This relates generally to electronic devices and, more particularly, to electronic devices with antennas.
Electronic devices often include antennas. For example, cellular telephones, computers, and other devices often contain antennas for supporting wireless communications.
It can be challenging to form electronic device antenna structures with desired attributes. In some wireless devices, the presence of conductive housing structures can influence antenna performance. Antenna performance may not be satisfactory if the housing structures are not configured properly and interfere with antenna operation. Device size can also affect performance. It can be difficult to achieve desired performance levels in a compact device, particularly when the compact device has conductive housing structures.
It would therefore be desirable to be able to provide improved wireless circuitry for electronic devices such as electronic devices that include conductive housing structures.
An electronic device may be provided with wireless circuitry. The wireless circuitry may include radio-frequency transceiver circuitry and one or more antennas. Antennas for the electronic device may be formed from hybrid planar inverted-F slot antenna structures and indirectly fed slot antennas.
A hybrid antenna may be used to form a dual band wireless local area network antenna. An indirectly fed slot antenna may be use to form a cellular telephone antenna. Arrays of multiple hybrid antennas may also be formed.
A hybrid antenna may have a slot antenna portion and a planar inverted-F antenna portion. The planar inverted-F antenna portion may have a metal resonating element patch that is supported by a support structure. The support structure may be a plastic speaker box containing a speaker driver that is not overlapped by the metal resonating element patch.
Antenna slots for the antennas in the electronic device may be formed in a metal electronic device housing wall. The housing wall may have a planar rear portion and sidewall portions that extend upwards from the planar rear portion. The slots may have one or more bends and may be filled with plastic. Slots may also be formed in metal traces on a printed circuit or other metal structures.
Electronic devices may be provided with antennas. The antennas may include slot antenna structures and/or other antenna structures such as inverted-F antenna structures (e.g., planar inverted-F antenna structures). Hybrid antennas and indirectly fed antennas may be formed. For example, a hybrid planar inverted-F slot antenna may be formed by incorporating both planar inverted-F antenna structures and slot antenna structures into an antenna. Slots for antennas can be formed in device structures such as electronic device housing structures. Illustrative electronic devices that have housings that accommodate slot antenna structures, hybrid antennas, and other wireless circuitry are shown in
Electronic device 10 of
In the example of
An electronic device such as electronic device 10 of
Device 10 may include a display such as display 14. Display 14 may be mounted in housing 12. Housing 12, which may sometimes be referred to as an enclosure or case, may be formed of plastic, glass, ceramics, fiber composites, metal (e.g., stainless steel, aluminum, etc.), other suitable materials, or a combination of any two or more of these materials. Housing 12 may be formed using a unibody configuration in which some or all of housing 12 is machined or molded as a single structure or may be formed using multiple structures (e.g., an internal frame structure, one or more structures that form exterior housing surfaces, etc.).
Display 14 may be a touch screen display that incorporates a layer of conductive capacitive touch sensor electrodes or other touch sensor components (e.g., resistive touch sensor components, acoustic touch sensor components, force-based touch sensor components, light-based touch sensor components, etc.) or may be a display that is not touch-sensitive. Capacitive touch screen electrodes may be formed from an array of indium tin oxide pads or other transparent conductive structures.
Display 14 may include an array of display pixels formed from liquid crystal display (LCD) components, an array of electrophoretic display pixels, an array of plasma display pixels, an array of organic light-emitting diode display pixels, an array of electrowetting display pixels, or display pixels based on other display technologies.
Display 14 may be protected using a display cover layer such as a layer of transparent glass or clear plastic. Openings may be formed in the display cover layer. For example, an opening may be formed in the display cover layer to accommodate a button, an opening may be formed in the display cover layer to accommodate a speaker port, etc.
Housing 12 may be formed from conductive materials and/or insulating materials. In configurations in which housing 12 is formed from plastic or other dielectric materials, antenna signals can pass through housing 12. Antennas in this type of configuration can be mounted behind a portion of housing 12. In configurations in which housing 12 is formed from a conductive material (e.g., metal), it may be desirable to provide one or more radio-transparent antenna windows in openings in the housing. As an example, a metal housing may have openings that are filled with plastic antenna windows. Antennas may be mounted behind the antenna windows and may transmit and/or receive antenna signals through the antenna windows.
A schematic diagram showing illustrative components that may be used in device 10 is shown in
Storage and processing circuitry 28 may be used to run software on device 10, such as internet browsing applications, voice-over-internet-protocol (VOIP) telephone call applications, email applications, media playback applications, operating system functions, etc. To support interactions with external equipment, storage and processing circuitry 28 may be used in implementing communications protocols. Communications protocols that may be implemented using storage and processing circuitry 28 include internet protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols—sometimes referred to as WiFi®), protocols for other short-range wireless communications links such as the Bluetooth® protocol, cellular telephone protocols, MIMO protocols, antenna diversity protocols, etc.
