Electronic floor display with weight measurement and reflective display

Information

  • Patent Grant
  • 7109881
  • Patent Number
    7,109,881
  • Date Filed
    Thursday, September 22, 2005
    19 years ago
  • Date Issued
    Tuesday, September 19, 2006
    18 years ago
Abstract
Embodiments of the present invention relate to a floor display system comprising or associated with a weight measuring device. An output of the weight measuring device may be processed by electronic logic to display corresponding information on an electronic display device of the floor display system. The information may relate to the weight of an object on the floor display system, in particular, for example, the weight of a person standing on the floor display system. The floor display system may further be capable of displaying arbitrary content including graphical images and verbal information, where the content is changeable on demand. Embodiments of the present invention further relate to a floor display system with reflective properties.
Description
BACKGROUND

U.S. Pat. No. 6,417,778 to Blum et al., which is fully incorporated herein by reference, describes an electronic display device associated with a floor, that enables conveying information via dynamic images and text. The present disclosure relates to various novel and advantageous features of such an electronic display device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B show a plan view and a side elevation view, respectively, of a floor display system comprising a weight measuring device according to embodiments of the present invention;



FIGS. 2, 3 and 3A show side elevation views of a floor display system comprising a weight measuring device according to alternative embodiments of the present invention;



FIG. 4 shows a floor display system with reflective properties according to embodiments of the present invention; and



FIG. 5 shows further details of a floor display system according to embodiments of the present invention.





DETAILED DESCRIPTION

Embodiments of the present invention relate to a floor display system comprising or associated with a weight measuring device. In embodiments, the weight measuring device may include a scale. In other embodiments, the weight measuring device may include pressure sensors. An output of the weight measuring device may be processed by electronic logic to display corresponding information on an electronic display device of the floor display system. The information may relate to the weight of an object on the floor display system, in particular, for example, the weight of a person standing on the floor display system.


The information relating to weight may be, for example, a numerical value for the object's weight in some unit of measurement, say, pounds or kilograms and fractions thereof. In addition to information relating to weight, the floor display system may further be capable of displaying arbitrary content, distinct from the numerical weight value, including both static and dynamic (e.g. moving and changing) graphical images and verbal information (e.g. words and pictures). Because people are typically interested in knowing their weight, the floor display system could be used, for example, in commercial establishments to display advertising messages in conjunction with information concerning people's weight. To this end, embodiments of the present invention may further be capable of wired or wireless communication with a network. Via the network connection, messages on the floor display system may be changed, and new information may be added, at will or on demand. This could be advantageous, for example, in tailoring particular advertising messages to a target audience. For example, the content of the system's display could be updated so that, if a person's weight measured over a certain amount, an advertisement for a diet product such as Slim-Fast® or Weight Watchers®, or for a visit to a fitness club such as Gold's® gym, could be displayed.


Another useful application of a floor display system according to embodiments of the present invention would be in health care. For example, the floor display system could be deployed in doctors' offices, health care clinics, fitness clubs and the like. In such settings, the floor display system could be changeably configured to display content responsive to particular weight thresholds or ranges, for example. Thus, say, for a visitor to a doctor's office whose weight was within a particular range (e.g. a healthy range), the floor display system might display a first message and/or images (distinct from the weight measurement itself). This first message might be reassuring or complimentary, and/or advertise some activity or product associated with a healthy lifestyle. For a different visitor whose weight was in a different range (e.g. an unhealthy range) the floor display system might display a second message and/or images different from the first. This second message might be more in the nature of a warning about the health risks associated with being overweight, or encouragement to become more fit. The second message and/or images might, for example, advertise weight loss products or fitness clubs or cholesterol drugs or the like. There might be any number of predetermined weight ranges (e.g., 0–100 lbs., 100–150 lbs., 150–200 lbs., and so on, or finer gradations, e.g., 0–20, 20–40, . . . , 180–200, and so on, or cruder gradations, e.g., 0–100, 100–200, 200–300, and so on) for which the floor display system could be configured to generate corresponding content.


