1. Field of the Invention
This invention relates generally to electronic equipment, such as computers, and, more particularly, to apparatus used during insertion and extraction of circuit boards from electronic systems.
2. Background Information
Electronic systems such as computers are typically constructed in a modular fashion. For example, a system may include number of circuit boards, each circuit board generally performing a specific function. Each circuit board requires multiple electrical connections, which are generally provided by two part multi-contact electrical connectors. One part of the connector is mounted to the circuit board, while a mating part of the connector may be attached to another component of the system such as a rack, a chassis, a cable, or another circuit board (e.g., backplane circuit board). Successful mating of connector parts is needed for reliable electrical connections in the system. The system may include other modules, such as power supplies, disk drives, and fan tray assemblies.
A number of mechanisms are known for injecting a module into a chassis or extracting a module from a chassis. Such mechanisms may include levers pivotally coupled to the circuit board and arranged to engage projections formed on the chassis. Guide formations may be provided on the chassis to receive the module and to guide the module into position. The levers may be arranged on the circuit board such that when the lever are actuated, the circuit board is provided with a biasing force that serves to move the circuit board toward the rear of the chassis. The biasing force is used to mate the parts of the electrical connector on the module with corresponding connector parts in the chassis.
For circuit boards with connectors having a relatively large number of pins, large insertion forces may be required to mate the connector parts. For example, a large board may contain several multi-contact connectors, each connector containing several hundred individual contacts. Each contact requires the application of an insertion force to seat the contact. Thus, the total insertion force required to seat a large board may be 65 pounds or more. Moreover, individual contacts are easily damaged if the mating connector parts are not properly aligned when they come into contact with each other. This problem is especially acute where large forces are required to mate the connector parts.
Injection/extraction mechanisms, and the mounting hardware associated with the mechanisms, consume space near the front of a module. The size of some mechanisms may require that the width and/or height of a slot for a given module be increased. Portions of a mechanism (e.g., lever arms) may also take up space outside a front panel of a module. In addition, apertures must be provided in the module, chassis, and/or EMI seals to provide clearance for the levers and/or other hardware. Electromagnetic radiation may pass through the apertures, creating electromagnetic interference with the system.
Various embodiments of apparatus and methods for injecting and ejecting modules (e.g., circuit modules, fan tray assemblies) are disclosed. In an embodiment, a module includes a panel having a groove. An injector/ejector may be coupled to the panel. The injector/ejector may reside in the groove when the injector/ejector is in a closed position. A latch member may be coupled to the panel. The latch member may selectively hold the injector/ejector in the closed position in the groove. In some embodiments, a spring (e.g., a torsion spring) is provided to urge the injector/ejector into an open position when the latch member moved out of engagement with the injector/ejector.
In an embodiment, a latch member for module injector/ejector has a body and a spring portion. The latch member may be used to selectively latch and release the injector/ejector. The body of the latch member may reside in a groove in a front panel of the module. The body of the latch member may move within a limited range of motion in the groove. The walls of the groove may guide the latch member. In some embodiments, the spring portion of the latch member resiliently urges the body of the latch member into engagement with the injector/ejector when the injector/ejector is placed in a closed position. The spring portion may allow the body of the latch member to deflect to allow the injector/ejector to be released from the latch member. When the user lets go of the latch member, the spring portion may return the body of the latch member to a rest position.
In an embodiment, a latch member for a module injector/ejector is attached to a panel of the module using a snap-on arrangement. The latch member may include one or more protrusions that snap into apertures in the panel. In some embodiments, one or more of the apertures is slotted to allow movement of a portion of the latch member to release the latch member from the injector/ejector.
In an embodiment, a front panel for a module may be made of a flat sheet (e.g., sheet metal). The flat sheet may have a fold that defines the groove. The groove may receive an injector/ejector for the module. In some embodiments, the panel may have flanges along the outer edge of the panel that extend in the same direction as the fold.
