In public facilities or large private facilities, there are several different types of metering faucets in use today. Many are manually activated to turn on the water by pressing the faucet head and are hydraulically timed so that the water remains on for a set period of time after depression of the head. Some of these faucets have separate head allowing separate control over the hot and cold water. Other metering faucets mix the incoming hot and cold water streams and, when actuated, deliver a tempered output stream.
Also known is a manually activated metering faucet whose on-time is controlled electronically. Still other known faucets are activated electronically when the user positions a hand under the faucet. Automatic water dispensing systems have provided numerous advantages including improved sanitation, water conservation, and reduced maintenance cost. Since numerous infectious diseases are transmitted by contact, public-health authorities have encouraged the public and mandated to food workers the exercise of proper hygiene including washing hands effectively. Effective hand washing has been made easier by automatic faucets. Automatic faucets typically include an object sensor that detects presence of an object, and an automatic valve that turns water on and off based on a signal from the sensor. If the water temperature in an automatic faucet is not in an optimal range, individuals tend to shorten their hand washing time. To obtain an optimal water temperature, a proper mixing ratio of hot and cold water and proper water actuation has to be achieved. Automatic faucets usually use a preset valve that controls water flow after mixing.
The hydraulically timed faucets are disadvantaged in that it is difficult to accurately control the on-time of the faucet over the long term because of mains pressure changes and foreign matter build up in the faucet which can adversely affect the hydraulic controls within the faucet. On the other hand, the known electronic faucets can not always discriminate between a user's hand and other substances and objects which may be brought into proximity to the faucet, e.g. a reflective object disposed opposite the faucet's infrared transceiver, soap build up on the faucet's proximity sensor, etc. Resultantly, those prior faucets may be turned on inadvertently and/or remain on for too long a time resulting in wastage of water.
The present invention generally relates to automatic sensor based faucets and methods of operating such faucets.
According to another aspect, the present invention is a sensor-based flow-control system, such as a sensor-based faucet. The sensor-based flow-control system includes a valve interposed in a conduit and controlled by an electromechanical actuator, and a sensor for generating sensor output signals to an electronic control circuit constructed and arranged to provide the control signals to the electromechanical actuator for opening and closing the valve.
Specifically, the present invention is a sensor-based faucet having a hot and cold water inlet and an outlet. A sensor generates sensor output signals provided to an electronic control circuit constructed and arranged to provide control signals to an electromechanical actuator.
Preferred embodiments of this aspect include one or more of the following features:
The electromechanical actuator may be coupled to only one valve interposed in one conduit delivering premixed hot and cold water. The electromechanical actuator may coupled to another type of a valve for controlling flow of hot and cold water in two separate conduits, as described in PCT application PCT/US01/43277. Alternatively, the control signals may be delivered to two electromechanical actuators constructed and arranged to control separately two valves and thereby control separately water flow in two separate conduits with hot and cold water delivered to a faucet.
According to another aspect of the present invention, a faucet is activated by touch and/or proximity to the faucet and thereafter provides a consistent water delivery period over the life of the faucet.
The described electronic metering faucets have numerous advantages. The electronic faucets provide long-term reliable operation. The faucets are activated using an object sensor or a touch sensor (capacitive or other touch or proximity)
The faucet is electronically timed and maintains its timing accuracy over the life of the faucet.
The described faucets are self-contained battery operated, electronic metering faucets which can operate for over two, three or more years between battery replacements. The faucet which has a minimum number of moving parts, and the individual parts may be accessed quite easily for maintenance purposes. The faucets can be manufactured and maintained at relatively low cost.
According to another aspect, the present invention is a novel interface for calibrating or programming a sensor-based faucet. The interface interacts with a user via an object sensor couple to a microprocessor for controlling the water flow in the faucet. The sensor-based faucet includes a valve interposed in a conduit and controlled by an electromechanical actuator, and a sensor for generating sensor output signals to an electronic control circuit constructed and arranged to provide the control signals for opening and closing the valve. The control circuit may direct the valve to provide a predetermined number of water bursts at different steps of various algorithms to communicate with a user. The control circuit may control the valve to provide pulsating water delivery when sensing different problems such as a battery low state, an electrical problem or a mechanical problem in one of the faucet's elements.
According to another aspect, the present invention is a sensor-based faucet that is constructed using materials that prevent or significantly reduce bacterial or other biological growth in water regulated by the faucet. Furthermore, sensor-based faucet that is constructed to execute automatically a flushing algorithm in order to flush water contained in the faucet for a predetermined period of time and thus flush bacterial contamination that may have grown inside the faucet. The control circuit may provide also signals to an optical, acoustic or other indicator when such flushing algorithm is executed.
According to another aspect, the present invention is a sensor-based faucet having a hot and cold-water inlet and an outlet. A sensor generates sensor output signals provided to an electronic control circuit constructed and arranged to provide control signals to an electromechanical actuator. The control circuit provides also signal to an optical, acoustic or other indicator starts signaling when the actuator first opens the valve. The control circuit provides signals to the indicator that continues signaling for a predetermined duration to indicate to a user that a time interval prescribed as necessary for effective hand washing has not yet expired. When the interval does expire, the user is thereby assured that he has complied with the relevant duration regulation.
According to another aspect, the present invention is a novel valve device and the corresponding method for controlling flow-rate of fluid between the input and output ports of the valve device. A novel valve device includes a fluid input port and a fluid output port, a valve body, and a fram assembly. The valve body defines a valve cavity and includes a valve closure surface. The fram assembly provides two pressure zones and is movable within the valve cavity with respect a guiding member. The fram assembly is constructed to move to an open position enabling fluid flow from the fluid input port to the fluid output port upon reduction of pressure in a first of the two pressure zones and is constructed to move to a closed position, upon increase of pressure in the first pressure zone, creating a seal at the valve closure surface.
According to preferred embodiments, the two pressure zones are formed by two chambers separated by the fram assembly, wherein the first pressure zone includes a pilot chamber. The guiding member may be a pin or internal walls of the valve body.
The fram member (assembly) may include a pliable member and a stiff member, wherein the pliable member is constructed to come in contact with a valve closure surface to form seal (e.g., at a sealing lip located at the valve closure surface) in the closed position. The valve device may include a bias member. The bias member is constructed and arranged to assist movement of the fram member from the open position to the closed position. The bias member may be a spring.