Since height is a factor in weight, to aid in the determination of whether a particular weight was in a healthy or unhealthy range, the floor display system may further include an input device, for example a keyboard or touchpad, whereby a person could enter his or her height. The floor display system may further include a sensing device to measure height automatically, without requiring manual input. The height value could be used by the floor display system in combination with the measured weight to make various determinations, such as whether the person's weight was in a healthy or unhealthy range.


As noted previously, embodiments of the present invention may further be capable of wired or wireless communication with a network. According to the embodiments, the communication may be two-way. That is, not only may content be downloaded via the network to the floor display system, but information may also be sent from the floor display system via the network to a remote location. The remote location could be, for example, a health care provider's office/database. Thus, for example, the floor display system could be deployed in a person's home (or health club or other location), and when the person weighed himself or herself, the measured weight value could be transmitted to and entered in the health care provider's database. This would avoid the need for the person to keep such records himself/herself for subsequent reporting to the health care provider. According to embodiments, the measured weight value could be transmitted, for example, in the form of electronic mail (“e-mail”). The transmission could be automatic or could be initiated by the person, for example using a keyboard or touch pad or other input device.


In embodiments, an electronic display device of the floor display system may include reflective properties. The reflective properties may improve visibility of a display on the display device, for example, when environmental illumination is poor.



FIG. 1A shows a floor display system 100 according to embodiments of the present invention. The system 100 may include a housing that comprises a transparent or translucent protective cover 115 bordered by an outer shell 110. The outer shell 110 may comprise sloping surfaces tapering to a thin edge. The housing may be capable of being walked over, where the sloping surfaces and thin edge act to reduce the likelihood of a person tripping over the display system. Further, the housing may be stood upon. The housing may enclose one or more electronic display devices 117 and protect it/them from damage. The floor display system 100 may further comprise a controller 170. The controller 170 may be internal or external to the housing.



FIG. 1B shows a side elevation view of the floor display system 100. As illustrated, the floor display system 100 may further comprise a weight measuring device. In the embodiment of FIG. 1B, the weight measuring device is formed as a thin, flat scale 120. In use, the scale 120 may be arranged underneath the protective cover 115 and upper surfaces of the outer shell 110. The scale 120 may register the weight of an object, such as a standing person, on the protective cover 115 and upper surfaces of the outer shell 110, and generate an output, such as an electronic signal, corresponding to the weight of the object. The controller 170 may process the output and generate corresponding information 119 which is displayed on the electronic display device 117. See, for example, FIG. 1A, which shows the information “Your weight is 182 pounds” displayed on the display device 117. In the example of FIG. 1A, the display device is further displaying the graphical image of a car and the verbal information “Test Drive a Toyota Today.”


The controller 170 may further be programmed to changeably generate content (e.g. words and pictures) of choice on demand, distinct from the weight measurement itself, responsive to weight thresholds/ranges, as described earlier.


A weight measuring device according to alternative embodiments of the present invention may comprise one or more pressure sensors 125, as shown in FIG. 2, which is another side elevation view of the floor display system 100. As with the thin flat scale 120, the sensors 125 may be arranged under the protective cover 115 and upper surfaces of the outer shell 110, and register the weight of an object on the protective cover 115 and upper surfaces of the outer shell 110. The sensors may generate an output which is translated by the controller 170 into information displayed on the display device 117. To process the output to obtain the displayed information, the controller 170 may, for example, perform calculations based on a calibration equation, or look up values in a table. The calibration equation and look-up table could be developed, for example, based on the placement of known weights on upper surfaces of the floor display system and corresponding outputs of the sensors.



FIGS. 3 and 3A show a floor display system 100 with a weight measuring device according to still other alternative embodiments. FIG. 3 is side elevation view of the floor display system 100 and FIG. 3A shows an enlargement of a portion of the floor display system 100 in cutaway. Here, the weight measuring device includes one or more pressure sensors, springs or other apparatus 130 for registering weight. The weight measuring device may be contained within the housing. In embodiments as shown in FIGS. 3 and 3A, the protective cover 115 and outer shell 110 or portions thereof may be displaceable, compressible or deformable to a degree so as to transfer force to the weight measuring apparatus. The received force may be translated into an output which is processed by controller 170 to generate displayable information as described above.


