Electronic element having carbon nanotubes

Information

  • Patent Grant
  • 9040159
  • Patent Number
    9,040,159
  • Date Filed
    Monday, September 29, 2008
    15 years ago
  • Date Issued
    Tuesday, May 26, 2015
    8 years ago
Abstract
An electronic element includes a substrate, and a transparent conductive layer. The substrate includes a surface. The transparent conductive layer is formed on a surface of the substrate. The transparent conductive layer includes at least one carbon nanotube layer. Carbon nanotubes in the carbon nanotube layer are adhered together by the van der Waals attractive force therebetween.
Description
RELATED APPLICATIONS

This application is related to commonly-assigned applications entitled, “TOUCH PANEL”, U.S. application Ser. No. 12/286,266, filed Sep. 29, 2008; “TOUCH PANEL”, U.S. application Ser. No. 12/286,141, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,189, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,181, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,176, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,166, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,178, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,148, filed Sep. 29, 2008; “TOUCHABLE CONTROL DEVICE”, U.S. application Ser. No. 12/286,140, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,154, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,216, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,152, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,145, filed Sep. 29, 2008; “TOUCH PANEL, METHOD FOR MAKING THE SAME, AND DISPLAY DEVICE ADOPTING THE SAME”, U.S. application Ser. No. 12/286,155, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,179, filed Sep. 29, 2008; “TOUCH PANEL, METHOD FOR MAKING THE SAME, AND DISPLAY DEVICE ADOPTING THE SAME”, U.S. application Ser. No. 12/286,228, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,153, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,184, filed Sep. 29, 2008; “METHOD FOR MAKING TOUCH PANEL”, U.S. application Ser. No. 12/286,175, filed Sep. 29, 2008; “METHOD FOR MAKING TOUCH PANEL”, U.S. application Ser. No. 12/286,195, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,160, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,220, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,227, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,144, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,218, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,142, filed Sep. 29, 2008; “TOUCH PANEL AND DISPLAY DEVICE USING THE SAME”, U.S. application Ser. No. 12/286,241, filed Sep. 29, 2008; “TOUCH PANEL, METHOD FOR MAKING THE SAME, AND DISPLAY DEVICE ADOPTING THE SAME”, U.S. application Ser. No. 12/286,151, filed Sep. 29, 2008; and “TOUCH PANEL, METHOD FOR MAKING THE SAME, AND DISPLAY DEVICE ADOPTING THE SAME”, U.S. application Ser. No. 12/286,219, filed Sep. 29, 2008. The disclosures of the above-identified applications are incorporated herein by reference.


BACKGROUND

1. Field of the Invention


The present invention relates to electronic elements and, particularly, to an electronic element including a plurality of carbon nanotubes.


2. Discussion of Related Art


Carbon nanotubes (CNTs) produced by means of arc discharge between graphite rods were reported in an article by Sumio Iijima, entitled “Helical Microtubules of Graphitic Carbon” (Nature, Vol. 354, Nov. 7, 1991, pp. 56-58). CNTs are electrically conductive along their length, chemically stable, and capable, individually, of having a very small diameter (much less than 100 nanometers) and large aspect ratios (length/diameter). Due to these and other properties, it has been suggested that CNTs can play an important role in various fields, such as field emission devices, new optic materials, sensors, soft ferromagnetic materials, etc.


Carbon nanotube layers have been found to be especially useful in field emission electron sources, photoelectric and biological sensors, transparent electrical conductors, battery electrodes, absorbing materials, water purification materials, light emitting materials, and related devices.


Generally, an electronic device, such as a liquid crystal display, field emission display, plasma display, electroluminescent display, vacuum fluorescent display, cathode ray tube, touch panel, or solar cell, includes an electronic element, which has a substrate and a transparent conductive layer. The transparent conductive layer is generally an indium tin oxide (ITO) layer.


However, the ITO layer is generally formed by means of ion-beam sputtering, and this method is relatively complicated. Furthermore, the ITO layer has generally poor mechanical durability, low chemical endurance, and uneven electrical resistance properties.


What is needed, therefore, is to provide an electronic element, the electronic element having low cost, excellent mechanical properties, uniform distribution of electrical resistance, and good transparency.


SUMMARY

An electronic element includes a substrate, and a transparent conductive layer. The substrate includes a surface. The transparent conductive layer is formed on a surface of the substrate. The transparent conductive layer includes at least one carbon nanotube layer. Carbon nanotubes in the carbon nanotube layer are adhered together by the van der Waals attractive force therebetween.


Other advantages and novel features of the present electronic element will become more apparent from the following detailed description of the present embodiments when taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present electronic element can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, the emphasis instead being placed upon clearly illustrating the principles of the present electronic element.