The valve is controlled, for example, by an electromechanical operator constructed and arranged to release pressure in the pilot chamber and thereby initiate movement of the fram assembly from the closed position to the open position. The operator may include a latching actuator (as described in U.S. Pat. No. 6,293,516, which is incorporated by reference), a non-latching actuator (as described in U.S. Pat. No. 6,305,662, which is incorporated by reference), or an isolated operator (as described in PCT Application PCT/US01/51098, which is incorporated by reference). The valve may also be controlled may also including a manual operator constructed and arranged to release pressure in the pilot chamber and thereby initiate movement of the fram member from the closed position to the open position.
The novel valve device including the fram assembly may be used to regulate water flow in an automatic or manual faucet.
According to yet another aspect, the present invention is a novel electromagnetic actuator and a method of operating or controlling such actuator. The electromagnetic actuator includes a solenoid wound around an armature housing constructed and arranged to receive an armature including a plunger partially enclosed by a membrane. The armature provides a fluid passage for displacement of armature fluid between a distal part and a proximal part of the armature thereby enabling energetically efficient movement of the armature between open and closed positions. The membrane is secured with respect to the armature housing and is arranged to seal armature fluid within an armature pocket having a fixed volume, wherein the displacement of the plunger (i.e., distal part or the armature) displaces the membrane with respect to a valve passage thereby opening or closing the passage. This enables low energy battery operation for a long time.
Preferred embodiments of this aspect include one or more of the following features: The actuator may be a latching actuator (including a permanent magnet for holding the armature) of a non-latching actuator. The distal part of the armature is cooperatively arranged with different types of diaphragm membranes designed to act against a valve seat when the armature is disposed in its extended armature position. The electromagnetic actuator is connected to a control circuit constructed to apply said coil drive to said coil in response to an output from an optional armature sensor.
The armature sensor can sense the armature reaching an end position (open or closed position). The control circuit can direct application of a coil drive signal to the coil in a first drive direction, and in responsive to an output from the sensor meeting a predetermined first current-termination criterion to start or stop applying coil drive to the coil in the first drive direction. The control circuit can direct or stop application of a coil drive signal to the coil responsive to an output from the sensor meeting a predetermined criterion.
According to yet another aspect, the present invention is a novel assembly of an electromagnetic actuator and a piloting button. The piloting button has an important novel function for achieving consistent long-term piloting of a main valve. The present invention is also a novel method for assembling a pilot-valve-operated automatic flow controller that achieves a consistent long-term performance.
Method of assembling a pilot-valve-operated automatic flow controller includes providing a main valve assembly and a pilot-valve assembly including a stationary actuator and a pilot body member that includes a pilot-valve inlet, a pilot-valve seat, and a pilot-valve outlet. The method includes securing the pilot-valve assembly to the main valve assembly in a way that fluid flowing from a pressure-relief outlet of the main valve must flow through the pilot-valve inlet, past the pilot-valve seat, and through the pilot-valve outlet, whereby the pilot-valve assembly is positioned to control relief of the pressure in the pressure chamber (i.e., pilot chamber) of the main valve assembly. The main valve assembly includes a main valve body with a main-valve inlet, a main-valve seat, a main-valve outlet, a pressure chamber (i.e., a pilot chamber), and a pressure-relief outlet through which the pressure in the pressure chamber (pilot chamber) can be relieved. A main valve member (e.g., a diaphragm, a piston, or a fram member) is movable between a closed position, in which it seals against the main-valve seat thereby preventing flow from the main inlet to the main outlet, and an open position, in which it permits such flow. During the operation, the main valve member is exposed to the pressure in the pressure chamber (i.e., the pilot chamber) so that the pressurized pilot chamber urges the main valve member to its closed position, and the unpressurized pilot chamber (when the pressure is relieved using the pilot valve assembly) permits the main valve member to assume its open position.
Briefly, one type of the metering faucet is a touch activated, electronically timed faucet that can deliver water at a selected temperature for a preset water delivery period which, unless reset, remains substantially constant, i.e. within 2%, over the faucet's life span. The faucet includes a simple non-water-contacting housing or encasement, which is adapted to be secured to a sink or countertop. Supported in the housing is a single cartridge containing most of the hydraulic components of the faucet including a solenoid-actuated valve which controls the delivery of water from hot and cold water lines to a single outlet at the end of a faucet spout formed by the housing. The housing or encasement also supports a stationary faucet head which contains all of the electrical components necessary to actuate the valve for a selected period of time after a user's hand touches or is moved into close proximity to a selected target area on the head.
As we shall see, the faucet includes provisions for preventing inadvertent faucet activation by non-environmental factors such as soap build up, contact by paper towels, etc., as well as accidental human contact. This is accomplished by dynamically adjusting in real time the faucet's activation sensitivity depending upon the prevailing conditions. Once activated, the faucet will deliver a stream of water at a set temperature for a predetermined time period. At the end of that period, the faucet's internal controls will issue a shut-off command, which positively shuts off the faucet's solenoid valve.
Further as we will come apparent, the faucet is designed so that its components can readily be made and assembled and is accessed quiet easily by maintenance personnel for repair purposes. Still, the faucet can be made in quantity at a relatively low cost.
Referring to
As shown in
Faucet 10 also has a stationary head 38 mounted to the top of housing 14. Head 38 incorporates a touch sensor shown generally at 42 which, when touched, activates faucet 10 so that a stream of tempered water issues from an outlet 44 centered in an opening 46 provided in the cover plate 36 near the end of spout 34.
As best seen in
An opening 58 is provided in the side wall 52a of cartridge 48 and an exterior collar 62 surrounds that opening into which is press fit one end of a conduit 64 which extends within the upper spout portion 32b. The other end of that conduit constitutes the faucet outlet 44. Preferably, there is sufficient clearance between the outlet 44 and the edge of opening 46 in the cover plate 36 to permit a conventional aerator (not shown) to be installed at outlet 44.
Referring to
The lower end segment of the cartridge conduit 72a forms a female connector 84 which is arranged to receive a corresponding male connector 86 provided at the upper end of the water line 24a. The illustrated connector 86 is a conventional quick release connector which is held in place by a C-clip 88 whose arms extend through slots 92 in the opposite sides of connector 84 and engage in a groove 86a in male connector 86.