The controller 170 may be coupled to the weight measuring device and to the electronic display device 117. The controller 170 may include any kind of electronic logic circuit, for example, a general microprocessor configurable with software, or an ASIC (application specific integrated circuit). The controller may be programmed with logic to process an output from the weight measuring device and generate a corresponding display on display device 117. The logic could include any kind of calculation or algorithm, but could at least partly involve translating a measurement of a physical effect (e.g. weight or pressure) registered by the weight measuring device into displayable information, such as weight in pounds or kilograms. As described in more detail further on, the controller 170 may be coupled to a storage medium storing, for example, control software for execution by the controller 170 and video content of choice for display, under the control of the control software, on the electronic display 117. The control software could cause the controller to generate selected content, distinct from the weight measurement itself, based on whether the weight measured by the weight measuring device was within a particular range.


As noted, in embodiments of the present invention the floor display system 100 may further comprise reflective properties. For example, the electronic display device 117 may include reflective display technologies such as reflective LCD (liquid crystal display), electronic ink displays, magnetic ink displays and digital ink displays, such as those developed by MagInk®. Such reflective display technologies may help improve visibility in poor illumination. For example, a display on the display device 117 could be clearly visible in daylight hours or under normal indoor lighting conditions, but less so at night or under poor indoor lighting conditions. Accordingly, the reflective technologies could be used in conjunction with a supplementary external light source make the display easier to see.


This is illustrated in FIG. 4. FIG. 4 shows the floor display system 100 in place on a floor 400. The floor display system 100 has reflective properties. For example, the electronic display device 117 of the floor display system incorporates one or more reflective display technologies as in the above examples. A supplementary external light source 401 is further provided. The light source 401 may have a power source 402 and be movable along a track 403 mounted to the ceiling or a rafter, for example. By being movable along the track, the light source 401 can be moved along with the floor display system 100. At night or when environmental lighting is otherwise poor, the light source 401 could be directed at the floor display system 100, activating the reflective technologies therein to make a display more easily visible.


Advantages of reflective technologies as described above are at least twofold. First, they operate with less power than light-generating technologies. Second, some reflective technologies, such as MagInk® products, are bi-stable, which means power only needs to be applied to change the image on the display. Therefore, for still advertisements or other images, for example, power would only need to be applied to switch from one image to another. If this were done below some predetermined threshold frequency, the floor display system could, for example, be powered solely by a conservative power source such as built-in battery that was recharged from time to time.


As noted above, an electronic display device associated with a floor has been previously disclosed. More specifically, U.S. Pat. No. 6,417,778 discloses a system for electronically conveying information via an electronic display device associated with a floor. The electronic display device may incorporate a modifiable electronic display surface presenting for example, a liquid crystal display. The display could be connected to a computer and a computer generated image could be displayed on the display. Thus, the image displayed on the display could be modified by generating a different computer image and displaying that computer image on the display. The display could be associated with a base portion of a floor covering, such as included within a recess thereof, or could be included on a bottom surface, facing upward, of an insert portion of the floor covering. Alternatively, the display could be integrally formed with either of the base portion or the insert portion. The modifiable display could utilize a plurality of different graphics that can be displayed in any of a variety of manners on the display. For example, the graphics could be displayed in a generally fixed position on the display or could scroll across the display, with both exemplary methodologies displaying multiple graphics either individually or in combination.


Other alternatives for modifying graphics displayed on the floor covering include using light emitting polymers to create, and thus change, the graphics. The light emitting polymers can be either applied to, attached to, or woven into the floor covering. The light emitting polymers may be utilized on any portion of floor covering, for example, on either the base portion or the insert portion, or on any other portion of the different embodiments for the floor covering. Light emitting polymers are known and described in U.S. Pat. Nos. 5,945,502, 5,869,350, and 5,571,626, which are incorporated herein by reference in their entirety.