FIG. 1 is a plan view of an electronic element in accordance with a present embodiment.



FIG. 2 is a cross-sectional view of the electronic element of FIG. 1, taken along a line II-II thereof.



FIG. 3 shows a Scanning Electron Microscope (SEM) image of a carbon nanotube film used in the electronic element of FIG. 1.



FIG. 4 is a structural schematic of a carbon nanotube segment.



FIG. 5 is a cross-sectional view of a touch panel incorporating the electronic element of FIG. 1, the view corresponding to line II-II of FIG. 1.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate at least one embodiment of the present electronic element, in at least one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference will now be made to the drawings to describe, in detail, various embodiments of the present electronic element.


Referring to FIG. 1 and FIG. 2, an exemplary electronic element 20 includes a substrate 22 and a transparent conductive layer 24.


The substrate 22 has a planar structure or a curved structure. In the illustrated embodiment, the substrate 22 has a planar structure. The material of the substrate 22 can be selected from the group consisting of glass, quartz, diamond, and plastic. Understandably, the substrate 22 can be made from material suitable in its transparency, flexibility, and hardness. Referring also to FIG. 4, the substrate 22 has a first surface 221 and a second surface 222 at opposite sides thereof respectively. The first surface 221 of the substrate 22 is used to support the transparent conductive layer 24.


The transparent conductive layer 24 includes at least one carbon nanotube layer. The carbon nanotube layer is formed by a plurality of carbon nanotubes, ordered or otherwise, and has a uniform thickness. The carbon nanotubes in the carbon nanotube layer are adhered together (i.e., combined, joined, or connected) by the van der Waals attractive force. Specifically, when the carbon nanotube layer contains the carbon nanotubes in a desired arrangement, the carbon nanotubes are parallel to a surface of the carbon nanotube layer, substantially uniform, and are each arranged parallel to the same fixed direction or are arranged along different directions. Further, the carbon nanotube layer includes one carbon nanotube film, or a plurality of carbon nanotube films contactingly disposed side by side. In the following description, unless the context indicates otherwise, it will be assumed that each carbon nanotube layer is a single carbon nanotube film. Due to the carbon nanotubes in the carbon nanotube layer are substantially parallel to a surface of the carbon nanotube layer, the transparency of the carbon nanotube layer are relatively high (for example, from 70%˜99%).


In other embodiments, the transparent conductive layer 24 includes one carbon nanotube layer or at least two stacked carbon nanotube layers. Each carbon nanotube layer contains a plurality of carbon nanotubes, with the carbon nanotubes being arranged along a same direction. Further, the carbon nanotubes of any two adjacent carbon nanotube layers are arranged along different directions. A difference in the directions is defined as an angle α, which is in an approximate range from greater than 0° to less than or equal to 90° (0<α≦90°). The placing the films at an angle helps increase the strength of the overall structure. Having the films aligned will increase the efficiently of the transmission.


Due to the carbon nanotube layer being formed of a single carbon nanotube film or a plurality of carbon nanotube films contactingly disposed side by side, a length and a width of the carbon nanotube layer can be arbitrarily set as desired.


In a single carbon nanotube film, the carbon nanotubes can arranged orderly or disorderly (i.e., The carbon nanotube film can be an ordered film or a disordered film). In the ordered film, the carbon nanotubes are oriented along a same direction or different directions. In the disordered film, the carbon nanotubes are disordered or isotropic. The disordered carbon nanotubes are randomly entangled with each other. The isotropic carbon nanotubes are parallel to a surface of the carbon nanotube film.


In the present embodiment, the carbon nanotube film is ordered. Each carbon nanotube film includes a plurality of successive and oriented carbon nanotubes joined end to end by van der Waals attractive force therebetween. In the present embodiment, a thickness of the carbon nanotube film is in an approximate range from 0.5 nanometers to 100 micrometers. The carbon nanotubes in the carbon nanotube film can be selected from a group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. A diameter of each single-walled carbon nanotube is in an approximate range from 0.5 nanometers to 50 nanometers. A diameter of each double-walled carbon nanotube is in an approximate range from 1 nanometer to 50 nanometers. A diameter of each multi-walled carbon nanotube is in an approximate range from 1.5 nanometers to 50 nanometers.


Referring to FIGS. 3 and 4, each carbon nanotube film can comprises a plurality of successively oriented carbon nanotube segments 143 joined end-to-end by van der Waals attractive force therebetween. Each carbon nanotube segment 143 includes a plurality of carbon nanotubes 145 parallel to each other, and combined by van der Waals attractive force therebetween. The carbon nanotube segments 143 can vary in width, thickness, uniformity and shape. The carbon nanotubes 145 in the carbon nanotube film 143 are also oriented along a preferred orientation. As can be seen in FIG. 3, some variation will be present in the films.