The cold water line 24b is connected in a similar fashion to conduit 72b of cartridge 48. It is thus apparent from
The cartridge 48 contains an electromechanical valve assembly shown generally at 96 which controls the flow of hot and cold water from lines 24a and 24b to the faucet outlet 44. As shown in
The interior of housing 98 is configured so that hot and cold water entering the housing is conducted to the periphery of the filter element 112 whereupon the water flows into the interior of the filter element and out of the filter element through the large opening 118 and neck 122. The flow rates of the hot and cold water into the housing are controlled by the relative sizes of the metering holes 110 and the metering plate 108. The hot and cold water are mixed within housing 98 so that the water leaving the housing through the neck 122 has a selected temperature. That temperature may be changed by substituting different metering plates 108 in the valve assembly. Alternatively, a rotatably adjustable metering plate with holes co-operatively arranged with metering holes 110 is used to adjust the mixing ratio of hot and cold water.
Shown in
Still referring to
Housing 102 is arranged to contain a cylinder solenoid 142 having an externally threaded neck 142a which is threaded into a collar 113 which extends up from the housing bottom wall 102b. Solenoid 142 has an armature plunger 40 which extends down through the housing bottom wall 102b and is connected to diaphragm member 126 which is part of a more or less conventional pilot valve assembly, e.g. of the type described in U.S. Pat. No. 5,125,621, the contents of which is hereby incorporated herein by reference. When solenoid 142 is energized, its armature 140 is retracted thereby opening a vent passage 136b. Vent passage 136b then is in communication with a pilot chamber 132 via a vent passage 136a. Releasing pressure in pilot chamber 132 moves diaphragm valve member 126 away from valve seat 124 allowing water to flow from the filter housing 98 past the valve seat to the opening 58 (
On the other hand, when solenoid plunger 140 seals passage 136b, pressure in pilot chamber 132 increases by water flowing through a V-shaped or U-shaped groove in the pin and opening 146. When the pressure is equalized, diaphragm member 126 is seated against valve seat 124, and no water flows from the faucet.
As shown in
Referring now to
Referring to
As noted above, the faucet head 38 contains the electrical components necessary to operate the faucet's valve assembly 96. More particularly, as shown in
As best seen in
The operation of the fram member is controlled by an actuator that may include an electromagnetic solenoid. Valve 10 may also include a manual actuator constructed to control the operation of the fram member independently of the electromagnetic solenoid. The manual actuator may be connected to a separate manual port or to the same port as the solenoid. For example, the manual actuator may be used to control the operation of the fram member when loss of electrical power or other failure disables the automatic actuator.
Valve device 500 includes a valve body 513 providing a cavity for a valve assembly 514, an input port 518, and an output port 520. Valve assembly 514 includes a proximal body 522, a distal body 524, and a fram member 526 (
Proximal body 522 includes threaded surface 522A cooperatively sized with threaded surface 524A of distal body 524. Fram member 526 (and thus pliable member 528 and a plunger-like member 532) include an opening 527 constructed and arranged to accommodate guiding pin 536. Fram member 526 defines a pilot chamber 542 arranged in fluid communication with actuator cavity 550 via control passages 544A and 544B. Actuator cavity 550 is in fluid communication with output port 520 via a control passage 546. Guide pin 536 includes a V-shaped or U-shaped groove 538 shaped and arranged together with fram opening 527 (
Referring still to
The present invention envisions valve device 10 having various sizes. For example, the “full” size embodiment, shown in
The “half size” embodiment (of the valve shown in
Referring to
When the plunger of actuator 142 or 143 seals control passages 544A and 544B, pressure builds up in pilot chamber 542 due to the fluid flow from input port 518 through groove 538. The increased pressure in pilot chamber 542 together with the force of spring 540 displace linearly, in a sliding motion over guide pin 536, fram member 526 toward sealing lip 529. When there is sufficient pressure in pilot chamber 542, diaphragm-like pliable member 528 seals input port chamber 519 at lip seal 525. Preferably, soft member 528 is designed to clean groove 538 of guide pin 536 during the sliding motion.
The embodiment of
Referring to
Fram member 626 defines a pilot chamber 642 arranged in fluid communication with actuator cavity 650 via control passages 644A and 644B. Actuator cavity 650 is in fluid communication with output chamber 621 via a control passage 646. Groove 638 (or grooves 638 and 638A) provides a communication passage between input chamber 619 and pilot chamber 642. Distal body 604 includes an annular lip seal 625 co-operatively arranged with pliable member 628 to provide a seal between input port chamber 619 and output port chamber 621. Distal body 624 also includes a flow channel 617 providing communication (in the open state) between input chamber 619 and output chamber 621 for a large amount of fluid flow. Pliable member 628 also includes sealing members 629A and 629B (or one sided sealing member depending on the pressure conditions) arranged to provide a sliding seal with respect to valve body 622, between pilot chamber 642 and input chamber 619. (Of course, groove 638 enables a controlled flow of fluid from input chamber 619 to pilot chamber 642, as described above.)
The entire operation of valve device 600 is controlled by a single actuator 142 or 143, which may include a solenoid, such as the bistable solenoid model no. AXB724 available from Arichell Technologies Inc., West Newton, Mass. Alternatively, actuator 142 may include a latching actuator (as described in U.S. Pat. No. 6,293,516, which is incorporated by reference), a non-latching actuator (as described in U.S. Pat. No. 6,305,662, which is incorporated by reference), or an isolated operator 143 (as described in PCT Application PCT/US01/51098, which is incorporated by reference). In general, a number of solenoid valves may be used such as described in U.S. Pat. No. 4,225,111. An alternative bistable solenoid is described in U.S. Pat. No. 5,883,557 or U.S. Pat. No. 5,599,003.
Advantageously, valves 500 and 600 provide much higher flow rates than flow rates of prior art diaphragm valves. Furthermore, valves 500 and 600 have a more predictable operation than standard piston valves. Curve 160 depicts a flow-rate (in gallons per minute) for a prior art diaphragm valve for water pressures from about 6 psi to about 92 psi. Curve 162 depicts the flow-rate (in gallons per minute) through the “half size” valve of
Automatic valve device 501 receives water input from a mixing valve 25 and provides controlled water output to the faucet outlet 44. Automatic valve device 501 includes, valve body 502 coupled to an input connector 504, and an output connector 512. Valve body 502 includes a valve 500 (described in connection with
Referring still to
Due to its softer body, automatic valve device 501, includes input and output couplers having a unique design that prevents tightening the water line connection to any of the two valve couplers unless attaching the wrench on the surface of couplers 504 and 512. (That is, a plumber cannot tighten the waterlines by gripping on the valve body 502.) Specifically, coupler 504 is rotatably attached to the valve input port 506 using a sealing O-ring 507 and a C-clamp 505 that fits into a groove 505a. Similarly, output coupler 512 is rotatably connected to output port 508 of valve 502. This rotatable coupling is again achieved by using an O-ring 509 and a C-clamp 510 that slides into a slot 510a. Therefore, due to the rotational movement, it is not possible to tighten the input and output water lines by gripping onto plastic body 502. This, in turn, protects the relatively soft plastic from being destroyed during installation.
