U.S. Pat. No. 6,417,778 to Blum et al., which is fully incorporated herein by reference, describes an electronic display device associated with a floor, that enables conveying information via dynamic images and text. The present disclosure relates to various novel and advantageous features of such an electronic display device.
Embodiments of the present invention relate to a floor display system comprising or associated with a weight measuring device. In embodiments, the weight measuring device may include a scale. In other embodiments, the weight measuring device may include pressure sensors. An output of the weight measuring device may be processed by electronic logic to display corresponding information on an electronic display device of the floor display system. The information may relate to the weight of an object on the floor display system, in particular, for example, the weight of a person standing on the floor display system.
The information relating to weight may be, for example, a numerical value for the object's weight in some unit of measurement, say, pounds or kilograms and fractions thereof. In addition to information relating to weight, the floor display system may further be capable of displaying arbitrary content, distinct from the numerical weight value, including both static and dynamic (e.g. moving and changing) graphical images and verbal information (e.g. words and pictures). Because people are typically interested in knowing their weight, the floor display system could be used, for example, in commercial establishments to display advertising messages in conjunction with information concerning people's weight. To this end, embodiments of the present invention may further be capable of wired or wireless communication with a network. Via the network connection, messages on the floor display system may be changed, and new information may be added, at will or on demand. This could be advantageous, for example, in tailoring particular advertising messages to a target audience. For example, the content of the system's display could be updated so that, if a person's weight measured over a certain amount, an advertisement for a diet product such as Slim-Fast® or Weight Watchers®, or for a visit to a fitness club such as Gold's® gym, could be displayed.
Another useful application of a floor display system according to embodiments of the present invention would be in health care. For example, the floor display system could be deployed in doctors' offices, health care clinics, fitness clubs and the like. In such settings, the floor display system could be changeably configured to display content responsive to particular weight thresholds or ranges, for example. Thus, say, for a visitor to a doctor's office whose weight was within a particular range (e.g. a healthy range), the floor display system might display a first message and/or images (distinct from the weight measurement itself). This first message might be reassuring or complimentary, and/or advertise some activity or product associated with a healthy lifestyle. For a different visitor whose weight was in a different range (e.g. an unhealthy range) the floor display system might display a second message and/or images different from the first. This second message might be more in the nature of a warning about the health risks associated with being overweight, or encouragement to become more fit. The second message and/or images might, for example, advertise weight loss products or fitness clubs or cholesterol drugs or the like. There might be any number of predetermined weight ranges (e.g., 0–100 lbs., 100–150 lbs., 150–200 lbs., and so on, or finer gradations, e.g., 0–20, 20–40, . . . , 180–200, and so on, or cruder gradations, e.g., 0–100, 100–200, 200–300, and so on) for which the floor display system could be configured to generate corresponding content.
Since height is a factor in weight, to aid in the determination of whether a particular weight was in a healthy or unhealthy range, the floor display system may further include an input device, for example a keyboard or touchpad, whereby a person could enter his or her height. The floor display system may further include a sensing device to measure height automatically, without requiring manual input. The height value could be used by the floor display system in combination with the measured weight to make various determinations, such as whether the person's weight was in a healthy or unhealthy range.
As noted previously, embodiments of the present invention may further be capable of wired or wireless communication with a network. According to the embodiments, the communication may be two-way. That is, not only may content be downloaded via the network to the floor display system, but information may also be sent from the floor display system via the network to a remote location. The remote location could be, for example, a health care provider's office/database. Thus, for example, the floor display system could be deployed in a person's home (or health club or other location), and when the person weighed himself or herself, the measured weight value could be transmitted to and entered in the health care provider's database. This would avoid the need for the person to keep such records himself/herself for subsequent reporting to the health care provider. According to embodiments, the measured weight value could be transmitted, for example, in the form of electronic mail (“e-mail”). The transmission could be automatic or could be initiated by the person, for example using a keyboard or touch pad or other input device.
In embodiments, an electronic display device of the floor display system may include reflective properties. The reflective properties may improve visibility of a display on the display device, for example, when environmental illumination is poor.
The controller 170 may further be programmed to changeably generate content (e.g. words and pictures) of choice on demand, distinct from the weight measurement itself, responsive to weight thresholds/ranges, as described earlier.