In the present embodiment, the transparent conductive layer 24 includes two stacked carbon nanotube layers, and each carbon nanotube layer comprises a carbon nanotube film formed by pulling a plurality of carbon nanotubes out from an array of carbon nanotubes. Specifically, a method for fabricating the transparent conductive layer 24 includes the steps of: (a) providing an array of carbon nanotubes, specifically, a super-aligned array of carbon nanotubes; (b) pulling out a carbon nanotube film from the array of carbon nanotubes, by using a tool (e.g., adhesive tape, pliers, tweezers, or another tool allowing multiple carbon nanotubes to be gripped and pulled simultaneously); and (c) fabricating two of the above-described carbon nanotube layers, and stacking them, whereby an angle α between the alignment directions of the carbon nanotubes in the two adjacent carbon nanotube films is in the range 0<α≦90°.


In step (a), a given super-aligned array of carbon nanotubes can be formed by the substeps of: (a1) providing a substantially flat and smooth substrate; (a2) forming a catalyst layer on the substrate; (a3) annealing the substrate with the catalyst layer in air at a temperature in the approximate range from 700° C. to 900° C. for about 30 to 90 minutes; (a4) heating the substrate with the catalyst layer to a temperature in the approximate range from 500° C. to 740° C. in a furnace with a protective gas therein; and (a5) supplying a carbon source gas to the furnace for about 5 to 30 minutes and growing the super-aligned array of carbon nanotubes on the substrate.


In step (a1), the substrate can be a P-type silicon wafer, an N-type silicon wafer, or a silicon wafer with a film of silicon dioxide thereon. A 4-inch P-type silicon wafer is used as the substrate in the present embodiment.


In step (a2), the catalyst can be made of iron (Fe), cobalt (Co), nickel (Ni), or any alloy thereof.


In step (a4), the protective gas can be made up of at least one of nitrogen (N2), ammonia (NH3), and a noble gas. In step (a5), the carbon source gas can be a hydrocarbon gas, such as ethylene (C2H4), methane (CH4), acetylene (C2H2), ethane (C2H6), or any suitable combination thereof.


The super-aligned array of carbon nanotubes can have a height of about 50 microns to 5 millimeters, the super-aligned array of carbon nanotubes including a plurality of carbon nanotubes parallel to each other and approximately perpendicular to the substrate. The carbon nanotubes can be selected from a group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. A diameter of each single-walled carbon nanotube is in an approximate range from 0.5 nanometers to 50 nanometers. A diameter of each double-walled carbon nanotube is in an approximate range from 1 nanometer to 50 nanometers. A diameter of each multi-walled carbon nanotube is in an approximate range from 1.5 nanometers to 50 nanometers.


The super-aligned array of carbon nanotubes formed under the above conditions is essentially free of impurities, such as carbonaceous or residual catalyst particles. The carbon nanotubes in the super-aligned array are closely packed together by van der Waals attractive force.


In step (b), the carbon nanotube film or yarn, can be formed by the substeps of: (b1) selecting one or more carbon nanotubes having a predetermined width from the array of carbon nanotubes; and (b2) pulling the carbon nanotubes to form nanotube segments 143 at an even/uniform speed to achieve a uniform carbon nanotube film or carbon nanotube yarn. A carbon nanotube yarn is primarily a very narrow carbon nanotube film.


In step (b1), quite usefully, the carbon nanotube segment 143 includes a plurality of carbon nanotubes 145 parallel to each other. The carbon nanotube segments 143 can be selected by using an adhesive tape as the tool to contact the super-aligned array of carbon nanotubes. In step (b2), the pulling direction is substantially perpendicular to the growing direction of the super-aligned array of carbon nanotubes.


More specifically, during the pulling process, as the initial carbon nanotube segments are drawn out, other carbon nanotube segments are also drawn out end to end due to van der Waals attractive force between ends of adjacent segments. This process of drawing ensures a substantially continuous and uniform carbon nanotube film having a predetermined width can be formed. Referring to FIG. 3, the carbon nanotube film includes a plurality of carbon nanotubes joined ends to ends. The carbon nanotubes in the carbon nanotube film are all substantially parallel to the pulling/drawing direction of the carbon nanotube film, and the carbon nanotube film produced in such manner can be selectively formed to have a predetermined width. The carbon nanotube film formed by the pulling/drawing method has superior uniformity of thickness and conductivity over a typical disordered carbon nanotube film. Further, the pulling/drawing method is simple, fast, and suitable for industrial applications.