Other options for a display are to use electronic ink or electric paper. Electric paper is available from Xerox and is described in U.S. Pat. Nos. 5,723,204, 5,604,027, 4,126,854, and 4,143,103, which are incorporated herein by reference in their entirety. Electric paper employs thousands of tiny, electrically charged beads, called Gyricon, each about the width of a human hair, to create pixels. The two-tone beads are embedded inside a liquid-filled plastic sheeting that forms the surface of the paper. Each bead, half-black, half-white, gyrates in response to an electric field. Whether the beads are black- or white-side up determines the image. Because there's no need to refresh the image, and because the screen isn't backlit, electric paper uses only a fraction of the power used by conventional electronic displays. Electromagnetic styluses and printer-like devices can be used for getting images onto the paper.


Electronic ink is available from E Ink Corp., at 45 Spinelli Pl., Cambridge, Mass. 02138. Electronic ink uses a microencapsulated micromechanical display system. Tiny microcapsules are captured between two sheets of plastic to create pixels. Alternatively, the capsules may be sprayed on a surface. The result is a flexible display material. The tiny capsules are transparent and contain a mixture of dark ink and white paint chips. An electric charge is passed through the capsules. Depending on the electrostatic charge, the paint chips float at the top or rest on the bottom of each capsule. When the paint chips float at the top, the surface appears white. When they rest at the bottom, and thus under the ink, the surface appears black. Each of the two states is stable: black or white. A transparent electromagnetic grid laid over the sheet's surface controls the shape of the image. The display may be wirelessly connected to, for example, a computer and thus, the World Wide Web by utilizing, for example, a Motorola paging system. Text on all displays, if multiple displays are used, can be changed at once by a single editor, through a Web page.


Display technologies that may be utilized in embodiments of the present invention, in addition to those described above, include: light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), electroluminescent (EL) displays, plasma display panels (PDPs), field emission displays, ferroelectric displays (FEDs), light-emitting polymers, pixels, micro-encapsulated components, and optical fiber displays.


A floor display system as disclosed above may be used in places where there is foot traffic or other (for example, wheeled shopping cart) traffic, such as entryways to stores, public buildings or homes. In such environments, strong forces may be imparted to the floor display system by the foot traffic or other traffic. Techniques for suitably protecting the electronic display device from damage due to such forces and other factors have been disclosed. The techniques include using a tough, durable protective material such as tempered glass or plastic to cover the electronic display device. More sophisticated protective structures have also been disclosed. For example, U.S. patent application Ser. No. 10/454,631, which is fully incorporated herein by reference, describes a modular protective structure for an electronic display device associated with a floor.


As described in Ser. No. 10/454,631, an electronic display assembly may comprise a plurality of display modules. A coherent display may be presented on the plurality of display modules. That is, while individual display modules may present only fragments of a display, in the aggregate the plurality of display modules may present a complete or unified display. On the other hand, each of the modules could be configured to display unrelated images and/or text.


More specifically, a display module may be an electronic display device incorporating any display technology, including those disclosed herein, and others not specifically disclosed. A display module may be configured to electronically display graphical images and alphanumeric data in either a static (not moving or changing) or dynamic (e.g., scrolling or otherwise moving or changing) format. More specifically, a display module may be coupled by wired or wireless means to the controller 170 and modifiable via the controller to display any content chosen by a user. The controller 170 may be laterally arranged with respect to (i.e., to one or more sides of) the display modules. The display modules and the controller may be disposed so as to lie in substantially the same plane, and may both be thin and flat.