In an embodiment, a module assembly includes a chassis that houses some or all of the components of the module assembly. An EMI gasket may be provided between the chassis and a front panel of the module assembly. The chassis, front panel, and EMI gasket may include slots that allow for passage of an injector/ejector for the module assembly. The chassis, front panel, and EMI gasket, and injector/ejector may combine to form an EMI enclosure for components in the module. In one embodiment, the module assembly includes a pair of injector/ejectors that each engages one side of a rack.
Other aspects of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and description thereto are not intended to limit the invention to the particular form disclosed, but, on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling with the spirit and scope of the present invention as defined by the appended claims.
The following description generally relates to apparatus and methods for installing and removing modules from computer systems. Such systems and methods may be used in a variety of applications. A non-exhaustive list of such applications includes: telecommunications network server systems; e-commerce web server systems; LAN application and file server systems; personal computer systems; and remote vehicle control systems.
As used herein, “module” includes any modular unit or subsystem. Examples of a module include, but are not limited to, a printed circuit board assembly, an information-processing cartridge, a fan tray assembly, a disk drive, a memory module, a power supply, or a combination thereof. In certain embodiments, a module may include multiple circuit boards (e.g., a mezzanine card mounted to a main circuit board). In certain embodiments, components of a module may be housed in an enclosure.
As used herein, “circuit module” includes any module that includes or carries elements of an electrical circuit, electrical components (including, but not limited to, semiconductor devices, resistors, capacitors, relays, switches, and connectors), or conductors (e.g., wires, traces). As used herein, “circuit board” includes any circuit module that carries one or more other circuit modules or components. “Circuit board” includes, but is not limited to, a printed circuit board made of epoxy-glass and metal layers. As used herein, “component” includes any element of system, including, but not limited to, a printed circuit board, a semiconductor device, a resistor, a capacitor, a power supply, or a disk drive.
A computer system may include components installed in a chassis or rack assembly. As used herein, “rack” includes any structure that supports or houses one or more elements of a computer system (e.g., electronic modules). A component may be supported in a rack by various structures including, but not limited to, slides, rails, a shelf, or a bottom of a rack. As used herein, “enclosure” or “chassis” includes any structure that supports or houses one or more elements of a module or modules.
In an embodiment, a module is a fan tray assembly.
As used herein, “injector/ejector” includes any element that may be used to inject a component into a system, eject a component from a system, or both. As used herein, to “inject” generally means to couple a component to a system or another component. “Injecting” a circuit board may include, but is not limited to, advancing a circuit board to couple a connector part on the circuit board with a mating connector part on another component (e.g., a backplane). As used herein, to “eject” generally means to decouple a component from a system or another component. “Ejecting” a circuit board may include, but is not limited to, withdrawing a circuit board to decouple a connector part on the circuit board from a mating connector part on another component (e.g., a backplane). Examples of injector/ejector devices include, but are not limited to, levers, screws, rods, cams, hooks, or pins.
Injector/ejector 106 may include handle 108, inject portion 110, and eject portion 112. Inject portion 110 and eject portion 112 may move within chassis slot 114 in chassis 102 when injector/ejector 106 is actuated using handle 108. As further described herein, injector/ejector 106 may be position to selectively engage inject portion 110 and eject portion 112 on a fixed structure on a rack (e.g., a side rail) to couple fan tray assembly 100 with the rack and decouple the fan tray assembly from the rack.
As shown in
Front panel 104 may include groove 116. Injector/ejector 106 may reside in groove 116 when injector/ejector 106 is placed in a closed position (e.g., after injection of fan tray assembly 100). As used herein, “groove” generally refers to any groove, channel, recess, hollow, or depression in a surface. As shown in
Fan tray assembly 100 may include latch member 118. Latch member 118 may be movably coupled to front panel 104. Latch member 118 may engage notch 120 on injector/ejector 106 to hold injector/ejector 106 in a closed position in groove 116 of front panel 104. As used herein, “member” may include a single member or multiple members. Portions of a member may be straight and/or curved, flexible and/or rigid, or a combination thereof. A latch member may include various elements for selectively holding and releasing an injector/ejector. Suitable latch types include, but are not limited to, a slider, a push knob latch, coil spring latch, or touch latch.