A weight measuring device according to alternative embodiments of the present invention may comprise one or more pressure sensors 125, as shown in
The controller 170 may be coupled to the weight measuring device and to the electronic display device 117. The controller 170 may include any kind of electronic logic circuit, for example, a general microprocessor configurable with software, or an ASIC (application specific integrated circuit). The controller may be programmed with logic to process an output from the weight measuring device and generate a corresponding display on display device 117. The logic could include any kind of calculation or algorithm, but could at least partly involve translating a measurement of a physical effect (e.g. weight or pressure) registered by the weight measuring device into displayable information, such as weight in pounds or kilograms. As described in more detail further on, the controller 170 may be coupled to a storage medium storing, for example, control software for execution by the controller 170 and video content of choice for display, under the control of the control software, on the electronic display 117. The control software could cause the controller to generate selected content, distinct from the weight measurement itself, based on whether the weight measured by the weight measuring device was within a particular range.
As noted, in embodiments of the present invention the floor display system 100 may further comprise reflective properties. For example, the electronic display device 117 may include reflective display technologies such as reflective LCD (liquid crystal display), electronic ink displays, magnetic ink displays and digital ink displays, such as those developed by MagInk®. Such reflective display technologies may help improve visibility in poor illumination. For example, a display on the display device 117 could be clearly visible in daylight hours or under normal indoor lighting conditions, but less so at night or under poor indoor lighting conditions. Accordingly, the reflective technologies could be used in conjunction with a supplementary external light source make the display easier to see.
This is illustrated in
Advantages of reflective technologies as described above are at least twofold. First, they operate with less power than light-generating technologies. Second, some reflective technologies, such as MagInk® products, are bi-stable, which means power only needs to be applied to change the image on the display. Therefore, for still advertisements or other images, for example, power would only need to be applied to switch from one image to another. If this were done below some predetermined threshold frequency, the floor display system could, for example, be powered solely by a conservative power source such as built-in battery that was recharged from time to time.
As noted above, an electronic display device associated with a floor has been previously disclosed. More specifically, U.S. Pat. No. 6,417,778 discloses a system for electronically conveying information via an electronic display device associated with a floor. The electronic display device may incorporate a modifiable electronic display surface presenting for example, a liquid crystal display. The display could be connected to a computer and a computer generated image could be displayed on the display. Thus, the image displayed on the display could be modified by generating a different computer image and displaying that computer image on the display. The display could be associated with a base portion of a floor covering, such as included within a recess thereof, or could be included on a bottom surface, facing upward, of an insert portion of the floor covering. Alternatively, the display could be integrally formed with either of the base portion or the insert portion. The modifiable display could utilize a plurality of different graphics that can be displayed in any of a variety of manners on the display. For example, the graphics could be displayed in a generally fixed position on the display or could scroll across the display, with both exemplary methodologies displaying multiple graphics either individually or in combination.
Other alternatives for modifying graphics displayed on the floor covering include using light emitting polymers to create, and thus change, the graphics. The light emitting polymers can be either applied to, attached to, or woven into the floor covering. The light emitting polymers may be utilized on any portion of floor covering, for example, on either the base portion or the insert portion, or on any other portion of the different embodiments for the floor covering. Light emitting polymers are known and described in U.S. Pat. Nos. 5,945,502, 5,869,350, and 5,571,626, which are incorporated herein by reference in their entirety.
Other options for a display are to use electronic ink or electric paper. Electric paper is available from Xerox and is described in U.S. Pat. Nos. 5,723,204, 5,604,027, 4,126,854, and 4,143,103, which are incorporated herein by reference in their entirety. Electric paper employs thousands of tiny, electrically charged beads, called Gyricon, each about the width of a human hair, to create pixels. The two-tone beads are embedded inside a liquid-filled plastic sheeting that forms the surface of the paper. Each bead, half-black, half-white, gyrates in response to an electric field. Whether the beads are black- or white-side up determines the image. Because there's no need to refresh the image, and because the screen isn't backlit, electric paper uses only a fraction of the power used by conventional electronic displays. Electromagnetic styluses and printer-like devices can be used for getting images onto the paper.