Input-output circuitry 44 may include input-output devices 32. Input-output devices 32 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Input-output devices 32 may include user interface devices, data port devices, and other input-output components. For example, input-output devices may include touch screens, displays without touch sensor capabilities, buttons, joysticks, click wheels, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, buttons, speakers, status indicators, light sources, audio jacks and other audio port components, digital data port devices, light sensors, motion sensors (accelerometers), capacitance sensors, proximity sensors, etc.
Input-output circuitry 44 may include wireless communications circuitry 34 for communicating wirelessly with external equipment. Wireless communications circuitry 34 may include radio-frequency (RF) transceiver circuitry formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, one or more antennas, transmission lines, and other circuitry for handling RF wireless signals. Wireless signals can also be sent using light (e.g., using infrared communications).
Wireless communications circuitry 34 may include radio-frequency transceiver circuitry 90 for handling various radio-frequency communications bands. For example, circuitry 34 may include transceiver circuitry 36, 38, and 42. Transceiver circuitry 36 may be wireless local area network transceiver circuitry that may handle 2.4 GHz and 5 GHz bands for WiFi® (IEEE 802.11) communications and that may handle the 2.4 GHz Bluetooth® communications band. Circuitry 34 may use cellular telephone transceiver circuitry 38 for handling wireless communications in frequency ranges such as a low communications band from 700 to 960 MHz, a midband from 1710 to 2170 MHz, and a high band from 2300 to 2700 MHz or other communications bands between 700 MHz and 2700 MHz or other suitable frequencies (as examples). Circuitry 38 may handle voice data and non-voice data. Wireless communications circuitry 34 can include circuitry for other short-range and long-range wireless links if desired. For example, wireless communications circuitry 34 may include 60 GHz transceiver circuitry, circuitry for receiving television and radio signals, paging system transceivers, near field communications (NFC) circuitry, etc. Wireless communications circuitry 34 may include satellite navigation system circuitry such as global positioning system (GPS) receiver circuitry 42 for receiving GPS signals at 1575 MHz or for handling other satellite positioning data. In WiFi® and Bluetooth® links and other short-range wireless links, wireless signals are typically used to convey data over tens or hundreds of feet. In cellular telephone links and other long-range links, wireless signals are typically used to convey data over thousands of feet or miles.
Wireless communications circuitry 34 may include antennas 40. Antennas 40 may be formed using any suitable antenna types. For example, antennas 40 may include antennas with resonating elements that are formed from loop antenna structures, patch antenna structures, inverted-F antenna structures, slot antenna structures, planar inverted-F antenna structures, helical antenna structures, hybrids of these designs, etc. Different types of antennas may be used for different bands and combinations of bands. For example, one type of antenna may be used in forming a local wireless link antenna and another type of antenna may be used in forming a remote wireless link antenna.
As shown in
To provide antenna structures 40 with the ability to cover communications frequencies of interest, antenna structures 40 may be provided with circuitry such as filter circuitry (e.g., one or more passive filters and/or one or more tunable filter circuits). Discrete components such as capacitors, inductors, and resistors may be incorporated into the filter circuitry. Capacitive structures, inductive structures, and resistive structures may also be formed from patterned metal structures (e.g., part of an antenna). If desired, antenna structures 40 may be provided with adjustable circuits such as tunable components 102 to tune antennas over communications bands of interest. Tunable components 102 may include tunable inductors, tunable capacitors, or other tunable components. Tunable components such as these may be based on switches and networks of fixed components, distributed metal structures that produce associated distributed capacitances and inductances, variable solid state devices for producing variable capacitance and inductance values, tunable filters, or other suitable tunable structures.
During operation of device 10, control circuitry 28 may issue control signals on one or more paths such as path 104 that adjust inductance values, capacitance values, or other parameters associated with tunable components 102, thereby tuning antenna structures 40 to cover desired communications bands.
Path 92 may include one or more transmission lines. As an example, signal path 92 of
Transmission line 92 may be directly coupled to an antenna resonating element and ground for antenna 40 or may be coupled to near-field-coupled antenna feed structures that are used in indirectly feeding a resonating element for antenna 40. As an example, antenna structures 40 may form an inverted-F antenna, a slot antenna, a hybrid inverted-F slot antenna or other antenna having an antenna feed with a positive antenna feed terminal such as terminal 98 and a ground antenna feed terminal such as ground antenna feed terminal 100. Positive transmission line conductor 94 may be coupled to positive antenna feed terminal 98 and ground transmission line conductor 96 may be coupled to ground antenna feed terminal 92. As another example, antenna structures 40 may include an antenna resonating element such as a slot antenna resonating element or other element that is indirectly fed using near-field coupling. In a near-field coupling arrangement, transmission line 92 is coupled to a near-field-coupled antenna feed structure that is used to indirectly feed antenna structures such as an antenna slot or other element through near-field electromagnetic coupling.
Antennas 40 may include hybrid antennas formed both from inverted-F antenna structures (e.g., planar inverted-F antenna structures) and slot antenna structures.
