This relates generally to electronic devices, and, more particularly, to electronic devices with displays.
Electronic devices often have displays. Portability may be a concern for some devices, which tends to limit available real estate for displays.
An electronic device may have a rollable display. The display may be moved between an unrolled state in which the display is unrolled for viewing and a rolled state in which a rollable portion of the display is rolled up for storage. In the unrolled state, the display may be planar. In the rolled state, the rollable portion bends about an axis as it is rolled onto a roller for storage.
The display may have a display panel with a pixel array that produces images and a transparent protective layer that overlaps the pixel array. The transparent protective layer may contain a layer of glass. The glass layer may be locally thinned in the rollable portion to facilitate bending.
During use of the device, the outwardly facing surface of the transparent protective layer may be exposed to objects that can create scratches, whereas the inwardly facing surface of the transparent protective layer may be protected and thereby have fewer surface irregularities. To help prevent cracking in the glass layer, The display may be configured roll so that its outwardly facing surface receives compressive stress. Compressive stress in the outwardly facing glass surface may help prevent any scratches in the outwardly facing display from causing cracking or other damage to the display when the display is bent during rolling operations.
Electronic devices may be provided with displays. Displays may be used for displaying images for users. Displays may be formed from arrays of light-emitting diode pixels or other pixels. For example, a device may have an organic light-emitting diode display or a display formed from an array of micro-light-emitting diodes (e.g., light-emitting diodes formed from crystalline semiconductor dies).
A schematic diagram of an illustrative electronic device having a display is shown in
Device 10 may include control circuitry 20. Control circuitry 20 may include storage and processing circuitry for supporting the operation of device 10. The storage and processing circuitry may include storage such as nonvolatile memory (e.g., flash memory or other electrically-programmable-read-only memory configured to form a solid state drive), volatile memory (e.g., static or dynamic random-access-memory), etc. Processing circuitry in control circuitry 20 may be used to gather input from sensors and other input devices and may be used to control output devices. The processing circuitry may be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors and other wireless communications circuits, power management units, audio chips, application specific integrated circuits, etc. During operation, control circuitry 20 may use a display and other output devices in providing a user with visual output and other output.
To support communications between device 10 and external equipment, control circuitry 20 may communicate using communications circuitry 22. Circuitry 22 may include antennas, radio-frequency transceiver circuitry (wireless transceiver circuitry), and other wireless communications circuitry and/or wired communications circuitry. Circuitry 22, which may sometimes be referred to as control circuitry and/or control and communications circuitry, may support bidirectional wireless communications between device 10 and external equipment over wired and/or wireless links (e.g., circuitry 22 may include radio-frequency transceiver circuitry such as wireless local area network transceiver circuitry configured to support communications over a wireless local area network link, near-field communications transceiver circuitry configured to support communications over a near-field communications link, cellular telephone transceiver circuitry configured to support communications over a cellular telephone link, or transceiver circuitry configured to support communications over any other suitable wired or wireless communications link). Wireless communications may, for example, be supported over a Bluetooth® link, a WiFi® link, a wireless link operating at a frequency between 6 GHz and 300 GHz, a 60 GHz link, or other millimeter wave link, cellular telephone link, wireless local area network link, personal area network communications link, or other wireless communications link. Device 10 may, if desired, include power circuits for transmitting and/or receiving wired and/or wireless power and may include batteries or other energy storage devices. For example, device 10 may include a coil and rectifier to receive wireless power that is provided to circuitry in device 10.
Device 10 may include input-output devices such as devices 24. Input-output devices 24 may be used in gathering user input, in gathering information on the environment surrounding the user, and/or in providing a user with output. Devices 24 may include one or more displays such as display 14. Display 14 may be an organic light-emitting diode display, a liquid crystal display, an electrophoretic display, an electrowetting display, a plasma display, a microelectromechanical systems display, a display having a pixel array formed from crystalline semiconductor light-emitting diode dies (sometimes referred to as microLEDs), and/or other display. Configurations in which display 14 is an organic light-emitting diode display or microLED display are sometimes described herein as an example.
Display 14 may have an array of pixels configured to display images for a user. The pixels may be formed as part of a display panel that is bendable. This allows device 10 to be bent about a bend axis. For example, a flexible (bendable) display in device 10 may be partly or completely rolled up so that device 10 may be placed in a compact shape for storage and may be rolled out when it is desired to view images on the display. Displays with rollable structures may sometimes be referred to herein as rollable displays, scrollable displays, flexible displays, or bendable displays. A rollable display may be completely rollable (e.g., flexible over its entire area) or may be partly rollable (e.g., one or more edge portions of a display may be provided with sufficient flexibility to be rolled whereas one or more other portions of the display may be less flexible and/or may be fixed in a planar state).