Electronic ink is available from E Ink Corp., at 45 Spinelli Pl., Cambridge, Mass. 02138. Electronic ink uses a microencapsulated micromechanical display system. Tiny microcapsules are captured between two sheets of plastic to create pixels. Alternatively, the capsules may be sprayed on a surface. The result is a flexible display material. The tiny capsules are transparent and contain a mixture of dark ink and white paint chips. An electric charge is passed through the capsules. Depending on the electrostatic charge, the paint chips float at the top or rest on the bottom of each capsule. When the paint chips float at the top, the surface appears white. When they rest at the bottom, and thus under the ink, the surface appears black. Each of the two states is stable: black or white. A transparent electromagnetic grid laid over the sheet's surface controls the shape of the image. The display may be wirelessly connected to, for example, a computer and thus, the World Wide Web by utilizing, for example, a Motorola paging system. Text on all displays, if multiple displays are used, can be changed at once by a single editor, through a Web page.
Display technologies that may be utilized in embodiments of the present invention, in addition to those described above, include: light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), electroluminescent (EL) displays, plasma display panels (PDPs), field emission displays, ferroelectric displays (FEDs), light-emitting polymers, pixels, micro-encapsulated components, and optical fiber displays.
A floor display system as disclosed above may be used in places where there is foot traffic or other (for example, wheeled shopping cart) traffic, such as entryways to stores, public buildings or homes. In such environments, strong forces may be imparted to the floor display system by the foot traffic or other traffic. Techniques for suitably protecting the electronic display device from damage due to such forces and other factors have been disclosed. The techniques include using a tough, durable protective material such as tempered glass or plastic to cover the electronic display device. More sophisticated protective structures have also been disclosed. For example, U.S. patent application Ser. No. 10/454,631, which is fully incorporated herein by reference, describes a modular protective structure for an electronic display device associated with a floor.
As described in Ser. No. 10/454,631, an electronic display assembly may comprise a plurality of display modules. A coherent display may be presented on the plurality of display modules. That is, while individual display modules may present only fragments of a display, in the aggregate the plurality of display modules may present a complete or unified display. On the other hand, each of the modules could be configured to display unrelated images and/or text.
More specifically, a display module may be an electronic display device incorporating any display technology, including those disclosed herein, and others not specifically disclosed. A display module may be configured to electronically display graphical images and alphanumeric data in either a static (not moving or changing) or dynamic (e.g., scrolling or otherwise moving or changing) format. More specifically, a display module may be coupled by wired or wireless means to the controller 170 and modifiable via the controller to display any content chosen by a user. The controller 170 may be laterally arranged with respect to (i.e., to one or more sides of) the display modules. The display modules and the controller may be disposed so as to lie in substantially the same plane, and may both be thin and flat.
Data may be stored in the storage medium 104 using, for example, a data port 106 coupled to a common system bus. The bus could be, by way of example only, a USB (Universal Serial Bus). The floor display system may further comprise a wireless port 107 implemented, for example, using a wireless WAN/LAN card. Through the wireless port 107, the floor display system 100 may be coupled to and communicate with a network 126. The network could be any kind of network, including a wide area network (WAN) such as the Internet, or a local area network (LAN) including, for example, other floor display systems. Through the network 126, the floor display system 100 may be coupled, for example, via a wireless communication device 112, to a server computer 108 of the network. The server computer 108 may be coupled to a database 109. The server computer 108 may further be coupled to remote location 127 such as a health care provider's office/database where the health care provider could receive, for example, e-mails reporting a person's weight. The database 109 may store information relevant to operation of the floor display system 100. For example, the database may contain video and audio content or control software that is downloadable to the storage medium 104 of the floor display system. Thus, the floor display system 100 may be remotely controllable. However, the floor display system 100 need not be networked, and could be controlled locally by, for example, downloading content and control software locally via data port 106. Also, while wireless communication methods and systems are illustrated in
Embodiments of the present invention may further include any combination of the features or properties disclosed in this application, or any of the features or properties of the applications incorporated herein by reference. For example, the floor display system may include both a weight measuring device and reflective properties. As further examples, the sensing device may be adapted to sense the presence of persons and perform an action in response, including variable image orientation and providing product information in response to customer queries.