The width of the carbon nanotube film depends on, inter alia, a size of the carbon nanotube array. The length of the carbon nanotube film can be arbitrarily set, as desired. In one useful embodiment, when the substrate is a 4-inch P-type silicon wafer, the width of the carbon nanotube film is in an approximate range from 0.05 nanometers to 10 centimeters, and the thickness of the carbon nanotube film is in the approximate range from 0.5 nanometers to 100 micrometers. The carbon nanotubes in the carbon nanotube film can be selected from a group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. Diameters of the single-walled carbon nanotubes are in an approximate range from 0.5 nanometers to 50 nanometers. Diameters of the double-walled carbon nanotubes are in an approximate range from 1 nanometer to 50 nanometers. Diameters of the multi-walled carbon nanotubes are in an approximate range from 1.5 nanometers to 50 nanometers.


It is noted that because the carbon nanotubes in the super-aligned carbon nanotube array have a high purity and a high specific surface area, the carbon nanotube film is adherent in nature. As such, each carbon nanotube film can be directly adhered to a surface of the substrate 22 and/or the other carbon nanotube film. In the alternative, other bonding means can be applied.


In step (c), each carbon nanotube layer only includes a single carbon nanotube film or multiple coplanar films. Each carbon nanotube film includes a plurality of carbon nanotubes arranged along a same direction. The same direction is the pulling direction. As such, the two carbon nanotube layers are arranged and stacked with the angle α being in the range 0<α≦90°.


Once the carbon nanotube films are adhered to the surface of the substrate 22, the carbon nanotube films can be treated with an organic solvent. Specifically, the carbon nanotube film can be treated by applying organic solvent to the carbon nanotube film to soak the entire surface of the carbon nanotube film. For example, the carbon nanotube films can be treated by dropping the organic solvent from a dropper onto the carbon nanotube films to soak the entire surfaces of the carbon nanotube films. The organic solvent is volatile and can be selected from the group consisting of ethanol, methanol, acetone, dichloroethane, chloroform, any appropriate mixture thereof. In the present embodiment, the organic solvent is ethanol. After being soaked by the organic solvent, microscopically, carbon nanotube strings will be formed by adjacent carbon nanotubes in the carbon nanotube film, that are able to do so, bundling together, due to the surface tension of the organic solvent. In one aspect, part of the carbon nanotubes in the untreated carbon nanotube film that are not adhered on the substrate will come into contact with the surface of the substrate 22, after the organic solvent treatment due to the surface tension of the organic solvent. Then the contacting area of the carbon nanotube film with the substrate will increase, and thus, the carbon nanotube film can more firmly adhere to the surface of the substrate 22. In another aspect, due to the decrease of the specific surface area via bundling, the mechanical strength and toughness of the carbon nanotube film are increased and the coefficient of friction of the carbon nanotube films is reduced. Macroscopically, the film will be an approximately uniform carbon nanotube film.


Unlike previous methods for making an ITO film, the present method does not require a vacuum environment and heat processing, due to the carbon nanotube films being obtained by pulling out from an array of carbon nanotubes. Thus, the carbon nanotube layers formed by the carbon nanotube films and used as the transparent conductive layer 24 have the advantage of being low cost, environmentally safe, and energy efficient.


At least two electrodes 26 can be disposed on a surface of the transparent conductive layer 24. The electrodes 26 can be disposed on the surface of the transparent conductive layer 24 that faces away from the substrate 22. Further or alternatively, the electrodes 26 can be configured to be sandwiched between the substrate 22 and the transparent conductive layer 24, to insure that the electrodes 26 electrically connect with the transparent conductive layer 24. Typically, the substrate 22 is a glass substrate. The electrodes 26 are strip-shaped, and can be formed by metallic layers, conductive resin layers, carbon nanotube films or any other suitable materials. The electrodes 26 are formed by one or more of spraying, electrical deposition, and electroless deposition methods. Moreover, the electrodes 26 can also be adhered to the surface of the transparent conductive layer 24 by a silver-based slurry.


It is to be noted that, after photoetching or laser etching of the transparent conductive layer 24 to form patterned circuits, the electronic element 20 can be used in apparatuses such as flat displays, photo-electric devices, touch panels, thermal emission elements (such as heaters), electroluminescence displays, and electromagnetic interference (EMI) shielding.


When the electronic element 20 is used as a heater, the electronic element includes two electrodes 26. The electrodes 26 are connected to an electrical source by conductive wires. Further, it is imperative that the electrodes 26 are separated by a certain distance to form a certain resistance therebetween, thereby preventing short-circuiting of the electrodes 26. As such, in use, the transparent conductive layer 24 emits electromagnetic waves with a certain wavelength.