FIG. 5 shows further details of the floor display system 100. The controller 170 may be coupled to a storage medium 104, which could be any form of medium suitable for storing digital data, including RAM (random access memory), ROM (read-only memory), flash or other non-volatile solid-state electronic storage, EEPROM (electronically erasable and programmable read only memory), or magnetic and/or optical disk storage. The storage medium 104 may store, for example, control software for execution by the controller 170 and video content of choice for display, under the control of the control software, on the electronic display 117. A user interface 128, such as a personal computer with a display monitor and keyboard, may be coupled to the controller to enable configuration of the controller with specific user input, such as specific control programs to produce specific displays and/or audio output. The user interface 128 might further be used to, for example, enter a height value, initiate the transmission of a weight measurement to a remote location such as a health care provider's office/database, or the like. The user interface 128 may further include, or alternatively take the form of, an input device such as a touchpad with a view screen, or the like. An audio device 111, such as a loudspeaker, may further be coupled to the controller 103 via a sound card 118. The audio device 111 may output audio content of choice, stored in the storage medium 104, under the control of the controller 170. Components of the floor display system 100 may be powered by a power supply 114. The floor display system may further comprise a sensing device 113 to provide for a variety of interactive applications of the floor display system. The sensing device 113 could be coupled to the controller 113 and provide signals thereto. The connection of the sensing device to the controller could be wired or wireless.


Data may be stored in the storage medium 104 using, for example, a data port 106 coupled to a common system bus. The bus could be, by way of example only, a USB (Universal Serial Bus). The floor display system may further comprise a wireless port 107 implemented, for example, using a wireless WAN/LAN card. Through the wireless port 107, the floor display system 100 may be coupled to and communicate with a network 126. The network could be any kind of network, including a wide area network (WAN) such as the Internet, or a local area network (LAN) including, for example, other floor display systems. Through the network 126, the floor display system 100 may be coupled, for example, via a wireless communication device 112, to a server computer 108 of the network. The server computer 108 may be coupled to a database 109. The server computer 108 may further be coupled to remote location 127 such as a health care provider's office/database where the health care provider could receive, for example, e-mails reporting a person's weight. The database 109 may store information relevant to operation of the floor display system 100. For example, the database may contain video and audio content or control software that is downloadable to the storage medium 104 of the floor display system. Thus, the floor display system 100 may be remotely controllable. However, the floor display system 100 need not be networked, and could be controlled locally by, for example, downloading content and control software locally via data port 106. Also, while wireless communication methods and systems are illustrated in FIG. 5, wired systems could also be used, or could be combined with wireless systems.


Embodiments of the present invention may further include any combination of the features or properties disclosed in this application, or any of the features or properties of the applications incorporated herein by reference. For example, the floor display system may include both a weight measuring device and reflective properties. As further examples, the sensing device may be adapted to sense the presence of persons and perform an action in response, including variable image orientation and providing product information in response to customer queries.


Several embodiments of the present invention are specifically illustrated and/or described herein. However, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

Claims
  • 1. A floor display system comprising: an electronic display device having a protective cover capable of being walked over or stood upon; anda weight measuring device;wherein the floor display system is capable of displaying arbitrary content including graphical images and verbal information, the content being changeable on demand, and of displaying information relating to the weight of an object measured by the weight measuring device, on the electronic display device.
  • 2. The floor display system of claim 1, wherein the content relates to the weight of the object.
  • 3. The floor display system of claim 1, wherein the weight measured is within a predetermined range, and the content corresponds to the range.
  • 4. The floor display system of claim 1, wherein the weight measured is transmittable to a remote location.
  • 5. The floor display system of claim 1, wherein the content is remotely controllable.
  • 6. The floor display system of claim 1, wherein the content is changeable via a network.
  • 7. The floor display system of claim 1, wherein the weight measuring device includes a scale.
  • 8. The floor display system of claim 1, wherein the weight measuring device includes a pressure sensor.
  • 9. The floor display system of claim 1, wherein the weight measuring device includes a spring.
  • 10. The floor display system of claim 1, further comprising a controller to process an output of the measuring device and generate corresponding information for display on the electronic display device.
  • 11. The floor display system of claim 1, wherein a housing of the floor display system is deformable to transfer a force to the weight measuring device.
  • 12. The floor display system of claim 1, wherein the floor display system includes reflective properties.
  • 13. A floor display system comprising: an electronic display device;wherein the floor display system is capable of displaying arbitrary content including graphical images and verbal information on the electronic display device,and further wherein the electronic display device includes a reflective technology.
  • 14. The floor display system of claim 13, wherein the reflective technology includes reflective LCD.
  • 15. The floor display system of claim 13, wherein the reflective technology includes electronic ink.
  • 16. The floor display system of claim 13, wherein the reflective technology includes magnetic ink.
  • 17. The floor display system of claim 13, wherein the reflective technology includes digital ink.
  • 18. The floor display system of claim 13, further comprising a supplementary light source to activate the reflective technology.
  • 19. The floor display system of claim 18, wherein the supplementary light source is movable along a track.
  • 20. The floor display system of claim 13, further comprising a weight measuring device, wherein the floor display system is further capable of displaying information relating to the weight of an object measured by the weight measuring device on the electronic display device.
Parent Case Info

