This relates generally to electronic devices, and, more particularly, electronic devices with displays.
Electronic devices may have displays. Displays have arrays of pixels for displaying images for a user. To prevent damage to the pixels, the pixels can be covered with a transparent display cover layer.
It can be challenging to incorporate a display cover layer into an electronic device. If care is not taken, peripheral regions of the display cover layer may introduce distortion or may be associated with undesired inactive display borders.
An electronic device may have a housing with an interior. Electrical components may be mounted within the interior. A display and a display cover layer that overlaps the display may be coupled to the housing.
The display may have an array of pixels that are configured to emit light. One or more light redirecting elements may be incorporated into the electronic device to redirect light emitted from peripheral pixels in the display. The light redirecting elements may be used to enlarge the effective size of the display, to create images on curved or planar sidewall surfaces of the display cover layer, and/or to create diffuse glowing areas around the periphery of the device.
Light redirecting elements may be refractive light redirecting elements that refract light rays and/or may be diffractive light redirecting elements that diffract light. The light redirecting elements include lenses such as Fresnel lenses, lenticular lenses, and arrays of semispherical microlenses (e.g., lenses with round outlines), may include holograms, and may include gratings and other optical elements. Light redirecting elements may be formed as integral portions of a display cover layer, as laminated optical films on a display cover layer, or as coating layers on a display cover layer. The display cover layer may have portions with curved cross-sectional profiles and may have planar portions.
In some configurations, afocal optical systems may be formed using first and second light redirecting elements on opposing first and second sides of a display cover layer.
An electronic device may have a display. The display may have an array of pixels for creating an image. The image may pass through a protective display cover layer that overlaps the array of pixels. To minimize display borders, optical elements may be formed on the upper and/or lower sides of the display cover layer. The optical elements may include optical layers that redirect light (e.g., by refraction and/or diffraction). As an example, the optical elements may include lenses, holograms, gratings, or other light-redirecting elements. Light-redirecting elements may be formed from coatings, optical structures formed from portions of a glass member or other transparent layer that forms a display cover layer, and/or optical films that are laminated onto a display cover layer surface (e.g., using heat and/or pressure and, if desired, using adhesive). Light-redirecting elements on a display cover layer may help direct light from peripheral pixels in a pixel array in a desired direction (e.g., towards peripheral display cover layer edge surfaces, outward towards a user along the outermost peripheral portions of a display cover layer, etc.).
A cross-sectional side view of a portion of an illustrative electronic device with a display cover layer that includes light redirecting elements is shown in
Device 10 includes a housing such as housing 12. Housing 12 may be formed from polymer, metal, glass, crystalline material such as sapphire, ceramic, fabric, fibers, fiber composite material, natural materials such as wood and cotton, other materials, and/or combinations of such materials. Housing 12 may be configured to form housing walls. The housing walls may enclose one or more interior regions such as interior region 24 and may separate interior region 24 from exterior region 22.
Electrical components 18 may be mounted in interior region 24. Electrical components 18 may include integrated circuits, discrete components, light-emitting components, sensors, and/or other circuits and may, if desired, be interconnected using signal paths in one or more printed circuits such as printed circuit 20. If desired, one or more portions of the housing walls may be transparent (e.g., so that light associated with an image on a display or other light-emitting or light-detecting component can pass between interior region 24 and exterior region 22).
Electrical components 18 may include control circuitry. The control circuitry may include storage and processing circuitry for supporting the operation of device 10. The storage and processing circuitry may include storage such as hard disk drive storage, nonvolatile memory (e.g., flash memory or other electrically-programmable-read-only memory configured to form a solid state drive), volatile memory (e.g., static or dynamic random-access-memory), etc. Processing circuitry in the control circuitry may be used to control the operation of device 10. For example, the processing circuitry may use sensors and other input-output circuitry to gather input and to provide output and/or to transmit signals to external equipment. The processing circuitry may be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio chips, application specific integrated circuits, etc. The control circuitry may include wired and/or wireless communications circuitry (e.g., antennas and associated radio-frequency transceiver circuitry such as cellular telephone communications circuitry, wireless local area network communications circuitry, etc.). The communications circuitry of the control circuitry may allow device 10 to communicate with other electronic devices. For example, the control circuitry (e.g., communications circuitry in the control circuitry) may be used to allow wired and/or wireless control commands and other communications to be conveyed between devices such as cellular telephones, tablet computers, laptop computers, desktop computers, head-mounted devices, handheld controllers, wristwatch devices, other wearable devices, keyboards, computer mice, remote controls, speakers, accessory displays, accessory cameras, and/or other electronic devices. Wireless communications circuitry may, for example, wirelessly transmit control signals and other information to external equipment in response to receiving user input or other input from sensors or other devices in components 18.
Input-output circuitry in components 18 of device 10 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. The input-output circuitry may include input devices that gather user input and other input and may include output devices that supply visual output, audible output, or other output.
Output may be provided using light-emitting diodes (e.g., crystalline semiconductor light-emitting diodes for status indicators and/or displays, organic light-emitting diodes in displays and other components), lasers, and other light-emitting devices, audio output devices (e.g., tone generators and/or speakers), haptic output devices (e.g., vibrators, electromagnetic actuators, piezoelectric actuators, and/or other equipment that supplies a user with haptic output), and other output devices.