Referring to FIG. 5, when the electronic element 20 is used in a touch panel, the touch panel typically includes the electronic element 20, a transparent protective film 28, and a shielding layer 25. The shielding layer 25 is disposed on the second surface 222 of the substrate 22. The transparent protective film 28 together with the electrodes 26 are disposed on the surface of the transparent conductive layer 24 that faces away from the substrate 22. In operation, a voltage is applied to the electrodes 26 respectively. A user presses or touches the transparent conductive layer 24 with a touch tool, such as a finger or an electrical pen/stylus, while visually observing an associated display element through the touch panel. Due to an electrical field of the user, a coupling capacitance forms between the user and the transparent conductive layer 24. For high frequency electrical current, the coupling capacitance is a conductor, and thus the touch tool takes away a little current from the touch point. Currents flowing through the two electrodes 26 cooperatively replace the current lost at the touch point. The quantity of current supplied by each electrode 26 is directly proportional to the distances from the touch point to the electrodes 26. A touch panel controller connected with the touch panel is used to calculate the proportion of the two supplied currents, thereby detecting coordinates of the touch point on the touch panel. Then the touch panel controller sends the coordinates of the touch point to an associated central processing unit (CPU). The CPU receives the coordinates, and processes the coordinates into a command. The CPU then sends out the command to an associated display element controller that is also connected to the display element. The display element controller controls the display of the display element accordingly.


The carbon nanotube layers provided in the present embodiment have superior properties, such as excellent toughness, high mechanical strength, and uniform conductivity. Thus, the electronic element 20 is durable and highly conductive. Further, the pulling method for fabricating the carbon nanotube layers is simple, and the adhesive carbon nanotube layers can be disposed directly on the substrate 22 and on each other. As such, the method for fabricating the carbon nanotube layers is suitable for the mass production of the electronic element 20, and reduces the cost thereof. Moreover, each carbon nanotube layer has a uniform distribution of electrical resistance, thus improving the electrical properties of the electronic element 20.


Finally, it is to be understood that the above-described embodiments are intended to illustrate rather than limit the invention. Variations may be made to the embodiments without departing from the spirit of the invention as claimed. The above-described embodiments illustrate the scope of the invention but do not restrict the scope of the invention.