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 60/612,149, filed Sep. 23, 2004. Further, this application is a continuation-in-part of co-pending application Ser. No. 11/199,130, filed Aug. 9, 2005, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 60/599,878, filed Aug. 10, 2004. Application Ser. No. 11/119,130 is a continuation-in-part of co-pending application Ser. No. 11/002,276, filed Dec. 3, 2004, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application 60/526,271, filed Dec. 3, 2003. Application Ser. No. 11/002,276 is a continuation-in-part of application Ser. No. 10/454,631, filed Jun. 5, 2003, and issued as U.S. Pat. No. 7,009,523 on Mar. 7, 2006, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application 60/385,579 filed Jun. 5, 2002. application Ser. No. 10/454,631 is a continuation-in-part of application Ser. No. 10/438,923, filed May 16, 2003, and issued as U.S. Pat. No. 6,982,649 on Jan. 3, 2006, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application 60/378,070, filed May 16, 2002. Application Ser. No. 10/438,923 is a continuation-in-part of application Ser. No. 10/285,639, filed Nov. 1, 2002, and issued as U.S. Pat. No. 6,873,266 on Mar. 25, 2005, which is a continuation of application Ser. No. 10/137,357, filed May 3, 2002, and issued as U.S. Pat. No. 6,507,285 on Jan. 14, 2003. Application Ser. No. 10/137,357 is a continuation of application Ser. No. 09/767,846, filed Jan. 24, 2001, and issued as U.S. Pat. No. 6,417,778 on Jul. 9, 2002. Application Ser. No. 09/767,846 is a continuation of application Ser. No. 09/418,752, filed Oct. 15, 1999, and now abandoned. Application Ser. No. 09/418,752 is a continuation-in-part of application Ser. No. 09/304,051, filed May 4, 1999, and issued as U.S. Pat. No. 6,219,876 on Apr. 24,2001. Moreover, this application is a continuation-in-part of co-pending application Ser. No. 10/759,167, filed Jan. 20, 2004, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 60/441,408, filed Jan. 22, 2003. Application Ser. No. 10/759,167 is a continuation-in-part of application Ser. No. 10/682,435, filed Oct. 10, 2003, and issued as U.S. Pat. No. 6,917,301 on Jul. 12, 2005, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional applications identified as follows: application Ser. No. 60/418,626, filed Oct. 12, 2002; application Ser. No. 60/428,387, filed Nov. 21, 2002; and application Ser. No. 60/429,044, filed Nov. 23, 2002. Application Ser. No. 10/682,435 is a continuation-in-part of co-pending application Ser. No. 10/438,923, filed May 16, 2003. Each of the above-identified applications and patents is incorporated herein in its entirety by reference.