The input-output circuitry of device 10 (e.g., the input-output circuitry of components 18) may include sensors. Sensors for device 10 may include force sensors (e.g., strain gauges, capacitive force sensors, resistive force sensors, etc.), audio sensors such as microphones, touch and/or proximity sensors such as capacitive sensors (e.g., a two-dimensional capacitive touch sensor integrated into a display, a two-dimensional capacitive touch sensor and/or a two-dimensional force sensor overlapping a display, and/or a touch sensor or force sensor that forms a button, trackpad, or other input device not associated with a display), and other sensors. Touch sensors for a display or for other touch components may be based on an array of capacitive touch sensor electrodes, acoustic touch sensor structures, resistive touch components, force-based touch sensor structures, a light-based touch sensor, or other suitable touch sensor arrangements. If desired, a display may have a force sensor for gathering force input (e.g., a two-dimensional force sensor may be used in gathering force input on a display).
If desired, the sensors may include optical sensors such as optical sensors that emit and detect light, ultrasonic sensors, optical touch sensors, optical proximity sensors, and/or other touch sensors and/or proximity sensors, monochromatic and color ambient light sensors, image sensors, fingerprint sensors, temperature sensors, sensors for measuring three-dimensional non-contact gestures (“air gestures”), pressure sensors, sensors for detecting position, orientation, and/or motion (e.g., accelerometers, magnetic sensors such as compass sensors, gyroscopes, and/or inertial measurement units that contain some or all of these sensors), health sensors, radio-frequency sensors (e.g., sensors that gather position information, three-dimensional radio-frequency images, and/or other information using radar principals or other radio-frequency sensing), depth sensors (e.g., structured light sensors and/or depth sensors based on stereo imaging devices), optical sensors such as self-mixing sensors and light detection and ranging (lidar) sensors that gather time-of-flight measurements, humidity sensors, moisture sensors, gaze tracking sensors, three-dimensional sensors (e.g., time-of-flight image sensors, pairs of two-dimensional image sensors that gather three-dimensional images using binocular vision, three-dimensional structured light sensors that emit an array of infrared light beams or other structured light using arrays of lasers or other light emitters and associated optical components and that capture images of the spots created as the beams illuminate target objects, and/or other three-dimensional image sensors), facial recognition sensors based on three-dimensional image sensors, and/or other sensors.
In some configurations, components 18 may include mechanical devices for gathering input (e.g., buttons, joysticks, scrolling wheels, key pads with movable keys, keyboards with movable keys, and other devices for gathering user input). During operation, device 10 may use sensors and/or other input-output devices in components 18 to gather user input (e.g., buttons may be used to gather button press input, touch and/or force sensors overlapping displays can be used for gathering user touch screen input and/or force input, touch pads and/or force sensors may be used in gathering touch and/or force input, microphones may be used for gathering audio input, etc.). The control circuitry of device 10 can then take action based on this gathered information (e.g., by transmitting the information over a wired or wireless path to external equipment, by supplying a user with output using a haptic output device, visual output device, an audio component, or other input-output device in housing 12, etc.).
If desired, electronic device 10 may include a battery or other energy storage device, connector ports for supporting wired communications with ancillary equipment and for receiving wired power, and other circuitry. In some configurations, device 10 may serve as an accessory and/or may include a wired and/or wireless accessory (e.g., a keyboard, computer mouse, remote control, trackpad, etc.).
Device 10 may include one or more displays. Displays for device 10 may have pixel arrays for displaying images for a user. As shown in
Each pixel array in device 10 (which may sometimes be referred to as a display panel, display substrate, or display) may be mounted under a transparent display cover layer that helps to protect the pixel array. In the example of
Display cover layer 16 may be formed from a single transparent member (e.g., a single planar transparent member) of glass, a crystalline material such as a layer of sapphire, clear polymer, etc. and/or display cover layer 16 may be formed from one or more laminated layers of one or more of these transparent materials. In some configurations, display cover layer 16 may include Anderson localization material or a fiber optic layer formed from a coherent fiber bundle. Coating layers (e.g., antireflection layers, oleophobic coating layers, etc.) may be incorporated, if desired.
During operation, the pixels of display 14 produce image light that passes through display cover layer 16 for viewing by a user such as viewer 28 who is viewing device 10 in direction 26. To help expand the effective size of display 14 (e.g., laterally outward in the X-Y plane so that the image area is larger when viewed by viewer 28) and/or to otherwise modify the optical properties of display 14, one or more light redirecting elements may be incorporated into device 10. The light redirecting elements may be located adjacent to one or more edge of the display 14. These light redirecting elements may include lenses, holograms, gratings, and/or other structures for redirecting light. As shown in
During operation, light from pixels P (e.g., peripheral pixels P near the left, right, top, and bottom edges of device 10 when viewed in direction 26) may be directed in a desired direction by the light redirecting element(s) of device 10. For example, one or more of the light redirecting elements of
Outer surface 30 of display cover layer 16 at the periphery of device 10 may have a curved cross-sectional profile (see, e.g., the rounded edge profile of layer 16 in
Pixels P may be distributed evenly or unevenly. For example, even pixels (or odd pixels) may be omitted in peripheral portions of display 14 and/or the pitch (pixel-to-pixel spacing) of pixels P may otherwise be varied across the surface of display 14. If desired, pixel size may vary across display 14. For example, pixels P may be smaller in the center of display 14 than near the periphery of display 14. Pixel size, brightness, color, shape, density, center-to-center distance, and/or other pixel attributes may be constant, may be varied in a stepwise fashion, may vary continuously, and/or may otherwise be different in different areas of display 14.