Claims
  • 1. An electronic element comprising: a substrate comprising a surface; anda transparent conductive layer comprising at least two carbon nanotube films directly stacked and located on the surface of the substrate,wherein each of the at least two carbon nanotube films comprises carbon nanotubes oriented along a primary orientation and substantially parallel to a surface of the each of the at least two carbon nanotube films, the surface of the each of the at least two each carbon nanotube films is parallel to the surface of the substrate, the carbon nanotubes in the each of the at least two carbon nanotube films are joined end to end along the primary orientation, an angle exists between the primary orientations of the carbon nanotubes of two adjacent carbon nanotube films, and the angle is in between 0° and 90°.
Priority Claims (1)
Number Date Country Kind
2007 1 0125102 Dec 2007 CN national
US Referenced Citations (118)
Number Name Date Kind
4659873 Gibson et al. Apr 1987 A
4922061 Meadows et al. May 1990 A
4933660 Wynne, Jr. Jun 1990 A
5181030 Itaya et al. Jan 1993 A
5853877 Shibuta Dec 1998 A
5861583 Schediwy et al. Jan 1999 A
5931764 Freeman et al. Aug 1999 A
6373472 Palalau et al. Apr 2002 B1
6423583 Avouris et al. Jul 2002 B1
6628269 Shimizu Sep 2003 B2
6629833 Ohya et al. Oct 2003 B1
6914640 Yu Jul 2005 B2
6947203 Kanbe Sep 2005 B2
7054064 Jiang et al. May 2006 B2
7060241 Glatkowski Jun 2006 B2
7071927 Blanchard Jul 2006 B2
7084933 Oh et al. Aug 2006 B2
7196463 Okai et al. Mar 2007 B2
7215329 Yoshikawa et al. May 2007 B2
7242136 Kim et al. Jul 2007 B2
7336261 Yu Feb 2008 B2
7348966 Hong et al. Mar 2008 B2
7355592 Hong et al. Apr 2008 B2
7532182 Tseng et al. May 2009 B2
7593004 Spath et al. Sep 2009 B2
7630040 Liu et al. Dec 2009 B2
7662732 Choi et al. Feb 2010 B2
7663607 Hotelling et al. Feb 2010 B2
7704480 Jiang et al. Apr 2010 B2
7710649 Feng et al. May 2010 B2
7796123 Irvin, Jr. et al. Sep 2010 B1
7825911 Sano et al. Nov 2010 B2
7854992 Fu et al. Dec 2010 B2
7947977 Jiang et al. May 2011 B2
20020089492 Ahn et al. Jul 2002 A1
20030122800 Yu Jul 2003 A1
20030147041 Oh et al. Aug 2003 A1
20030165418 Ajayan et al. Sep 2003 A1
20030189235 Watanabe et al. Oct 2003 A1
20040047038 Jiang et al. Mar 2004 A1
20040053780 Jiang et al. Mar 2004 A1
20040099438 Arthur et al. May 2004 A1
20040105040 Oh et al. Jun 2004 A1
20040136896 Liu et al. Jul 2004 A1
20040191157 Harutyunyan et al. Sep 2004 A1
20040251504 Noda Dec 2004 A1
20050058834 Rueckes et al. Mar 2005 A1
20050110720 Akimoto et al. May 2005 A1
20050151195 Kawase et al. Jul 2005 A1
20050209392 Luo et al. Sep 2005 A1
20060010996 Jordan et al. Jan 2006 A1
20060022221 Furukawa et al. Feb 2006 A1
20060044284 Tanabe Mar 2006 A1
20060061704 Hayano et al. Mar 2006 A1
20060077147 Palmateer et al. Apr 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060171032 Nishioka Aug 2006 A1
20060187213 Su Aug 2006 A1
20060187369 Chang Aug 2006 A1
20060188721 Irvin, Jr. et al. Aug 2006 A1
20060213251 Rinzler et al. Sep 2006 A1
20060240605 Moon et al. Oct 2006 A1
20060262055 Takahara Nov 2006 A1
20060263588 Handa et al. Nov 2006 A1
20060274047 Spath et al. Dec 2006 A1
20060274048 Spath et al. Dec 2006 A1
20060274049 Spath et al. Dec 2006 A1
20060275956 Konesky Dec 2006 A1
20060278444 Binstead Dec 2006 A1
20070065651 Glatkowski et al. Mar 2007 A1
20070075619 Jiang et al. Apr 2007 A1
20070081681 Yu et al. Apr 2007 A1
20070085838 Ricks et al. Apr 2007 A1
20070099333 Moriya May 2007 A1
20070165004 Seelhammer et al. Jul 2007 A1
20070182720 Fujii et al. Aug 2007 A1
20070215841 Ford et al. Sep 2007 A1
20070257894 Philipp Nov 2007 A1
20070262687 Li Nov 2007 A1
20070279556 Wang et al. Dec 2007 A1
20070296897 Liu et al. Dec 2007 A1
20070298253 Hata et al. Dec 2007 A1
20080007535 Li Jan 2008 A1
20080029292 Takayama et al. Feb 2008 A1
20080048996 Hu et al. Feb 2008 A1
20080088219 Yoon et al. Apr 2008 A1
20080095694 Nakayama et al. Apr 2008 A1
20080129666 Shimotono et al. Jun 2008 A1
