, b) that the smaller number lane has a priority (e.g. 15 sec), c) that a vehicle has to change the speed to pass the second area 62 with keeping a certain distance to each other (e.g. 50 m), and that d) a vehicle only can change the lane to the upper number lane if necessary.
An example of an advanced rule defines a) an arrangement based on the previous consensus result and b) emergent situations and the retrieval.
A smart contract on the database may be stored on a block chain and may connect to the Private or Consortium type block chain network maintained by a few controllers like an authority and trusted entity, e.g. a traffic authority or a financial institute. Multi-signatures of the controllers are required to change the smart contract.
The geographical information may be updated by a part of the road side unit.
The previous consensus result may be stored in the database with a signature of the database after making a consensus, and may optionally be provided to vehicles entering or before entering in the first area to be used for calculating own planning track information at each vehicle.
All vehicles may have a distributed ledger which is interoperable with the block chain network of the smart contract, or create a distributed ledger with the contract to the database as a turning point.
It should be noted that the description above is only an example configuration. Alternative configurations may be implemented with additional or other sensors, storage devices, interfaces or the like. For example, in alternative embodiments, the processor 901 may also be coupled to further sensors that are used in automated or autonomous driving such as CCD cameras, TOF cameras, or the like.
A road side unit may have a similar structure as that disclosed in
A distributed ledger may also be used for fleet management of some vehicles, e.g. for fleet management of delivery drones, e.g. unmanned aerial vehicles (UAV) utilized to transport packages, food or other goods.
It should be recognized that the embodiments describe methods with an exemplary ordering of method steps. The specific ordering of method steps is however given for illustrative purposes only and should not be construed as binding.
It should further be recognized that the division of the electronic device into units (such as exemplified in
In the embodiments described above, a method for controlling an electronic device, such as a digital camera device is described. The method can also be implemented as a computer program causing a computer and/or a processor to perform the method, when being carried out on the computer and/or processor. In some embodiments, also a non-transitory computer-readable recording medium is provided that stores therein a computer program product, which, when executed by a processor, such as the processor described above, causes the method described to be performed.
All units and entities described in this specification and claimed in the appended claims can, if not stated otherwise, be implemented as integrated circuit logic, for example on a chip, and functionality provided by such units and entities can, if not stated otherwise, be implemented by software. For example, CPU 201 of the embodiment of
In so far as the embodiments of the disclosure described above are implemented, at least in part, using a software-controlled data processing apparatus, it will be appreciated that a computer program providing such software control and a transmission, storage or other medium by which such a computer program is provided are envisaged as aspects of the present disclosure.
Note that the present technology can also be configured as described below.
(1) An electronic device that is configured as a host of a distributed ledger, the permission to access the distributed ledger being location based.
(2) The electronic device of (1), wherein the permission to access the distributed ledger depends on physical closeness.
(3) The electronic device of (1) or (2), wherein a vehicle is assigned to a distributed ledger based on its distance to a road side unit.
(4) The electronic device of anyone of (1) to (3), wherein the physical closeness is verified by each of the members of a distributed ledger.
(5) The electronic device of anyone of (1) to (4), wherein the electronic device is further arranged to contribute to different ledgers as it moves from one location to another.
(6) The electronic device of (5), wherein the one or more vehicles confirm the rules for the next actions of the one or more vehicles by providing their consensus to these rules.
(7) The electronic device of (6), wherein the road side unit stores this consensus as smart contracts in the distributed ledger.
(8) The electronic device of (7), wherein the electronic device is further arranged to contribute to different ledgers as it moves from one location to another.
(9) The electronic device of anyone of (1) to (8), wherein the distributed ledger is designed as a block chain.
(10) The electronic device of anyone of (1) to (9), wherein the distributed ledger is a private permissioned ledger for a location.
(11) The electronic device of anyone of (1) to (10), wherein the vehicular communication data stored by the distributed ledger comprises consensus information.
(12) The electronic device of anyone of (1) to (11), wherein the distributed ledger stores vehicular communication data.
(13) The electronic device of (7), wherein a smart contract defines a basic rule for the behavior of a group of vehicles in a defined area.
(14) The electronic device of anyone of (1) to (13), wherein the distributed ledger records geographical information, previous consensus results, and/or feedback on the execution of a smart contract.
(15) The electronic device of (7), wherein a smart contract specifies computer code that is used to verify if the behavior of vehicles in a group of vehicles satisfies actions specified in a smart contract.
(16) A system comprising nodes that are configured as hosts of a distributed ledger, the permission to access the distributed ledger being location based.
(17) A method of providing a distributed ledger, the permission to access the distributed ledger being location based.
(18) A computer program comprising program code causing a computer to perform the method according to anyone of (17), when being carried out on a computer.
(19) A non-transitory computer-readable recording medium that stores therein a computer program product, which, when executed by a processor, causes the method according to anyone of (17) to be performed.
Number | Date | Country | Kind |
---|---|---|---|
18157115.9 | Feb 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/053861 | 2/15/2019 | WO | 00 |