The light that is redirected by the light redirecting elements may form integral (peripheral) areas of the image on the front face of device 10, may form separate images (e.g., icons for virtual buttons, text, and/or other image content that does not form an integral portion of an image on the front of device 10), may form blurred content and/or other low resolution content, and/or may form a solid band of light of a desired color (e.g., a diffuse glowing edge region). If distortion is imparted by the light redirecting elements, this distortion can be compensated for during precompensation operations (e.g., adjusting the data supplied to pixels P proactively so that pixels P produce light output values that result in desired images being visible to the user after light 32 passes through the light redirecting elements). In configurations in which the size of the image on display 14 is effectively enlarged (e.g., by directing light from peripheral pixels laterally outward to make the image larger), opaque portions of device 10 such as portions of housing 12 can be hidden from view, making display 14 borderless or nearly borderless. In configurations in which a diffuse glow is provided along vertical sidewall portions or other edge portions of device 10, the appearance of device 10 may be enhanced. In configurations in which virtual buttons are displayed (e.g., icons associated with touch screen input provided using a two-dimensional touch sensor in display 14 or elsewhere under display cover layer 16), the ability of device 10 to gather user input and provide output to the user may be enhanced.
In the example of
Display 14 may, if desired, have bent portions. For example, as shown in
In the example of
Optional outer light redirecting element 16-3 is formed on planar vertical sidewall surface 30F of member 16 in the example of
Device 10 may be operated in a system that uses personally identifiable information. It is well understood that the use of personally identifiable information should follow privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining the privacy of users. In particular, personally identifiable information data should be managed and handled so as to minimize risks of unintentional or unauthorized access or use, and the nature of authorized use should be clearly indicated to users.
The foregoing is merely illustrative and various modifications can be made to the described embodiments. The foregoing embodiments may be implemented individually or in any combination.
This application claims the benefit of provisional patent application No. 62/846,529, filed May 10, 2019, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7914196 | Parker et al. | Mar 2011 | B2 |
8572893 | Watanabe | Nov 2013 | B2 |
10109232 | Rappoport et al. | Oct 2018 | B2 |
10185200 | Sprague | Jan 2019 | B1 |
10672858 | Lee et al. | Jun 2020 | B2 |
20120069273 | Watanabe | Mar 2012 | A1 |
20130083080 | Rappoport et al. | Apr 2013 | A1 |
20130279088 | Raff et al. | Oct 2013 | A1 |
20140092028 | Prest et al. | Apr 2014 | A1 |
20140132488 | Kim | May 2014 | A1 |
20140355227 | Lim | Dec 2014 | A1 |
20150185767 | S. | Jul 2015 | A1 |
20150219834 | Nichol et al. | Aug 2015 | A1 |
20160041323 | Ma et al. | Feb 2016 | A1 |
20170082784 | Niu | Mar 2017 | A1 |
20170269742 | Arola | Sep 2017 | A1 |
20180128973 | Powell | May 2018 | A1 |
20180292864 | Prest et al. | Oct 2018 | A1 |
20190067411 | Lee et al. | Feb 2019 | A1 |
20190108816 | Peana et al. | Apr 2019 | A1 |
20200014415 | Lee | Jan 2020 | A1 |
20200150334 | Yamada et al. | May 2020 | A1 |
Number | Date | Country |
---|---|---|
102460281 | May 2012 | CN |
104217655 | Dec 2014 | CN |
104813475 | Jul 2015 | CN |
109427862 | Mar 2019 | CN |
2439582 | Apr 2012 | EP |
2568134 | May 2019 | GB |
2011022265 | Feb 2011 | JP |
2013164498 | Aug 2013 | JP |
2013195458 | Sep 2013 | JP |
2013195458 | Sep 2013 | JP |
2019045861 | Mar 2019 | JP |
1020090058984 | Jun 2009 | KR |
1020140142418 | Dec 2014 | KR |
1020160074763 | Jun 2016 | KR |
20160139127 | Dec 2016 | KR |
20190024270 | Mar 2019 | KR |
2011153689 | Jul 2013 | RU |
201913610 | Apr 2019 | TW |
2010140537 | Dec 2010 | WO |
2014011389 | Jan 2014 | WO |
2019017443 | Jan 2019 | WO |
Entry |
---|
Machine Translation of JP-2013195458-A (Year: 2013). |
Machine Translation of KR 20160139127 A (Year: 2016). |
Number | Date | Country | |
---|---|---|---|
20200356139 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62846529 | May 2019 | US |