20080138589 Wakabayashi et al. Jun 2008 A1
20080192014 Kent et al. Aug 2008 A1
20080238882 Sivarajan et al. Oct 2008 A1
20080248235 Feng et al. Oct 2008 A1
20080266273 Slobodin et al. Oct 2008 A1
20090032777 Kitano et al. Feb 2009 A1
20090056854 Oh et al. Mar 2009 A1
20090059151 Kim et al. Mar 2009 A1
20090101488 Jiang et al. Apr 2009 A1
20090153511 Jiang et al. Jun 2009 A1
20090153513 Liu et al. Jun 2009 A1
20090153514 Jiang et al. Jun 2009 A1
20090153516 Liu et al. Jun 2009 A1
20090167709 Jiang et al. Jul 2009 A1
20090208708 Wei et al. Aug 2009 A1
20090283211 Matsuhira Nov 2009 A1
20090293631 Radivojevic Dec 2009 A1
20100001972 Jiang et al. Jan 2010 A1
20100001975 Jiang et al. Jan 2010 A1
20100001976 Jiang et al. Jan 2010 A1
20100007619 Jiang et al. Jan 2010 A1
20100007624 Jiang et al. Jan 2010 A1
20100007625 Jiang et al. Jan 2010 A1
20100065788 Momose et al. Mar 2010 A1
20100078067 Jia et al. Apr 2010 A1
20100093247 Jiang et al. Apr 2010 A1
20100171099 Tombler, Jr. et al. Jul 2010 A1
20100271330 Philipp Oct 2010 A1
20110032196 Feng et al. Feb 2011 A1
20120105371 Hotelling et al. May 2012 A1
Foreign Referenced Citations (163)
Number Date Country
2539375 Mar 2003 CN
1447279 Oct 2003 CN
1447279 Oct 2003 CN
1482472 Mar 2004 CN
1483667 Mar 2004 CN
1484865 Mar 2004 CN
1501317 Jun 2004 CN
1503195 Jun 2004 CN
1509982 Jul 2004 CN
1519196 Aug 2004 CN
2638143 Sep 2004 CN
1543399 Nov 2004 CN
1543399 Nov 2004 CN
2706973 Jun 2005 CN
1671481 Sep 2005 CN
1675580 Sep 2005 CN
1690915 Nov 2005 CN
1738018 Feb 2006 CN
1744021 Mar 2006 CN
1745302 Mar 2006 CN
1803594 Jul 2006 CN
1823320 Aug 2006 CN
1292292 Dec 2006 CN
2844974 Dec 2006 CN
1903793 Jan 2007 CN
1942853 Apr 2007 CN
1947203 Apr 2007 CN
1948144 Apr 2007 CN
1315362 May 2007 CN
1982209 Jun 2007 CN
1996620 Jul 2007 CN
1998067 Jul 2007 CN
101017417 Aug 2007 CN
101059738 Oct 2007 CN
101165883 Apr 2008 CN
101239712 Aug 2008 CN
101248411 Aug 2008 CN
202007006407 Sep 2007 DE
1739692 Jan 2007 EP
S61-231626 Oct 1986 JP
61-283918 Dec 1986 JP
S62-63332 Mar 1987 JP
62-139028 Jun 1987 JP
S62-182916 Aug 1987 JP
S62-190524 Aug 1987 JP
1-214919 Aug 1989 JP
H2-8926 Jan 1990 JP
1991-54624 Mar 1991 JP
H3-54624 Mar 1991 JP
5-53715 Mar 1993 JP
H06-28090 Feb 1994 JP
H6-67788 Mar 1994 JP
8-287775 Nov 1996 JP
H10-63404 Mar 1998 JP
10-246605 Sep 1998 JP
2001-34419 Feb 2001 JP
2001-267782 Sep 2001 JP
2002519754 Jul 2002 JP
2002-278701 Sep 2002 JP
2003-99192 Apr 2003 JP
2003-99193 Apr 2003 JP
2003-288164 Oct 2003 JP
2003303978 Oct 2003 JP
2004-26532 Jan 2004 JP
2004-102217 Apr 2004 JP
2004-189573 Jul 2004 JP
2004-253796 Sep 2004 JP
2004-266272 Sep 2004 JP
2005-67976 Mar 2005 JP
2005-85485 Mar 2005 JP
2005-117224 Apr 2005 JP
2005-176428 Jun 2005 JP
2005-182339 Jul 2005 JP
2005-222182 Aug 2005 JP
2005-286158 Oct 2005 JP
2006-171336 Jun 2006 JP
2006-228818 Aug 2006 JP
2006-243455 Sep 2006 JP
2006-521998 Sep 2006 JP
2006-269311 Oct 2006 JP
2006-285068 Oct 2006 JP
2007-11997 Jan 2007 JP
2007-31238 Feb 2007 JP
2007-73706 Mar 2007 JP
2007-112133 May 2007 JP
2007-123870 May 2007 JP
2007-161563 Jun 2007 JP
2007-161576 Jun 2007 JP
2007-182357 Jul 2007 JP
2007-182546 Jul 2007 JP
2007-229989 Sep 2007 JP
2007-299409 Nov 2007 JP
2007-310869 Nov 2007 JP
2008-102968 May 2008 JP
2008-139711 Jun 2008 JP
2008-536710 Sep 2008 JP
2008-542953 Nov 2008 JP
2009-104577 May 2009 JP
0525731 Nov 2005 KR
20060129977 Dec 2006 KR
20070012414 Jan 2007 KR
20070081902 Aug 2007 KR
2007-0108077 Nov 2007 KR
131955 Apr 1990 TW
341684 Oct 1998 TW
498266 Aug 2002 TW
508652 Nov 2002 TW
521227 Feb 2003 TW
200403498 Mar 2004 TW
242732 Sep 2004 TW
200518195 Jun 2005 TW
I233570 Jun 2005 TW
I234676 Jun 2005 TW
200522366 Jul 2005 TW
284963 Jan 2006 TW
I249134 Feb 2006 TW
I249708 Feb 2006 TW
I251710 Mar 2006 TW
I253846 Apr 2006 TW
200622432 Jul 2006 TW
I258708 Jul 2006 TW
I261716 Sep 2006 TW
I267014 Nov 2006 TW
M306694 Feb 2007 TW
200710493 Mar 2007 TW
200713337 Apr 2007 TW
200717083 May 2007 TW
200719198 May 2007 TW