Referring to
As described above, service rod 568 is designed to pull the entire valve assembly out of body 502, after removing of plug 503. The removal of the entire valve assembly also removes the attached actuator 143 and piloting button 705. To enable easy installation and servicing, there are rotational electrical contacts located on a PCB at the distal end. Specifically, actuator 143 includes, on its distal end, two annular contact regions that provide a contact surface for the corresponding pins, all of which can be gold plated for achieving high quality contacts. Alternatively, a stationary PCB can include the two annular contact regions and the actuator may be connected to movable contact pins. Such distal, actuator contact assembly achieves easy rotational contacts by just sliding actuator 143 inside valve body 502.
Electronic faucets shown in
Isolated actuator body 701 also includes a solenoid windings 728 wound about solenoid bobbin 714 and magnet 723 located in a magnet recess 720. Isolated actuator body 701 also includes a resiliently deformable O-ring 712 that forms a seal between solenoid bobbin 714 and actuator base 716, and includes a resiliently deformable O-ring 730 that forms a seal between solenoid bobbin 714 and pole piece 725, all of which are held together by a solenoid housing 718. Solenoid housing 718 (i.e., can 718) is crimped at actuator base 16 to hold magnet 723 and pole piece 725 against bobbin 714 and thereby secure windings 728 and actuator base 716 together.
Isolated actuator 143 also includes a resilient membrane 744 that may have various embodiments shown and described in connection with
Referring to still to
Isolated actuator 143 may be constructed either as a latching actuator (shown in
In the non-latching embodiment, there is no permanent magnet (i.e., no magnet 732). Thus, to keep armature 740 in the open state, a drive current must continue to flow in windings 728 to provide the necessary magnetic field. Armature 740 moves to the closed state under the force of spring 48 if there is no drive current. On the other hand, in the latching embodiment, a drive current is applied to windings 728 in opposite directions to move armature 730 between the open and closed states, but no drive current is necessary to maintain either state.
Referring still to
For example, the armature liquid may be water mixed with a corrosion inhibitor, e.g., a 20% mixture of polypropylene glycol and potassium phosphate. Alternatively, the armature fluid may include silicon-based fluid, polypropylene polyethylene glycol or another fluid having a large molecule. The armature liquid may in general be any substantially non-compressible liquid having low viscosity and preferably non-corrosive properties with respect to the armature. Alternatively, the armature liquid may be Fomblin or other liquid having low vapor pressure (but preferably high molecular size to prevent diffusion).
If there is anticorrosive protection, the armature material can be a low-carbon steel, iron or any soft magnetic material; corrosion resistance is not as big a factor as it would otherwise be. Other embodiments may employ armature materials such as the 420 or 430 series stainless steels. It is only necessary that the armature consist essentially of a ferromagnetic material, i.e., a material that the solenoid and magnet can attract. Even so, it may include parts, such as, say, a flexible or other tip, that is not ferromagnetic.
Resilient membrane 764 encloses armature fluid located a fluid-tight armature chamber in communication with an armature port 752 or 790 formed by the armature body. Furthermore, resilient membrane 764 is exposed to the pressure of regulated fluid in main valve and may therefore be subject to considerable external force. However, armature 740 and spring 750 do not have to overcome this force, because the conduit's pressure is transmitted through membrane 764 to the incompressible armature fluid within the armature chamber. The force that results from the pressure within the chamber therefore approximately balances the force that the conduit pressure exerts.
Referring still to
In the latching embodiment shown in
To return the armature to the illustrated, retracted position and thereby permit fluid flow, current is driven through the solenoid in the direction that causes the resultant magnetic field to reinforce that of the magnet. As was explained above, the force that the magnet 723 exerts on the armature in the retracted position is great enough to keep it there against the spring force. However, in the non-latching embodiment that doesn't include magnet 723, armature 740 remain in the retracted position only so long as the solenoid conducts enough current for the resultant magnetic force to exceed the spring force of spring 748.
Advantageously, diaphragm membrane 764 protects armature 740 and creates a cavity that is filled with a sufficiently non-corrosive liquid, which in turn enables actuator designers to make more favorable choices between materials with high corrosion resistance and high magnetic permeability. Furthermore, membrane 764 provides a barrier to metal ions and other debris that would tend to migrate into the cavity.
Diaphragm membrane 764 includes a sealing surface 766, which is related to the seat opening area, both of which can be increased or decreased. The sealing surface 766 and the seat surface of piloting button 705 can be optimized for a pressure range at which the valve actuator is designed to operate. Reducing the sealing surface 766 (and the corresponding tip of armature 740) reduces the plunger area involved in squeezing the membrane, and this in turn reduces the spring force required for a given upstream fluid-conduit pressure. On the other hand, making the plunger tip area too small tends to damage diaphragm membrane 764 during valve dosing over time. Preferable range of tip-contact area to seat-opening area is between 1.4 and 12.3. The present actuator is suitable for variety of pressures of the controlled fluid, including pressures about 150 psi. Without any substantial modification, the valve actuator may be used in the range of about 30 psi to 80 psi, or even water pressures of about 125 psi.
Referring still to
The assembly of operator 701 and piloting button 705 is usually put together in a factory and is permanently connected thereby holding diaphragm membrane 764 and the pressure loaded armature fluid (at pressures comparable to the pressure of the controlled fluid). Piloting button 705 is coupled to the narrow end of actuator base 716 using complementary threads or a sliding mechanism, both of which assure reproducible fixed distance between distal end 766 of diaphragm 764 and the sealing surface of piloting button 705. The coupling of operator 701 and piloting button 705 can be made permanent (or rigid) using glue, a set screw or pin. Alternatively, one member may include an extending region that is used to crimp the two members together after screwing or sliding on piloting button 705.
It is possible to install solenoid actuator 142 or 143 without piloting button 705, but this process is somewhat more cumbersome. Without piloting button 705, the installation process requires first positioning the pilot-valve body (102d in
Referring to
As described above, the main valve assembly includes a main valve body with a main-valve inlet, a main-valve seat, a main-valve outlet, a pressure chamber (i.e., a pilot chamber), and a pressure-relief outlet through which the pressure in the pressure chamber (pilot chamber) can be relieved, wherein the main valve member can be diaphragm 126 (
Referring to
Preferably, diaphragm member 764 has high elasticity and low compression (which is relatively difficult to achieve). Diaphragm member 764 may have some parts made of a low durometer material (i.e., parts 767 and 768) and other parts of high durometer material (front surface 766). The low compression of diaphragm member 764 is important to minimize changes in the armature stroke over a long period of operation. Thus, contact part 766 is made of high durometer material. The high elasticity is needed for easy flexing diaphragm member 764 in regions 768. Furthermore, diaphragm part 768 is relatively thin so that the diaphragm can deflect, and the plunger can move with very little force. This is important for long-term battery operation.