Several embodiments of the present invention are specifically illustrated and/or described herein. However, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 60/612,149, filed Sep. 23, 2004. Further, this application is a continuation-in-part of co-pending application Ser. No. 11/199,130, filed Aug. 9, 2005, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 60/599,878, filed Aug. 10, 2004. Application Ser. No. 11/119,130 is a continuation-in-part of co-pending application Ser. No. 11/002,276, filed Dec. 3, 2004, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application 60/526,271, filed Dec. 3, 2003. Application Ser. No. 11/002,276 is a continuation-in-part of application Ser. No. 10/454,631, filed Jun. 5, 2003, and issued as U.S. Pat. No. 7,009,523 on Mar. 7, 2006, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application 60/385,579 filed Jun. 5, 2002. application Ser. No. 10/454,631 is a continuation-in-part of application Ser. No. 10/438,923, filed May 16, 2003, and issued as U.S. Pat. No. 6,982,649 on Jan. 3, 2006, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application 60/378,070, filed May 16, 2002. Application Ser. No. 10/438,923 is a continuation-in-part of application Ser. No. 10/285,639, filed Nov. 1, 2002, and issued as U.S. Pat. No. 6,873,266 on Mar. 25, 2005, which is a continuation of application Ser. No. 10/137,357, filed May 3, 2002, and issued as U.S. Pat. No. 6,507,285 on Jan. 14, 2003. Application Ser. No. 10/137,357 is a continuation of application Ser. No. 09/767,846, filed Jan. 24, 2001, and issued as U.S. Pat. No. 6,417,778 on Jul. 9, 2002. Application Ser. No. 09/767,846 is a continuation of application Ser. No. 09/418,752, filed Oct. 15, 1999, and now abandoned. Application Ser. No. 09/418,752 is a continuation-in-part of application Ser. No. 09/304,051, filed May 4, 1999, and issued as U.S. Pat. No. 6,219,876 on Apr. 24,2001. Moreover, this application is a continuation-in-part of co-pending application Ser. No. 10/759,167, filed Jan. 20, 2004, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 60/441,408, filed Jan. 22, 2003. Application Ser. No. 10/759,167 is a continuation-in-part of application Ser. No. 10/682,435, filed Oct. 10, 2003, and issued as U.S. Pat. No. 6,917,301 on Jul. 12, 2005, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional applications identified as follows: application Ser. No. 60/418,626, filed Oct. 12, 2002; application Ser. No. 60/428,387, filed Nov. 21, 2002; and application Ser. No. 60/429,044, filed Nov. 23, 2002. Application Ser. No. 10/682,435 is a continuation-in-part of co-pending application Ser. No. 10/438,923, filed May 16, 2003. Each of the above-identified applications and patents is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
2191704 | Bennett | Feb 1940 | A |
2254830 | Schloss | Sep 1941 | A |
2282672 | Nelson | May 1942 | A |
2512310 | Corson | Jun 1950 | A |
2800215 | Bennett | Jul 1957 | A |
2843868 | Borgstorm | Jul 1958 | A |
2919456 | Spivey | Jan 1960 | A |
3078490 | Etcher | Feb 1963 | A |
3083393 | Nappi | Apr 1963 | A |
3141522 | Fitzpatrick | Jul 1964 | A |
3183116 | Schaar | May 1965 | A |
3300275 | Lorman | Jan 1967 | A |
3400421 | Nappi et al. | Sep 1968 | A |
3435481 | Kessler | Apr 1969 | A |