Fan tray assembly 100 may include torsion spring 122. Torsion spring 122 may be coupled between injector/ejector and front panel 104. Torsion spring 122 may bias handle 108 of injector/ejector 106 away from front panel 104. Injector/ejector 106 may rotate to an open position (e.g., with handle 108 away from front panel 104) when latch member 118 is moved out of engagement with injector/ejector 106.
Latch member 118 may be attached to front panel 104 using a snap-on arrangement. Latch member 118 may include mounting protrusions (e.g., tabs, legs, or pins) that couple in apertures (e.g., holes, slots) of front panel 104. As shown in
Projections 144, 146 may extend in a transverse direction relative to legs 140, 142. Leg 140 may include lead-in taper 148 to facilitate engagement of leg 140 in hole 128. In certain embodiments, leg 142 may include a taper. While latch member is depicted in
As used herein, “spring portion” includes any resiliently deformable (e.g., bendable) member or combination of members, and includes, but is not limited to, a beam, bar, rod, coil, or combination of such elements. As shown in
To install latch member 118 on front panel 104, legs 140, 142 may be brought toward each other (e.g., by squeezing the sides of the latch member) such that projections 144, 146 align with hole 128 and slot 130. Legs 140, 142 may be inserted into hole 128 and slot 130, respectively. After projections 144, 146 pass through hole 128 and slot 130, spring portion 138 may return latch member 118 to a free state, spreading legs 140, 142 away from each other. Projections 144, 146 may overlap rear wall 126 of front panel 104 such that latch member 118 is retained in groove 116. As shown in
Latch body 132 may reside in groove 116 behind forward edge 156 of front panel 104 when latch member 118 is installed on front panel 104. When injector/ejector 106 is in a closed position, handle 108 of injector/ejector 106 may also be behind the forward edge 156 of front panel 104. Including a groove on a front panel of a module may allow the module to have a low profile at the front of the module. As shown in
Fan tray assembly 100 may include fasteners 176. Fasteners 176 may be used to attach front panel 104 to chassis body 158 and cover 160. Injector/ejector 106 may be coupled to front panel 104 using pin 177. Front panel 104 may include indicator panel 178. Indicator panel 178 may include status visual indicators 180 (e.g., light emitting diodes) that provide visual status regarding the operation of the fan tray assembly 100.
EMI gasket 182 may be provided between chassis 102 and front panel 104. EMI gasket may include gasket slot 183. Gasket slot 183 may allow for passage of injector/ejector 106. Gasket slot may be slightly larger than the thickness of the injector/ejector. EMI gasket 182 may be formed of beryllium copper, conductive elastomer, or various other materials that provide electromagnetic shielding. EMI gasket 182 may contain electromagnetic energy generated by fans in fan tray assembly 100. It will be understood that EMI gasket may be used to contain electromagnetic energy produced by other components on a module such as processors or disk drive motors. In some embodiments, a gasket for a module may shield components in the module from electromagnetic energy produced by components surrounding the module.
Front panel 104 may include front walls 184 and fold 186. Fold 186 may include rear wall 126. Rear wall end slot 190 may allow clearance for injector/ejector 106. Pivot holes 192 may be provided for pinning injector/ejector 106 to front panel 104.
Front panel 104 may include flanges 194 around the edges of front wall 184. As used herein, “flange” generally refers to any projecting rim, lip, or wall. A flange may have any of various regular or irregular cross sections. A flange may be solid or not solid (e.g., perforated). In some embodiments, flanges extend toward the rear of front panel 104 coextensively with rear wall 126 of fold 186. In other embodiments, flanges 194 may be shorter or longer than fold 186. As shown in
Referring again to
As described above, latch members 118 may engage injector/ejector 106 to selectively inhibit or allow movement of one or more elements. As used herein, “engage” or “engaging” includes any condition in which one element engages (e.g., contacts) another element during operation or use of an apparatus.