US Referenced Citations (117)
Number Name Date Kind
2191704 Bennett Feb 1940 A
2254830 Schloss Sep 1941 A
2282672 Nelson May 1942 A
2512310 Corson Jun 1950 A
2800215 Bennett Jul 1957 A
2843868 Borgstorm Jul 1958 A
2919456 Spivey Jan 1960 A
3078490 Etcher Feb 1963 A
3083393 Nappi Apr 1963 A
3141522 Fitzpatrick Jul 1964 A
3183116 Schaar May 1965 A
3300275 Lorman Jan 1967 A
3400421 Nappi et al. Sep 1968 A
3435481 Kessler Apr 1969 A
3501797 Nappi Mar 1970 A
3517407 Wyant Jun 1970 A
3578738 Hughes May 1971 A
3663980 Conklin May 1972 A
3665543 Nappi May 1972 A
3696459 Kucera et al. Oct 1972 A
3699926 Stockl Oct 1972 A
3717897 Amos et al. Feb 1973 A
3785102 Amos Jan 1974 A
3886620 Miller et al. Jun 1975 A
3906578 Huber Sep 1975 A
3909996 Ettinger, Jr. et al. Oct 1975 A
3916401 Freeman Oct 1975 A
3930084 Shields Dec 1975 A
4107811 Imsande Aug 1978 A
4126854 Sheridon Nov 1978 A
4143103 Sheridon Mar 1979 A
4143194 Wihksne Mar 1979 A
4328275 Vargo May 1982 A
4353944 Tarui Oct 1982 A
4421809 Bish et al. Dec 1983 A
4435451 Neubert Mar 1984 A
4439474 Sagel Mar 1984 A
4482593 Sagel et al. Nov 1984 A
4484250 Rzepecki et al. Nov 1984 A
4559250 Paige Dec 1985 A
4564546 Jones Jan 1986 A
4567481 Meier et al. Jan 1986 A
4576244 Zeigner et al. Mar 1986 A
4609580 Rockett et al. Sep 1986 A
4614679 Farrington et al. Sep 1986 A
4665342 Topp et al. May 1987 A
4707895 Lang Nov 1987 A
4720789 Hector et al. Jan 1988 A
4752114 French Jun 1988 A
4773492 Ruzumna Sep 1988 A
4798754 Tomek Jan 1989 A
4822669 Roga Apr 1989 A
4831242 Englehardt et al. May 1989 A
4853678 Bishop, Jr. et al. Aug 1989 A
4917975 De Guzman Apr 1990 A
4959265 Wood Sep 1990 A
5018235 Stamatiou May 1991 A
5071628 Alazet Dec 1991 A
5142733 Mogez Sep 1992 A
5161041 Abileah et al. Nov 1992 A
5204159 Tan Apr 1993 A
5293660 Park Mar 1994 A
5297353 Ghalayini Mar 1994 A
5335788 Beasley et al. Aug 1994 A
5344693 Sanders Sep 1994 A
5460381 Smith et al. Oct 1995 A
5461748 Koiduka Oct 1995 A
5500267 Canning Mar 1996 A
5556685 Swicegood, Jr. Sep 1996 A
5561446 Montlick Oct 1996 A
5562580 Beasley et al. Oct 1996 A
5571626 Cumming et al. Nov 1996 A
5589246 Calhoun Dec 1996 A
5604027 Sheridon Feb 1997 A
5613313 Homan et al. Mar 1997 A
5620003 Sepponen Apr 1997 A
5646818 Hahn Jul 1997 A
5658637 Volz Aug 1997 A
5703564 Begum et al. Dec 1997 A
5723204 Stefik Mar 1998 A
5747133 Vinod et al. May 1998 A
5805117 Mazurek et al. Sep 1998 A
5815995 Adams Oct 1998 A
5816550 Watanabe et al. Oct 1998 A
5826874 Teitell et al. Oct 1998 A
5839976 Darr Nov 1998 A
5848830 Castle et al. Dec 1998 A
5869350 Heeger et al. Feb 1999 A
5885684 Hefner et al. Mar 1999 A
5886474 Asai et al. Mar 1999 A
5945502 Hsieh et al. Aug 1999 A
5971761 Tillman, Sr. Oct 1999 A
6001456 Newland Dec 1999 A
6010429 Prueitt Jan 2000 A
6038465 Melton, Jr. Mar 2000 A
6084526 Blotky et al. Jul 2000 A