Referring to
Diaphragm member 764 can be made by a two stage molding process where by the outer portion is molded of a softer material and the inner portion that is in contact with the pilot seat is molded of a harder elastomer or thermo-plastic material using an over molding process. The forward facing insert 774 can be made of a hard injection molded plastic, such as acceptable co-polymer or a formed metal disc of a non-corrosive non-magnetic material such as 300 series stainless steel. In this arrangement, pilot seat 709 is further modified such that it contains geometry to retain pilot seat geometry made of a relatively high durometer elastomer such as EPDM 0 durometer. By employing this design that transfers the sealing surface compliant member onto the valve seat of piloting button 705 (rather than diaphragm member 764), several key benefits are derived. Specifically, diaphragm member 764 a very compliant material. There are substantial improvements in the process related concerns of maintaining proper pilot seat geometry having no flow marks (that is a common phenomena requiring careful process controls and continual quality control vigilance). This design enables the use of an elastomeric member with a hardness that is optimized for the application.
According to another embodiment, the electronically controlled faucet is constructed and arranged to prevent bacterial or other contamination, especially bacterial growth in water remaining inside the faucet. The “antibacterial” faucet is mainly suitable for medical facilities such as operating rooms or emergency rooms. The “anti-bacterial” faucet includes mainly non-metallic conduits and valve elements in contact with water to substantially reduce or eliminate bacterial growth on their surfaces, and even act as inhibitors of bacterial growth. The “anti-bacterial” faucet also executes periodically a novel flushing algorithms.
Specifically, in the “antibacterial” faucet, metal conduits are made to have smooth bores (i.e., without surface crevices), or are replaced by plastic conduits. Suitable conduits and faucet elements are made of acetal co-polymers that are known to be bacterial growth inhibitors (and some of them currently used in human implant applications). The above-described valve elements are made of similar materials including elastomeric members made of EPDM that has proven as an inhospitable media for micro organism growth. In addition to bio-compatible materials, the material surfaces may be coated or imbedded with suitable chemical agents for preventing or inhibiting bacterial or other growth.
In addition to bio-compatible materials, the “anti-bacterial” faucet executes various novel flushing algorithms that remove stagnate water residing inside the faucet. The flushing algorithms are designed to flush any potential bacterial growth, depending on the water temperature. The “anti-bacterial” faucet may include a temperature sensor providing temperature data to control circuitry, and thus correlating potential bacterial growth with the measured water temperature. Furthermore, the use of isolated actuator 143 reduces the amount of stagnate water located inside the control valves. Specifically, diaphragm membrane 764 prevents delivery of armature fluid from armature cavity to the faucet output port, while the piloting chamber (including region 708) is periodically flushed.
At predetermined flushing intervals, the control circuitry executes a flushing algorithm removing water from inside of the faucet including control valves.
The purging algorithm automatically turns on the water for a few seconds when a user is not present to remove standing water which resides in the faucet including the faucet's inlet and outlet conduit that is also exposed to air born pathogens. The periodicity of the purge cycle can be matched to the average growth of bacteria in tempered water with further the ability to alter the periodicity if the water temperature is higher (which increases growth rate). The periodicity control is achieved by means of user settable timings and/or the use of a temperature measurement element that is integrated into the control circuitry and in turn is used to determine automatically the needed purge rate.
Referring to
The circuit diagram also includes a D-type flip-flop 342 whose D input receives pulses from microcontroller 332 by way of a resistor 344. That D input of the flip-flop is also connected via a capacitor 346 to the metal pad 218 comprising touch sensor 42. The Q output of a D-type flip-flop is the value that it's D input had at the time of the last leading edge of a pulse train applied to the flip-flops' CLOCK (CLK) input terminal.
Normally, when a user has placed his hand or finger in the vicinity of the touch sensor 42, the Q output of flip-flop 342 remains asserted continuously. The microcontroller 332 produces a rectangular-wave clock signal which is applied via resistor 344 to the D input terminal of flip-flop 342. That same signal is applied to a resistor 348 and an inverter 352 to the CLK input terminal of flip-flop 342. However there is a delay in the transmission of that pulse from microcontroller 332 to the CLK input terminal of flip-flop 342 because of the presence of a plurality of capacitors 354a to 354e which capacitively load the input circuit of converter 352 as will be described in more detail below. The value at the D input port of flip-flop 342 therefore stabilizes at the higher level before the rising leading edge of the clock pulses from inverter 352 reach the flip-flop's CLK input terminal. Therefore, the Q output of the flip-flop is high. However this situation changes when a user's hand is very close to the touch sensor 42 or actually touches it. This hand contact or proximity has the effect of capacitively loading the D input terminal of flip-flop 342; it may typically result in a capacitance on the order of 300 pF between sensor 42 and ground.
The inverter input is also connected via a diode 356 and a resistor 358 to the D input terminal of flip-flop 342. This imposes a delay at the D input 342 of flip flop affecting the pulse level to the extent that the edge of the clock signal applied to the clock input of the flip-flop now occurs before the D input has reached the high level. Therefore, the flip-flip's Q output remains low. The microcontroller receives the compliment of that Q output at its input 362 and thereby infers that a user has touched the sensor 42.
However, various environmental factors can also load the touch sensor 42. Therefore, in a preferred embodiment of the invention, the microcontroller 332 so adjusts the circuit's sensitivity as to minimize the likelihood of erroneous human-contact indications. As does this by employing lines 364a to 364d to ground selected one of the capacitors 354a to 354d, while allowing the others to float. By selectively grounding these capacitors, the microcontroller can choose among 16 different sensitivity levels. This sensitivity adjustment is done dynamically to account for changing environmental conditions or a user's nervousness or hesitancy for being considered as multiple inputs to the faucet's touch sensing circuitry. The microcontroller 332 monitors the output of flip-flop 342 and changes the sensitivity level of the sensing circuit according to an adapting or dynamic sensing algorithm to be discussed in connection with
The microcontroller 332 operates, as many battery-operated do, in a sleep/wake sequence. Most of the time, the controller is “asleep”: it receives only enough power to maintain the state of certain volatile registers, but it is not being clocked or executing instructions. This sleep state is interrupted periodically, say, every 120 ms, with a “wake” state, in which it executes various subroutines before returning to its sleep state. The duration of the wake state is typically a very small fraction of the controller's sleep state duration.