Sensors 16 in input-output devices 24 may include force sensors (e.g., strain gauges, capacitive force sensors, resistive force sensors, etc.), audio sensors such as microphones, touch and/or proximity sensors such as capacitive sensors (e.g., a two-dimensional capacitive touch sensor integrated into display 14, a two-dimensional capacitive touch sensor overlapping display 14, and/or a touch sensor that forms a button, trackpad, or other input device not associated with a display), and other sensors. If desired, sensors 16 may include optical sensors such as optical sensors that emit and detect light, ultrasonic sensors, optical touch sensors, optical proximity sensors, and/or other touch sensors and/or proximity sensors, monochromatic and color ambient light sensors, image sensors, fingerprint sensors, temperature sensors, sensors for measuring three-dimensional non-contact gestures (“air gestures”), pressure sensors, sensors for detecting position, orientation, and/or motion (e.g., accelerometers, magnetic sensors such as compass sensors, gyroscopes, and/or inertial measurement units that contain some or all of these sensors), health sensors, radio-frequency sensors, depth sensors (e.g., structured light sensors and/or depth sensors based on stereo imaging devices that capture three-dimensional images), optical sensors such as self-mixing sensors and light detection and ranging (lidar) sensors that gather time-of-flight measurements, humidity sensors, moisture sensors, gaze tracking sensors, and/or other sensors. In some arrangements, device 10 may use sensors 16 and/or other input-output devices to gather user input. For example, buttons may be used to gather button press input, touch sensors overlapping displays can be used for gathering user touch screen input, touch pads may be used in gathering touch input, microphones may be used for gathering audio input, accelerometers may be used in monitoring when a finger contacts an input surface and may therefore be used to gather finger press input, etc.
If desired, electronic device 10 may include additional components (see, e.g., other devices 18 in input-output devices 24). The additional components may include haptic output devices, audio output devices such as speakers, light-emitting diodes for status indicators, light sources such as light-emitting diodes that illuminate portions of a housing and/or display structure, other optical output devices, and/or other circuitry for gathering input and/or providing output. Device 10 may also include a battery or other energy storage device, connector ports for supporting wired communication with ancillary equipment and for receiving wired power, and other circuitry.
Display panel 14P of display 14 may have a pixel array such as an array of light-emitting pixels (e.g., a rectangular array of light-emitting diodes). During operation, the pixel array of panel 14P may produce images that pass through transparent protective layer 14T and that are viewable by the user on front side F. Protective layer 14T may include clear polymer, clear glass, and/or other transparent structures that allow images to be viewed while providing support (e.g., rigidity) and protection (e.g., protection from scratches and other damage) for display panel 14P. As an example, a layer of glass that is attached to the outer (front-facing) surface of panel 14P may be used to prevent display panel 14P from deforming and becoming damaged when a user's finger, computer stylus, or other external object contacts front side F of display 14. Protective polymer layers and/or other protective layers may be formed as coatings on the glass layer help prevent scratching of the glass layer. The substrate used in forming panel 14P may be flexible (e.g., display panel 14P may have a pixel array formed on a flexible polymer substrate or other flexible substrate). Protective layer 14T may also be formed from flexible structures. As a result, some or all of the area of display 14 may be flexible, which allows some or all of display 14 to be rolled up for storage.
Consider, as an example, the side view of display 14 that is shown in
During rolling and/or other bending operations, the glass of layer 14T experiences compressive and tensile stress. For example, in the example of
During manufacturing, small surface irregularities (e.g., pits, grooves, or other recesses with dimensions on the orders of hundreds of nanometers) may be formed on the front and rear surfaces of the glass layer in layer 14T. During use of display 14 by a user, contact with a user's fingers, computer styluses, and/or other external objects may give rise to deeper surface irregularities (e.g., pits, grooves, and/or other recesses from scratches with dimensions on the order of one micron or more). The presence of these micron-sized surface irregularities may make the glass layer susceptible to cracking if excessive tensile stress is imposed (e.g., by rolling layer 14T so that layer 14T and the glass layer of layer 14T are characterized by an excessively small bend radius). To help ensure that the glass layer does not crack, it may be advantageous to roll display 14 inwardly towards front side F as shown in
In the examples of
Electronic device 10 may include rigid and flexible housing structures.