When injector/ejector 106 is placed in a closed position, engaging portion 136 of latch member 118 may engage in notch 120 in injector/ejector 106, as shown in
Latch member 118 may be disengaged from injector/ejector 106, allowing injector/ejector 106 to rotate with respect to front panel 104. While release portion 134 in the embodiment shown are manually actuated, in other embodiments the releases may automatically actuated. Releases may be actuated by hand or using various devices, including, but not limited to, hand tools power tools, or solenoid devices.
In the embodiment shown in
As shown in
Referring to
Referring to
As used herein, “coupled” includes a direct coupling or an indirect coupling (e.g., with one or more intervening elements) unless expressly stated otherwise. For example, a latch member may be coupled to a front panel by directly attaching the latch member to the front panel, or by mounting the latch member to a bracket attached to the front panel.
While the present invention has been described with reference to particular embodiments, it will be understood that the embodiments are illustrative and that the invention scope is not so limited. Any variations, modifications, additions, and improvements to the embodiments described are possible. These variations, modifications, additions, and improvements may fall within the scope of the inventions as detailed within the following claims. For example, when the terms “vertical,” “horizontal,” “front,” “rear,” “upward,” “downward,” “under,” “over,” “left,” or “right” are used in the claims, they are to be understood to relate to the Figures as illustrated. However, the device may be turned at an angle to the horizontal or inverted with the quoted terms referring to the altered orientation.
Number | Name | Date | Kind |
---|---|---|---|
3193342 | Sauter | Jul 1965 | A |
3245546 | Stuhler | Apr 1966 | A |
3899794 | Brown, Jr. | Aug 1975 | A |
4365831 | Bourne | Dec 1982 | A |
4421372 | Golden | Dec 1983 | A |
4435029 | McKenzie | Mar 1984 | A |
4597173 | Chino et al. | Jul 1986 | A |
4778401 | Boudreau et al. | Oct 1988 | A |
4872853 | Webster | Oct 1989 | A |
4941841 | Darden et al. | Jul 1990 | A |
5003431 | Imsdahl | Mar 1991 | A |
5172520 | Hostetler et al. | Dec 1992 | A |
5222897 | Collins et al. | Jun 1993 | A |
5229919 | Chen | Jul 1993 | A |
5255154 | Hosoi et al. | Oct 1993 | A |
5332306 | Babb et al. | Jul 1994 | A |
5442513 | Lo | Aug 1995 | A |
5483419 | Kaczeus, Sr. et al. | Jan 1996 | A |
5504648 | Honda et al. | Apr 1996 | A |
5506758 | Cromwell | Apr 1996 | A |
5557499 | Reiter et al. | Sep 1996 | A |
5563767 | Chen | Oct 1996 | A |
5653518 | Hardt | Aug 1997 | A |
5654873 | Smithson et al. | Aug 1997 | A |
5673172 | Hastings et al. | Sep 1997 | A |
5691859 | Ulrich et al. | Nov 1997 | A |
5734557 | McAnally et al. | Mar 1998 | A |
5765933 | Paul et al. | Jun 1998 | A |
5980281 | Neal et al. | Nov 1999 | A |
6056567 | Schell | May 2000 | A |
6067225 | Reznikov et al. | May 2000 | A |
6193339 | Behl et al. | Feb 2001 | B1 |
6252514 | Nolan et al. | Jun 2001 | B1 |
6288902 | Kim et al. | Sep 2001 | B1 |
6315586 | Joyce et al. | Nov 2001 | B1 |
6371433 | Anderson et al. | Apr 2002 | B2 |
6373713 | Jensen et al. | Apr 2002 | B1 |
6378965 | Reznikov et al. | Apr 2002 | B1 |
6392892 | Sobolewski | May 2002 | B1 |
6413122 | Fujioka | Jul 2002 | B2 |
6433825 | Cama et al. | Aug 2002 | B1 |
6618264 | Megason et al. | Sep 2003 | B2 |
6762934 | Kitchen et al. | Jul 2004 | B2 |
6795307 | Arbogast et al. | Sep 2004 | B2 |
6798650 | Reznikov et al. | Sep 2004 | B2 |
6802117 | Dalisay | Oct 2004 | B2 |
7018227 | Takahashi | Mar 2006 | B2 |