D117141 May 2007 TW
200722559 Jun 2007 TW
200727163 Jul 2007 TW
284927 Aug 2007 TW
200729241 Aug 2007 TW
200736979 Oct 2007 TW
200737414 Oct 2007 TW
200738558 Oct 2007 TW
I287669 Oct 2007 TW
200926471 Jun 2009 TW
200928914 Jul 2009 TW
200929638 Jul 2009 TW
200929643 Jul 2009 TW
201005612 Jul 2009 TW
WO02076724 Oct 2002 WO
WO02076724 Oct 2002 WO
WO2004019119 Mar 2004 WO
WO2004052559 Jun 2004 WO
WO2004114105 Dec 2004 WO
WO2005102924 Nov 2005 WO
WO2005104141 Nov 2005 WO
WO2006003245 Jan 2006 WO
WO2006014241 Feb 2006 WO
WO2006030981 Mar 2006 WO
WO2006031981 Mar 2006 WO
WO2006120803 Nov 2006 WO
WO2006126604 Nov 2006 WO
WO2006130366 Dec 2006 WO
WO2007008518 Jan 2007 WO
2007012899 Feb 2007 WO
2007022226 Feb 2007 WO
WO2007063751 Jun 2007 WO
WO2007066649 Jun 2007 WO
WO2007099975 Sep 2007 WO
WO2008013517 Jan 2008 WO
Non-Patent Literature Citations (18)
Entry
Fan et al. “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”. Science, vol. 283, (1999); pp. 512-514.
Wu et al. “Transparent, Conductive Carbon Nanotube Films”. Science, vol. 305, (2004); pp. 1273-1276.
ASM Handbook. “vol. 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”. Apr. 2007; pp. 840-853.
Susuki et al. “Investigation of physical and electric properties of silver pastes as binder for thermoelectric materials”. Review of Scientific Instruments, 76, (2005); pp. 023907-1 to 023907-5.
Dai, H. “Carbon nanotubes: opportunities and challenges”. Surface Science 500 (2002), pp. 218-241.
Kai-Li Jiang, Qun-Qing Li, Shou-Shan Fan, “Continuous carbon nanotube yarns and their applications” , Physics, China, pp. 506-510,Aug. 31, 2003,32(8)(lines from the 4th line to 35th line in the right column of p. 507 may be relevant).
Yu Xiang, Technique of Touch Panel & the Production of Resistance-type Touch Panel Insulation Dot, Journal of Longyan Teachers College, p. 25-26, vol. 22, No. 6, 2004.
George Gruner, “Carbon Nanonets Spark New Electronics”, Scientific American, pp. 76-83, May 2007.
Ri Kurosawa, “Technology Trends of Capacitive Touch Panel”, Technology and Development of Touch Panel, Amc, First Impression, pp. 54-64, Dec. 27, 2004(the 6th paragraph on p. 55 may be relevant).
Yoshikazu Nakayama, “Technology Development of CNT Long Yarns and CNT Sheets”, Nano Carbon Handbook, Japan TSN INC, pp. 261-266, Jul. 17, 2007(the First 6 Sentences of 2nd, 3rd,4th Paragraphs and the first 3 sentences of 5th paragraph on p. 262,the 4th paragraph on p. 264 and the 5th sentence of 3rd paragraph on p. 265 may be relevant).
Yagasaki Takuya, Nakanishi Rou, “Resistance Film Type Touch Panel”, Technologies and Developments of Touch Panels, Amc, First Impression, pp. 80-93, Dec. 27, 2004(the 2nd Paragraph on p. 81 and the 2nd Paragraph on p. 91 may be relevant).
Mei Zhang etal., “Strong Transparent, Multifunctional, Carbon Nanotube Sheets”, Science, America, AAAS, vol. 309, pp. 1215-1219, Aug. 19, 2005.
Zhungchun Wu et al., “Transparent, Conductive Carbon Nanotube Films”, Science, vol. 305, pp. 1273-1276, Aug. 27, 2004.
R Colin Johnson, “Carbon nanotubes aim for cheap, durable touch screens”, Aug. 2007 http://psroc.phys.ntu.edu.tw/bimonth/v27/615.pdf.
Xianglin Liu, “strong, transparent, multifunctional carbon nanotube sheets”, pp. 720-721, Oct. 2005 http://www.eettaiwan.com/articleLogin.do?artId=8800474428&fromWhere=/ART—8800474428—480502—NT—95e7014f.HTM&catId=480502&newsType=NT&pageNo=null&encode=95e7014f.
Strong, Transparent, Multifunctional, Carbon Nanotube Sheets, Science, American Association for the Advancement of Science, US, vol. 309, Aug. 19, pp. 1215-1219.
Spinning and Processing Continuous Yarns from 4-Inch wafer Scale Super-Aligned Carbon Nanotube Arrays, Advanced Materials, Wiley-Vchwerlag Gmbh&Co.KGAA,DE, vol. 18, No. 12, Jun. 1, 2006, pp. 1505-1510.
Spinning continuous carbon nanotube yarns, Nature, Nature Publishing Group, United Kingdom, vol. 419, Oct. 24, 2002, p. 801.
Related Publications (1)
Number Date Country
20110171419 A1 Jul 2011 US