Display panel 14P has an array of pixels that form an image under an inwardly facing surface of protective layer 14T. Display panel 14P may be, for example, a flexible organic light-emitting diode display or a microLED display in which light-emitting pixels are formed on a flexible substrate layer (e.g., a flexible layer of polyimide or a sheet of other flexible polymer). Flexible support layer(s) for display 14 may also be formed from flexible glass, flexible metal, and/or other flexible structures. If desired, device 10 may have a support layer formed from slats such as slats 38 (e.g., slates that are each attached to left and right adjacent slats by hinge structures). Slats 38 may help maintain desired support for display 14 as display 14 is wrapped around axis 28 (of
Layer 14T may be formed from polymer layers, one or more layers of glass, crystalline materials such as sapphire, other materials, and/or combinations of these materials. To locally increase flexibility, a portion of a glass layer in layer 14T that corresponds to the rollable portion of display 14 may be locally thinned (e.g., this portion may be thinned relative to portions of the glass layer that are not to be rolled about axis 28). The thickness of the glass layer of layer 14T (e.g., the non-thinned portions of the glass layer) may be 50-200 microns, 70-150 microns, 100-200 microns, 100-400 microns, 100-600 microns, at least 100 microns, at least 200 microns, less than 600 microns, less than 400 microns, less than 250 microns, less than 150 microns, less than 100 microns, at least 50 microns, or other suitable thickness. The thickness of the locally thinned portions of the glass layer of layer 14T may be 30-150 microns, less than 200 microns, less than 150 microns, less than 100 microns, less than 75 microns, less than 40 microns, at least 15 microns, or other suitable thickness that is thinner than the thickness of the non-thinned portions of the glass layer. Thicker glass tends to be less bendable than thinner glass, but may provide display panel 14P with more rigidity and therefore enhanced protection for panel 14P. Thinner glass allows display 14 to be rolled up tightly (with a small bend radius). The bend radius of the rolled portion of display 14 may be at least 1 mm, at least 3 mm, at least 6 mm, at least 15 mm, less than 30 mm, less than 20 mm, less than 10 mm, less than 5 mm, or other suitable value.
To help minimize the distance that housing 12 protrudes above the plane of planar display portion 30, reverse bend portion RB of display 14 may be provided with a bend in the opposite direction from the bend of portion 26 and housing 12 may be shaped to conform to the bends in display 14. In the example of
Housing 12 may form housing walls, sidewall structures, and/or internal supporting structures (e.g., a frame, an optional midplate member, etc.) for device 10. The portions of housing 12 on the sidewalls and rear wall of device 10 may be formed from glass or other transparent structures and/or opaque structures such as metal, opaque polymer, etc.
Protective rear coating layer 50 may be located between the rear (inwardly facing) surface of glass layer 48 and the opposing front (outwardly facing surface) of display panel 14P. Layer 50 may be formed from a flexible polymer. The presence of layer 50 may help protect the inner surface of glass layer 48 and may help planarize the inner surface of glass layer 48 to facilitate mounting of display panel 14P against this inner surface (e.g., with an additional layer of adhesive and/or using the adhesive properties of layer 50). Polymer 50 may be sufficiently flexible to bend in portion 26. The refractive index of polymer 50 may be matched to that of glass layer 48 to help minimize light reflections (e.g., by incorporating inorganic nanoparticles in the polymer material of layer 50). For example, at a wavelength of 500 nm, the refractive index of polymer 50 may differ from that of layer 48 by less than 0.15, less than 0.1, or less than 0.05 (as examples).
To help protect the front (outwardly facing) surface of display 14 from damage during use (e.g., to help prevent scratching of glass layer 48, which could weaken glass layer 48), layer 48 may be provided with a protective coating such as protective coating layer 40. Layer 40 may have one or more separate layers of material (e.g., polymer such as polyimide, etc.). As an example, layer 40 may have an inner layer (e.g., a polyimide layer or other polymer layer 46 with a thickness of 50 microns, 10-100 microns, 20-80 microns, or other suitable thickness) and an outer layer that is thinner than the inner layer (e.g., a polymer layer such as polymer layer 44 with a thickness of a few microns, at least 0.5 microns, at least 1 micron, at least 2 microns 2-10 microns, 2-8 microns, less than 15 microns, less than 7 microns, or other suitable thickness). In this type of arrangement, layer 46 may help prevent relatively deep scratches in layer 40 from penetrating to the outer surface of glass layer 48, whereas layer 44, which may be formed from a harder polymer than layer 46, may help protect the surface of layer 46 from scratching that could create haze or other visible changes to layer 40. Layer 40 faces outwardly from layer 14T and may therefore sometimes be referred to as a top coating or top coat for layer 14T, whereas layer 50 faces inwardly from layer 14T and may sometimes be referred to as a back coating, rear coating, back coating, or back coat for layer 14T.
Optional coatings may be formed on the outer surface of layer 40. These optional coatings may include, for example, anti-smudge layers, anti-fog layers, antireflection layers, anti-static layers, and/or other coatings. In some configurations, each of these functions may be implemented using a separate respective coating layer. In other configurations, a single layer may serve multiple functions.
As described above, one aspect of the present technology is the gathering and use of information such as information from input-output devices. The present disclosure contemplates that in some instances, data may be gathered that includes personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter ID's, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, username, password, biometric information, or any other identifying or personal information.
The present disclosure recognizes that the use of such personal information, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables users to calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the United States, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA), whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.
Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In another example, users can select not to provide certain types of user data. In yet another example, users can select to limit the length of time user-specific data is maintained. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an application (“app”) that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.
Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
Therefore, although the present disclosure broadly covers use of information that may include personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data.
The foregoing is merely illustrative and various modifications can be made to the described embodiments. The foregoing embodiments may be implemented individually or in any combination.
This application claims the benefit of provisional patent application No. 63/299,293, filed Jan. 13, 2022, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63299293 | Jan 2022 | US |