3501797 | Nappi | Mar 1970 | A |
3517407 | Wyant | Jun 1970 | A |
3578738 | Hughes | May 1971 | A |
3663980 | Conklin | May 1972 | A |
3665543 | Nappi | May 1972 | A |
3696459 | Kucera et al. | Oct 1972 | A |
3699926 | Stockl | Oct 1972 | A |
3717897 | Amos et al. | Feb 1973 | A |
3785102 | Amos | Jan 1974 | A |
3886620 | Miller et al. | Jun 1975 | A |
3906578 | Huber | Sep 1975 | A |
3909996 | Ettinger, Jr. et al. | Oct 1975 | A |
3916401 | Freeman | Oct 1975 | A |
3930084 | Shields | Dec 1975 | A |
4107811 | Imsande | Aug 1978 | A |
4126854 | Sheridon | Nov 1978 | A |
4143103 | Sheridon | Mar 1979 | A |
4143194 | Wihksne | Mar 1979 | A |
4328275 | Vargo | May 1982 | A |
4353944 | Tarui | Oct 1982 | A |
4421809 | Bish et al. | Dec 1983 | A |
4435451 | Neubert | Mar 1984 | A |
4439474 | Sagel | Mar 1984 | A |
4482593 | Sagel et al. | Nov 1984 | A |
4484250 | Rzepecki et al. | Nov 1984 | A |
4559250 | Paige | Dec 1985 | A |
4564546 | Jones | Jan 1986 | A |
4567481 | Meier et al. | Jan 1986 | A |
4576244 | Zeigner et al. | Mar 1986 | A |
4609580 | Rockett et al. | Sep 1986 | A |
4614679 | Farrington et al. | Sep 1986 | A |
4665342 | Topp et al. | May 1987 | A |
4707895 | Lang | Nov 1987 | A |
4720789 | Hector et al. | Jan 1988 | A |
4752114 | French | Jun 1988 | A |
4773492 | Ruzumna | Sep 1988 | A |
4798754 | Tomek | Jan 1989 | A |
4822669 | Roga | Apr 1989 | A |
4831242 | Englehardt et al. | May 1989 | A |
4853678 | Bishop, Jr. et al. | Aug 1989 | A |
4917975 | De Guzman | Apr 1990 | A |
4959265 | Wood | Sep 1990 | A |
5018235 | Stamatiou | May 1991 | A |
5071628 | Alazet | Dec 1991 | A |
5142733 | Mogez | Sep 1992 | A |
5161041 | Abileah et al. | Nov 1992 | A |
5204159 | Tan | Apr 1993 | A |
5293660 | Park | Mar 1994 | A |
5297353 | Ghalayini | Mar 1994 | A |
5335788 | Beasley et al. | Aug 1994 | A |
5344693 | Sanders | Sep 1994 | A |
5460381 | Smith et al. | Oct 1995 | A |
5461748 | Koiduka | Oct 1995 | A |
5500267 | Canning | Mar 1996 | A |
5556685 | Swicegood, Jr. | Sep 1996 | A |
5561446 | Montlick | Oct 1996 | A |
5562580 | Beasley et al. | Oct 1996 | A |
5571626 | Cumming et al. | Nov 1996 | A |
5589246 | Calhoun | Dec 1996 | A |
5604027 | Sheridon | Feb 1997 | A |
5613313 | Homan et al. | Mar 1997 | A |
5620003 | Sepponen | Apr 1997 | A |
5646818 | Hahn | Jul 1997 | A |
5658637 | Volz | Aug 1997 | A |
5703564 | Begum et al. | Dec 1997 | A |
5723204 | Stefik | Mar 1998 | A |
5747133 | Vinod et al. | May 1998 | A |
5805117 | Mazurek et al. | Sep 1998 | A |
5815995 | Adams | Oct 1998 | A |
5816550 | Watanabe et al. | Oct 1998 | A |
5826874 | Teitell et al. | Oct 1998 | A |
5839976 | Darr | Nov 1998 | A |
5848830 | Castle et al. | Dec 1998 | A |
5869350 | Heeger et al. | Feb 1999 | A |
5885684 | Hefner et al. | Mar 1999 | A |
5886474 | Asai et al. | Mar 1999 | A |
5945502 | Hsieh et al. | Aug 1999 | A |
5971761 | Tillman, Sr. | Oct 1999 | A |
6001456 | Newland | Dec 1999 | A |
6010429 | Prueitt | Jan 2000 | A |
6038465 | Melton, Jr. | Mar 2000 | A |
6084526 | Blotky et al. | Jul 2000 | A |
6219876 | Blum | Apr 2001 | B1 |
6233776 | Blum et al. | May 2001 | B1 |
6336136 | Harris | Jan 2002 | B1 |
6353291 | Borgogno et al. | Mar 2002 | B1 |
6387061 | Nitto | May 2002 | B1 |
6417778 | Blum et al. | Jul 2002 | B1 |