6219876 Blum Apr 2001 B1
6233776 Blum et al. May 2001 B1
6336136 Harris Jan 2002 B1
6353291 Borgogno et al. Mar 2002 B1
6387061 Nitto May 2002 B1
6417778 Blum et al. Jul 2002 B1
6538215 Montagnino et al. Mar 2003 B1
6615526 Pitcher et al. Sep 2003 B1
6617530 Lin Sep 2003 B1
6641139 Lamberti et al. Nov 2003 B1
6753830 Gelbman Jun 2004 B1
6873266 Blum et al. Mar 2005 B1
6914540 Gongolas Jul 2005 B1
6917301 Blum et al. Jul 2005 B1
6940418 Blum et al. Sep 2005 B1
6963035 Honda et al. Nov 2005 B1
6982649 Blum et al. Jan 2006 B1
20010011399 Blum et al. Aug 2001 A1
20030066073 Rebh Apr 2003 A1
20040004827 Guest Jan 2004 A1
20040222026 Kohn et al. Nov 2004 A1
Foreign Referenced Citations (57)
Number Date Country
3147113 Nov 1981 DE
87 01 817.9 Apr 1987 DE
3 923 959 Oct 1990 DE
3 915 254 Nov 1990 DE
40 06 781 Sep 1991 DE
4135877 May 1993 DE
298 11 821 Oct 1998 DE
0 009 891 Apr 1980 EP
0 188 005 Jul 1986 EP
0 199 537 Oct 1986 EP
0 202 846 Nov 1986 EP
0 353 139 Jan 1990 EP
0 354 281 Feb 1990 EP
0 359 478 Mar 1990 EP
0 365 869 May 1990 EP
0 374 860 Jun 1990 EP
0 421 258 Apr 1991 EP
0 448 768 Oct 1991 EP
0 512 904 Nov 1992 EP
0 514 191 Nov 1992 EP
0 554 641 Aug 1993 EP
0 573 277 Dec 1993 EP
0 624 125 Nov 1994 EP
0 624 681 Nov 1994 EP
0 648 834 Apr 1995 EP
0 721 176 Jul 1996 EP
0 751 213 Jan 1997 EP
0 794 244 Sep 1997 EP
0 839 900 May 1998 EP
0 895 745 Feb 1999 EP
0 971 064 Jan 2000 EP
2 532 095 Feb 1984 FR
319 416 Sep 1929 GB
433 133 Aug 1935 GB
2 182 242 May 1987 GB
2 263 003 Jul 1993 GB
4 144 532 May 1992 JP
6-90891 Apr 1994 JP
6 189 890 Jul 1994 JP
8056810 Mar 1996 JP
08-239988 Sep 1996 JP
10-057728 Mar 1998 JP
11-109901 Apr 1999 JP
2000-105558 Apr 2000 JP
2002-00059 Jul 2000 JP
9108701 Jun 1991 WO
9320536 Oct 1993 WO
0007811 Feb 2000 WO
0016682 Mar 2000 WO
0079871 Apr 2000 WO
0029209 May 2000 WO
0127909 Feb 2001 WO
0177746 Oct 2001 WO
0211110 Feb 2002 WO
0222972 Mar 2002 WO
02065451 Aug 2002 WO
0019871 Apr 2003 WO
Related Publications (1)
Number Date Country
20060049955 A1 Mar 2006 US
Provisional Applications (9)
Number Date Country
60612149 Sep 2004 US
60599878 Aug 2004 US
60526271 Dec 2003 US
60441408 Jan 2003 US
60429044 Nov 2002 US
60428387 Nov 2002 US
60428387 Nov 2002 US
60385579 Jun 2002 US
60378070 May 2002 US
Continuations (4)
Number Date Country
Parent 10137357 May 2002 US
Child 10285639 US
Parent 09767846 Jan 2001 US
Child 10137357 US
Parent 09418752 Oct 1999 US
Child 09767846 US
Parent 09304051 May 1999 US
Child 09418752 US
Continuation in Parts (7)
Number Date Country
Parent 11199130 Aug 2005 US
Child 11231772 US
Parent 11002276 Dec 2004 US
Child 11199130 US
Parent 10759167 Jan 2004 US
Child 11002276 US
Parent 10682435 Oct 2003 US
Child 10759167 US
Parent 10454631 Jun 2003 US
Child 10682435 US
Parent 10438923 May 2003 US
Child 10454631 US
Parent 10285639 Nov 2002 US
Child 10438923 US