One of the routines performed by microcontroller 332 when it awakens is the sensitivity adjustment routine depicted in the
Although a touch detection is usually the basis for causing the faucet valve to open, the system is sometimes in a mode in which it is used instead to determine when to adjust sensitivity. Block 408 represents reading a flag to determine whether a sensitivity adjustment or a touch cycle is currently in progress. If it is not, the routine proceeds to increment a touch timer if that timer has not already reached a maximum value. Blocks 410 and 412 represent that incrementing operation.
The touch timer indicates how long a touch detection has been reported more or less continuously. An excessive touch duration will cause the system to infer that the touch detection resulted from something other than a human user and that the system's sensitivity should therefore be reduced to avoid such erroneous detections. Before the system test that duration for that purpose, however, it first performs a de-bounce operation, represented by blocks 414 and 416, in which it determines whether the number of successive touch detections exceeds three. If it has, then at block 418, the system resets the touch count to zero and sets a flag that will tell other routines, not discussed here, to open the valve. If these three detections have not occurred in a row, on the other hand, the system does not yet consider the touch valid and that flag is not set.
The system then performs a test, represented by block 420 to determine whether it should reduce the system's sensitivity. If the touch timer represents a duration less than 15 seconds, the routine simply ends at block 421. Otherwise, it resets the flag that would otherwise cause other routines to open the valve. It also sets a flag to indicate that the system is in its sensitivity or adjustment mode and causes a decrease in sensitivity by one step. That is, it so changes the combination of capacitors 354a to 354e in the circuit of
It may occur in some situations that the sensitivity was already as low as it could go. If that happens, the system is in an error condition, and subsequent circuitry should take appropriate action. This is determined at block 424. If it has, then the routine sets an error flag as indicated at block 426 and the routine ends at block 421. If the system is not in that error condition, the routine performs the steps at blocks 406 and 408 as before. This time, however, the sensitivity-adjustment flag is set so that the test at block 408 results in the routines jumping to the step at block 422 to repeat the sensitivity-reduction sequence just described.
Referring to the right hand side of
As was described previously, an extended period of touch detection will cause the system to reduce its sensitivity, on the theory that detection for so long a period could not have been the result of a legitimate human contact. If contact absence has been indicated for an extended period, on the other hand, it is logical to conclude that the current capacitive loading provided by capacitors 354a to 354e (
To this end, the routine in
Now if such touch-timer decrementing has occurred enough times for that timer's value to have been reduced by a selected value, say, two seconds, the system can rule out the possibility that the lack of touch detection was simply caused by noise. Therefore, since the system has assumed the sensitivity-adjustment mode as a result of that timer having reached 15 seconds, its count having been decremented to 13 seconds, can be considered as an indication that contact with the touch sensor 42 has actually ended. The touch timer is therefore set to zero and the system leaves the sensitivity-adjustment mode as indicated by blocks 442, 444 and 446.
At block 448, the routine then tests the non-touch timer to determine whether the absence of touch detection has lasted long enough to justify trying a sensitivity increase. If not, the routine ends at block 421. Otherwise, the routine makes a back-up-copy of the current sensitivity at block 450 and then proceeds to determine whether an increase in sensitivity will cause a touch detection. Of course, the sensitivity cannot be increased if it is already at its maximum value so at block 452, the routine goes to END block 421. However if the sensitivity is not yet at its maximum value, it is increased by one step as indicated at block 458. This is part of the sensitivity-adjustment so that that step includes setting the sensitivity-adjustment mode flag. The microcontroller 332 (
This continues until an apparent touch is detected. Since the sensitivity adjustment scheme is based on the assumption that there really is no valid contact at touch sensor 42, the sensitivity is thus reduced back by one step so that it is at the highest level that yields no touch indication. Block 458 represents this operation.
Now that a sensitivity-adjustment has been made, the non-touch timer is reset to zero as indicate at block 460 so that the sensitivity will not be reset again on the next controller wake cycle. The routine then ends at block 421.
Microcontroller 802 is programmed to operate the entire circuit 800 while conserving battery power using a sleep mode. Microcontroller 802 receives a reset signal from a timer 808 every, for example, 250 msec, and then wakes up and performs a detection cycle. Timer 808 may be RC circuit based or crystal oscillator based, which may be internal to the microcontroller Microcontroller 802 provides current to IR emitter 804 that emits an IR beam and receives signal from IR detector 806, as known in the art. The operation of the optical transceiver 338 is described in U.S. Pat. No. 5,979,500 or U.S. Pat. No. 5,984,262, and is also described in co-pending U.S. application Ser. Nos. 10/012,252 and 10/012,226, all of which are incorporated by reference. Microcontroller 802 may be microcontroller COP8SAB and COP8SAC made by National Semiconductor, or microcontroller TMP86c807M made by Toshiba. To save power and significantly extend battery operation, the wake-up period is much shorted than the sleep period. Depending on the controllers mode, the sleep time may be 100 msec, 300 msec, or 1 sec.
Microcontroller 802 provides current to IR emitter 804 that emits an IR beam and receives signal from IR detector 806, both of which are set initially the detection distance of 7.5 inches. That is, initially the sensitivity of object detection (e.g., user's hands) is set for 7.5 inches, but this can be altered in an autocalibration cycle automatically performed by microcontroller 802.
The electronic faucet can communicate with a user by a novel “burst interface” that provides signals to a user in form of water bursts emitted from the faucet. Alternatively, the electronic faucet may include novel an optical or acoustic interface. The electronic faucet is designed to prevent wasting of water when for example an object permanently located in a sink.
Microcontroller 802 is programmed to automatically go to various modes depending on the state of optical transceiver 338, battery detector 814, or any other element. For example, microcontroller 802 is designed to go automatically into a self-calibration mode after detecting an object for a preset duration (for example, 15 or 20 seconds). If transceiver 338 senses an object located in a sink at a distance of 7.5 inches for 15 seconds, microcontroller 802 directs emission of two water pulses (to signal to a user) and starts a self calibration routine that determines a new detection distance. In this routine, transceiver 338 detects the distance to the “permanently” located object and set up a new background values for IR emitter or IR detector. Then, microcontroller 802 directs driver 810 to emit three short bursts of water to signal the end of the self calibration mode. After executing the self calibration, the “permanently” located object is “seen” as background and thus doesn't trigger valve opening.