6538215 | Montagnino et al. | Mar 2003 | B1 |
6615526 | Pitcher et al. | Sep 2003 | B1 |
6617530 | Lin | Sep 2003 | B1 |
6641139 | Lamberti et al. | Nov 2003 | B1 |
6753830 | Gelbman | Jun 2004 | B1 |
6873266 | Blum et al. | Mar 2005 | B1 |
6914540 | Gongolas | Jul 2005 | B1 |
6917301 | Blum et al. | Jul 2005 | B1 |
6940418 | Blum et al. | Sep 2005 | B1 |
6963035 | Honda et al. | Nov 2005 | B1 |
6982649 | Blum et al. | Jan 2006 | B1 |
20010011399 | Blum et al. | Aug 2001 | A1 |
20030066073 | Rebh | Apr 2003 | A1 |
20040004827 | Guest | Jan 2004 | A1 |
20040222026 | Kohn et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
3147113 | Nov 1981 | DE |
87 01 817.9 | Apr 1987 | DE |
3 923 959 | Oct 1990 | DE |
3 915 254 | Nov 1990 | DE |
40 06 781 | Sep 1991 | DE |
4135877 | May 1993 | DE |
298 11 821 | Oct 1998 | DE |
0 009 891 | Apr 1980 | EP |
0 188 005 | Jul 1986 | EP |
0 199 537 | Oct 1986 | EP |
0 202 846 | Nov 1986 | EP |
0 353 139 | Jan 1990 | EP |
0 354 281 | Feb 1990 | EP |
0 359 478 | Mar 1990 | EP |
0 365 869 | May 1990 | EP |
0 374 860 | Jun 1990 | EP |
0 421 258 | Apr 1991 | EP |
0 448 768 | Oct 1991 | EP |
0 512 904 | Nov 1992 | EP |
0 514 191 | Nov 1992 | EP |
0 554 641 | Aug 1993 | EP |
0 573 277 | Dec 1993 | EP |
0 624 125 | Nov 1994 | EP |
0 624 681 | Nov 1994 | EP |
0 648 834 | Apr 1995 | EP |
0 721 176 | Jul 1996 | EP |
0 751 213 | Jan 1997 | EP |
0 794 244 | Sep 1997 | EP |
0 839 900 | May 1998 | EP |
0 895 745 | Feb 1999 | EP |
0 971 064 | Jan 2000 | EP |
2 532 095 | Feb 1984 | FR |
319 416 | Sep 1929 | GB |
433 133 | Aug 1935 | GB |
2 182 242 | May 1987 | GB |
2 263 003 | Jul 1993 | GB |
4 144 532 | May 1992 | JP |
6-90891 | Apr 1994 | JP |
6 189 890 | Jul 1994 | JP |
8056810 | Mar 1996 | JP |
08-239988 | Sep 1996 | JP |
10-057728 | Mar 1998 | JP |
11-109901 | Apr 1999 | JP |
2000-105558 | Apr 2000 | JP |
2002-00059 | Jul 2000 | JP |
9108701 | Jun 1991 | WO |
9320536 | Oct 1993 | WO |
0007811 | Feb 2000 | WO |
0016682 | Mar 2000 | WO |
0079871 | Apr 2000 | WO |
0029209 | May 2000 | WO |
0127909 | Feb 2001 | WO |
0177746 | Oct 2001 | WO |
0211110 | Feb 2002 | WO |
0222972 | Mar 2002 | WO |
02065451 | Aug 2002 | WO |
0019871 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060049955 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60612149 | Sep 2004 | US | |
60599878 | Aug 2004 | US | |
60526271 | Dec 2003 | US | |
60441408 | Jan 2003 | US | |
60429044 | Nov 2002 | US | |
60428387 | Nov 2002 | US | |
60428387 | Nov 2002 | US | |
60385579 | Jun 2002 | US | |
60378070 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10137357 | May 2002 | US |
Child | 10285639 | US | |
Parent | 09767846 | Jan 2001 | US |
Child | 10137357 | US | |
Parent | 09418752 | Oct 1999 | US |
Child | 09767846 | US | |
Parent | 09304051 | May 1999 | US |
Child | 09418752 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11199130 | Aug 2005 | US |
Child | 11231772 | US | |
Parent | 11002276 | Dec 2004 | US |
Child | 11199130 | US | |
Parent | 10759167 | Jan 2004 | US |
Child | 11002276 | US | |
Parent | 10682435 | Oct 2003 | US |
Child | 10759167 | US | |
Parent | 10454631 | Jun 2003 | US |
Child | 10682435 | US | |
Parent | 10438923 | May 2003 | US |
Child | 10454631 | US | |
Parent | 10285639 | Nov 2002 | US |
Child | 10438923 | US |