An illustrative inverted-F antenna structure is shown in
Main resonating element arm 108 may be coupled to ground 104 by return path 110. Antenna feed 112 may include positive antenna feed terminal 98 and ground antenna feed terminal 100 and may run in parallel to return path 110 between arm 108 and ground 104. If desired, inverted-F antenna structures such as illustrative antenna structure 140 of
Illustrative slot antenna structures of the type that may be used in forming antennas 40 in device 10 are shown in
Slot antenna structures 144 of
Slot antenna structures 144 of
Slot 146 of
If desired, slots 146 for antenna structures 144 may have other shapes. For example, slots 146 may have a shapes with a single bend, shapes with one or more bends, shapes with two or more bends, shapes with locally widened portions, etc. Slots 146 of
The performance of planar inverted-F antenna (PIFA) structures 140 of
Antenna(s) 40 of device 10 may be formed using hybrid planar inverted-F slot antenna(s). An illustrative hybrid PIFA slot antenna is shown in
Illustrative hybrid planar inverted-F slot antenna 40 of
Slot 146 of
In addition to slot antenna structures 144 formed from slot 146, antenna 40 has planar inverted-F antenna structures 140. Planar inverted-F antenna structures 140 may include resonating element structure 108 (e.g., a patch of metal). Patch 108 may have portions that protrude downwardly towards ground 12 such as leg 142 and leg 110. Leg 142 may form part the feed for antenna 40. Tip 216 of leg 142 is separated from ground plane 12 by a dielectric gap such as air gap D (i.e., tip 216 is not directly connected to ground 12). Return path 110 is coupled to patch 108 at connection point 152 and is connected to ground 12 at connection point 154.
Transceiver circuitry 90 is coupled to antenna feed terminals such as terminals 98 and 100 by transmission line 92. Terminal 98 may be connected to tip portion 216 of leg 142. Terminal 100 may be connected to ground structure 12. Positive signal line 94 may be coupled to terminal 98. Ground signal line 96 may be coupled to terminal 100.
Planar inverted-F antenna structures 140 are directly fed by the transmission line coupled to terminals 98 and 100. Through near-field electromagnetic coupling and/or by providing antenna feed signals across slot 146 through structures 140, planar inverted-F antenna structures 140 are coupled to slot antenna structures 146. As a result, both slot antenna structures 145 and planar inverted-F antenna structures 140 contribute to the overall performance of hybrid antenna 40.
The use of the hybrid antenna arrangement for antenna 40 allows the advantages of the planar inverted-F antenna portion of antenna 40 to be exploited at frequency f2 (i.e., the ability of planar inverted-F antenna structures 140 to exhibit good antenna efficiency and high bandwidth at frequency f2), while allowing the advantages of the slot antenna portion of antenna 40 to be exploited at frequency f1 (i.e., the ability of slot antenna structures 144 to exhibit good antenna efficiency and bandwidth at frequency f1).
With one suitable arrangement, antenna 40 may be a dual band antenna for wireless local area network signals (e.g., IEEE 802.11 signals), frequency f2 may be 5 GHz, and frequency f1 may be 2.4 GHz. In this type of arrangement, PIFA structures 140 may be efficient at 5 GHz, but may not be as efficient at 2.4 GHz, particularly in configurations in which vertical height H of patch 108 above ground plane 12 is limited (e.g., in compact devices where available antenna height is constrained), whereas slot antenna structures 146 may be efficient at 2.4 GHz. The complementary nature of hybrid antenna 40 allows the positive attributes of each type of antenna to be used, thereby ensuring that both the low band (f1) and high band (f2) ranges are effectively covered by antenna 40.
Another illustrative arrangement for hybrid antenna 40 is shown in
Antennas such as hybrid antenna 40 may be used in an array of two or more antennas. For example, a first antenna such as antenna 40 of
As an example, device 10 of
Antenna 40B may be an indirectly fed cellular telephone antenna. Antenna 40B may be a slot antenna having a slot such as slot 204 in a ground formed from metal housing 12 or other metal structures. Antenna 40B may be fed using a near-field coupled feed structure such as structure 210. Structure 210 may, as an example, have a patch such as metal patch 208. A transmission line may have a positive signal line coupled to positive feed terminal 202 on leg 212 of feed structure 210 and may have a ground line coupled to ground feed terminal 200 on ground 12. The transmission line may convey signals for antenna 40B to feed structure 210. Feed structure 210 may be electromagnetically coupled to slot 204 through near field electromagnetic coupling (i.e., structure 210 may indirectly feed a slot antenna formed from slot 204). Slot 204 may be an open slot (as an example). Antenna 40B may be used in handling cellular telephone signals at frequencies of 700-2700 MHz or other suitable frequencies.
If desired, antenna structures for antenna 40 may be supported using a plastic support structure. The plastic support structure may also serve as a speaker cavity (sometimes referred to as a speaker box). A cross-sectional side view of an illustrative speaker box for device 10 is shown in
Antenna structures can be supported by speaker box 250. As shown in
The foregoing is merely illustrative and various modifications can be made by those skilled in the art without departing from the scope and spirit of the described embodiments. The foregoing embodiments may be implemented individually or in any combination.