A user can initiate the self calibration mode by placing an object in front of, transceiver 338, and then after two bursts at a selected distance that the system will determine as a new background distance. A user can initiate also other modes, by for example covering optical transceiver 338.
This application is a continuation of U.S. application Ser. No. 10/860,938, filed on Jun. 3, 2004, now U.S. Pat. No. 7,069,941, which is a continuation of PCT Application PCT/US02/38757, filed on Dec. 4, 2002, entitled “Electronic Faucets for Long-Term Operation,” which is a continuation-in-part of U.S. application Ser. No. 10/011,423, filed on Dec. 4, 2001, now U.S. Pat. No. 6,619,320. The PCT Application PCT/US02/38757 also claims priority from U.S. Provisional Application 60/391,282 filed Jun. 24, 2002. This invention relates to electronic metering faucets and methods for operating and controlling such faucets.
Number | Name | Date | Kind |
---|---|---|---|
2438207 | Derby | Mar 1948 | A |
2507966 | Filliung | May 1950 | A |
2603794 | Bokser | Jul 1952 | A |
2619986 | Goepfrich et al. | Dec 1952 | A |
2842400 | Booth et al. | Jul 1958 | A |
3022450 | Chase, Jr. | Feb 1962 | A |
3098635 | Delaporte et al. | Jul 1963 | A |
3151340 | Teshima | Oct 1964 | A |
3314081 | Atkins et al. | Apr 1967 | A |
3369205 | Hamrick | Feb 1968 | A |
3379214 | Weinberg | Apr 1968 | A |
3406941 | Ichimori et al. | Oct 1968 | A |
3429333 | Schoepe et al. | Feb 1969 | A |
3480787 | Johansen | Nov 1969 | A |
3487477 | Classen | Jan 1970 | A |
3575640 | Ishikawa | Apr 1971 | A |
3576277 | Blackmon | Apr 1971 | A |
3606241 | Bornholdt | Sep 1971 | A |
3638680 | Kopp | Feb 1972 | A |
3639920 | Griffin et al. | Feb 1972 | A |
3670167 | Forbes | Jun 1972 | A |
3724001 | Ichimori et al. | Apr 1973 | A |
3740019 | Kessell et al. | Jun 1973 | A |
D228782 | Taiani | Oct 1973 | S |
3799198 | Kijimoto | Mar 1974 | A |
3802462 | Trösch | Apr 1974 | A |
3812398 | Kozel et al. | May 1974 | A |
3814376 | Reinicke | Jun 1974 | A |
3821967 | Sturman et al. | Jul 1974 | A |
3863196 | Hilles | Jan 1975 | A |
4010769 | De Lorenzo et al. | Mar 1977 | A |
4097786 | Lund | Jun 1978 | A |
4107046 | Corder | Aug 1978 | A |
4116377 | Andersson et al. | Sep 1978 | A |
4141091 | Pulvari | Feb 1979 | A |
4179691 | Keller | Dec 1979 | A |
4207466 | Drage et al. | Jun 1980 | A |
4223698 | Reinicke | Sep 1980 | A |
4225111 | Stahle | Sep 1980 | A |
4229811 | Salem | Oct 1980 | A |
4231287 | Smiley | Nov 1980 | A |
4241759 | Billeter | Dec 1980 | A |
4280680 | Payne | Jul 1981 | A |
4282430 | Hatten et al. | Aug 1981 | A |
4295485 | Waterfield | Oct 1981 | A |
4295653 | Coles | Oct 1981 | A |
4304391 | Yamaguchi | Dec 1981 | A |
4309781 | Lissau | Jan 1982 | A |
4383234 | Yatsushiro et al. | May 1983 | A |
4402095 | Pepper | Sep 1983 | A |
4408745 | Swiers et al. | Oct 1983 | A |
4457452 | Symmons | Jul 1984 | A |
4488702 | Lapeyre | Dec 1984 | A |
4505450 | Saarem et al. | Mar 1985 | A |
4505451 | Jonas | Mar 1985 | A |
4520516 | Parsons | Jun 1985 | A |
4539474 | Takahata | Sep 1985 | A |
4543991 | Fuchs | Oct 1985 | A |
4570899 | Kingham | Feb 1986 | A |
4597895 | Bartlett | Jul 1986 | A |
4604735 | Parsons | Aug 1986 | A |
4606085 | Davies | Aug 1986 | A |
4609178 | Baumann | Sep 1986 | A |
4645094 | Acklin et al. | Feb 1987 | A |
4651777 | Hardman | Mar 1987 | A |
4653534 | Chung-Shan | Mar 1987 | A |
4669653 | Avelov | Jun 1987 | A |
4681141 | Wang | Jul 1987 | A |
4709728 | Ying-Chung | Dec 1987 | A |
4713847 | Oldfelt et al. | Dec 1987 | A |
4717237 | Austin | Jan 1988 | A |
4767922 | Stauffer | Aug 1988 | A |
4796662 | Hoffmann et al. | Jan 1989 | A |
4823414 | Piersimoni et al. | Apr 1989 | A |
4823825 | Buchl | Apr 1989 | A |
4826129 | Fong et al. | May 1989 | A |
4826132 | Moldenhauer | May 1989 | A |
4832582 | Buffet | May 1989 | A |
4836641 | Priaroggia | Jun 1989 | A |
4839039 | Parsons et al. | Jun 1989 | A |
4887032 | Hetrick | Dec 1989 | A |
4894698 | Hijikigawa et al. | Jan 1990 | A |
4894874 | Wilson | Jan 1990 | A |
4901750 | Nicklas et al. | Feb 1990 | A |
4902887 | Everett, Jr. | Feb 1990 | A |
4910487 | Kleinhappl | Mar 1990 | A |
4911401 | Holcomb et al. | Mar 1990 | A |
4915347 | Iqbal et al. | Apr 1990 | A |
4921208 | La Marca | May 1990 | A |
4932430 | Fernstrom | Jun 1990 | A |
4938384 | Pilolla et al. | Jul 1990 | A |
4941219 | Van Marcke | Jul 1990 | A |
4944487 | Holtermann | Jul 1990 | A |
4953141 | Novak et al. | Aug 1990 | A |
4953236 | Lee et al. | Sep 1990 | A |
4962790 | Chou et al. | Oct 1990 | A |
4972070 | Laverty, Jr. | Nov 1990 | A |
4977929 | Chinnock et al. | Dec 1990 | A |
4988074 | Najmolhoda | Jan 1991 | A |
4989277 | Tsutsui et al. | Feb 1991 | A |
4991819 | Laube | Feb 1991 | A |
4998673 | Pilolla | Mar 1991 | A |
5025516 | Wilson | Jun 1991 | A |
5032812 | Banick et al. | Jul 1991 | A |
5062164 | Lee et al. | Nov 1991 | A |
5062453 | Saadi et al. | Nov 1991 | A |
5074520 | Lee et al. | Dec 1991 | A |
5092560 | Chen | Mar 1992 | A |
5095944 | Hochstrasser | Mar 1992 | A |
5109885 | Tauscher | May 1992 | A |
5111846 | Hochstrasser et al. | May 1992 | A |
5125621 | Parsons et al. | Jun 1992 | A |
5127625 | Kleinhappl | Jul 1992 | A |
5169118 | Whiteside | Dec 1992 | A |
5172193 | Payne et al. | Dec 1992 | A |
5181538 | Manganaro | Jan 1993 | A |
5188337 | Mertens et al. | Feb 1993 | A |
5202666 | Knippscheer | Apr 1993 | A |
5244179 | Wilson | Sep 1993 | A |
5245024 | Scarpa et al. | Sep 1993 | A |
5251188 | Parsons et al. | Oct 1993 | A |
5255398 | Flynn et al. | Oct 1993 | A |
5265594 | Olsson et al. | Nov 1993 | A |
5265843 | Kleinhappl | Nov 1993 | A |
5295654 | Laube | Mar 1994 | A |
5299592 | Swanson | Apr 1994 | A |
5329965 | Gordon | Jul 1994 | A |
5339859 | Bowman | Aug 1994 | A |
5362026 | Kobayashi et al. | Nov 1994 | A |
5375811 | Reinicke | Dec 1994 | A |
5408369 | Miura et al. | Apr 1995 | A |
5412816 | Paterson et al. | May 1995 | A |
5427351 | Korfgen et al. | Jun 1995 | A |
5433245 | Prather et al. | Jul 1995 | A |
5455971 | Sakakibara et al. | Oct 1995 | A |
5456279 | Parsons et al. | Oct 1995 | A |
5456448 | Chou | Oct 1995 | A |
5464041 | Reinicke | Nov 1995 | A |
5467799 | Buccicone et al. | Nov 1995 | A |
5473723 | Stockman et al. | Dec 1995 | A |
5474303 | Coles | Dec 1995 | A |
5481187 | Marcott et al. | Jan 1996 | A |
5511579 | Price | Apr 1996 | A |
5535781 | Paterson et al. | Jul 1996 | A |
5539198 | McMichael et al. | Jul 1996 | A |
5548119 | Nortier | Aug 1996 | A |
5555912 | Saadi et al. | Sep 1996 | A |
5564462 | Storch | Oct 1996 | A |
5566702 | Phillip | Oct 1996 | A |
5570869 | Diaz et al. | Nov 1996 | A |
5574617 | Shimanuki et al. | Nov 1996 | A |
5583434 | Moyers et al. | Dec 1996 | A |
5584465 | Ochsenreiter | Dec 1996 | A |
5595216 | Pilolla | Jan 1997 | A |
5599003 | Seemann et al. | Feb 1997 | A |
5600237 | Nippert | Feb 1997 | A |
5636601 | Moriya et al. | Jun 1997 | A |
D381008 | Parsons et al. | Jul 1997 | S |
5655747 | Pasut | Aug 1997 | A |
5655748 | Regelbrugge et al. | Aug 1997 | A |
5668366 | Mauerhofer | Sep 1997 | A |
5708355 | Schrey | Jan 1998 | A |
5716038 | Scarffe | Feb 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5747684 | Pace et al. | May 1998 | A |
5758688 | Hamanaka et al. | Jun 1998 | A |
D396090 | Marcichow et al. | Jul 1998 | S |
5775372 | Houlihan | Jul 1998 | A |
5785955 | Fischer | Jul 1998 | A |
5787915 | Bryers et al. | Aug 1998 | A |
5787924 | Cewers et al. | Aug 1998 | A |
5797360 | Pischinger et al. | Aug 1998 | A |
5804962 | Kather et al. | Sep 1998 | A |
5815362 | Kahr et al. | Sep 1998 | A |
5883557 | Pawlak et al. | Mar 1999 | A |
5900201 | Chatterjee et al. | May 1999 | A |
5905625 | Schebitz | May 1999 | A |
5918855 | Hamanaka et al. | Jul 1999 | A |
5927328 | Nelson et al. | Jul 1999 | A |
5941505 | Nagel | Aug 1999 | A |
5964192 | Ishii | Oct 1999 | A |
5979500 | Jahrling et al. | Nov 1999 | A |
5984262 | Parsons et al. | Nov 1999 | A |
6003170 | Humpert et al. | Dec 1999 | A |
6039067 | Houlihan | Mar 2000 | A |
6044814 | Fuwa | Apr 2000 | A |
6073904 | Diller et al. | Jun 2000 | A |
6085790 | Humpert et al. | Jul 2000 | A |
6123839 | Sussman | Sep 2000 | A |
6127671 | Parsons et al. | Oct 2000 | A |
6155231 | Adachi et al. | Dec 2000 | A |
6158715 | Kirschbaum | Dec 2000 | A |
6250601 | Kolar et al. | Jun 2001 | B1 |
6298872 | Keller | Oct 2001 | B1 |
6305662 | Parsons et al. | Oct 2001 | B1 |
6393634 | Kodaira et al. | May 2002 | B1 |
6394414 | Breitling et al. | May 2002 | B1 |
6408881 | Lorenzelli et al. | Jun 2002 | B2 |
6425415 | Lorenzelli et al. | Jul 2002 | B2 |
6450478 | Parsons et al. | Sep 2002 | B2 |
6619320 | Parsons | Sep 2003 | B2 |
6913203 | DeLangis | Jul 2005 | B2 |
7069941 | Parsons et al. | Jul 2006 | B2 |
Number | Date | Country |
---|---|---|
8048193 | Jun 1998 | EP |
1532210 | Nov 1978 | GB |
WO 9704262 | Feb 1997 | WO |
WO 0120204 | Mar 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070063158 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60391282 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10860938 | Jun 2004 | US |
Child | 11480780 | US | |
Parent | PCT/US02/38757 | Dec 2002 | US |
Child | 10860938 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10011423 | Dec 2001 | US |
Child | PCT/US02/38757 | US |