This application incorporates by reference, in their entireties, the enabling disclosures of U.S. Pat. No. 9,376,997 entitled “EFI Throttle Body With Side Fuel Injectors,” U.S. Pat. No. 9,115,671 entitled “Hybrid carburetor and fuel injection assembly for an internal combustion engine,” U.S. patent application Ser. No. 14/156,813 entitled “Fuel Injection Throttle Body,” U.S. Design patent application Ser. No. 29/572,684 entitled “EFI Throttle Body,” and U.S. Design patent application Ser. No. 29/572,692 entitled “EFI Throttle Body.”
Present embodiments related to throttle body fuel injection systems intended to replace existing carburetors. More specifically, present embodiments relate to retrofitting carbureted engines with electronic fuel injection (EFI) which may be mounted on a manifold of an internal combustion engine and have numerous features including small size, improved performance, ease of installation and the like.
Replacement throttle body systems are utilized to provide carburetor replacement while having improved performance of electronic fuel injection. This is desirable for higher performance engines or improving performance and consistency of older engines.
However, when installing these systems, there are multiple variables related to size of throttle body, space on the engine and relative to the vehicle hood, space relative to surrounding engine components.
Prior art devices are often fully mechanical or hydraulic which over time can lead to decrease in proper function. Further, variations in atmospheric temperature and pressure, engine temperature, load and speed are all variable rendering difficult to maximize efficiency and/or performance of prior art carburation. For example, cold engine condition, an engine at idle, and an engine at wide-open throttle all require a rich fuel-air mixture. However, warm engine at cruise requires a lean fuel-air mixture. The airflow also varies greatly, as much as 100 times, between wide-open throttle and idle condition. Still another variable may be fuel formulations and characteristics.
It would be desirable to improve consistency of operation with an engine throttle body to improve carburetion while also improving performance and/or efficiency.
It would also be desirable to provide a throttle body which may be used with a variety of engine manufacturers and fit within engine compartments of a variety of vehicles.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.
Embodiments relate to carburetor retrofit fuel injection systems.
Present embodiments provide a throttle body assembly which may be used with a variety of engines of different manufacturers. The throttle body assembly may be used to replace mechanical or hydraulically controlled carburetors with electronic fuel injection. The throttle body assembly may provide improved fuel pathways through and about the throttle body in order to move fuel to opposed side. The throttle bodies may have improved configuration of the fuel injectors. Further, the throttle body may have computer mounted on the throttle body and a notch formed in the throttle body to define a wire routing pathway from the computer to the injectors.
It should be appreciated that the fuel injection system may include a main throttle body and one or more fuel component covers. These fuel component covers may be oriented on the right and left sides of the main body, the front and back sides, or in any other configuration. The fuel component covers may be fluidly coupled by an external fuel crossover tube or conduit. An external fuel crossover tube or conduit may provide flexibility in fuel routing, alleviate some potential packaging issues, avoid possible casting issues such as porosity, and is serviceable.
The system may be scalable for a single barrel, a two barrel application or a four barrel application, or more. The system may also be scalable as to the number of stacked fuel injectors based on the engine performance requirements.
According to some embodiments, an electronic fuel injection throttle body assembly comprises a throttle body having an upper inlet and a lower outlet configured to mount to an internal combustion engine, at least one bore extending through the throttle body, a first fuel injector disposed at least partially within the throttle body at a first position, a second fuel injector disposed at least partially within the throttle body at a second position, the second position substantially vertically aligned with the first position, the first fuel injector and the second fuel injector directing fuel into a channel of at least one fuel distribution ring, the at least one fuel distribution ring having a plurality of fuel apertures directing fuel into a bore of the throttle body, a throttle valve disposed within the bore and at a lower elevation than the fuel injectors toward the outlet side of the throttle body and, a throttle lever assembly disposed on a side of the throttle body, a shaft extending from the throttle lever assembly toward the bore to control a position of the throttle valve.
Optionally, the following features may be used with the EFI throttle body assembly either alone or in combination with other of the following features. The at least one bore may be two bores, each of the bores having a valve and the first and second injectors. The at least one bore may be four bores, wherein each of the bores has a valve and the first and second injectors. The electronic fuel injection throttle body assembly may further comprise an electronic control unit in electrical communication with the first and second fuel injectors. The electronic fuel injection throttle body assembly may further comprise at least one fuel component cover with fuel passages therein, the at least one fuel component cover being connectable to the throttle body for fuel communication with the fuel injectors. The electronic fuel injection throttle body assembly may further comprise a second fuel component cover. The at least one fuel component cover and the second fuel component cover may be connected by an external fuel conduit. The fuel injectors may extend in an alignment direction which is parallel to the shaft. The fuel injectors may extend in a downward direction through the throttle body.
According to some embodiments an electronic fuel injection throttle body assembly, comprises a throttle body having an upper inlet side and a lower outlet side, the throttle body configured to mount to an internal combustion engine, at least one bore may extend through the throttle body, a fuel component cover located on a first side of the throttle body having: a lower fuel inlet passage, a connecting fuel passage extending upwardly from the fuel inlet passage to an upper fuel passage, the upper fuel passage delivering fuel to an external fuel conduit extending from the fuel component cover to at least one of a second side of the throttle body or a pressure regulator; an electronic control unit mounted to the throttle body and a cover mounted over the electronic control unit, the cover and the electronic control unit positioned on a side of the throttle body other than the first side and the second side.
Optionally, the following features may be used with the EFI throttle body assembly either alone or in combination with other of the following features. The electronic fuel injection throttle body assembly may further comprise a second fuel component cover on a second side of the throttle body. The second fuel component cover may have a second fuel inlet in communication with the external fuel conduit. The electronic fuel injection throttle body assembly may further comprise the pressure regulator disposed in fluid communication with the second inlet at the second side of the throttle body. The electronic fuel injection throttle body assembly may further comprise an outlet in fluid communication with the pressure regulator. The electronic fuel injection throttle body assembly wherein the pressure regulator is concealed within and removable from a second fuel component cover. The electronic control unit may be mounted to the throttle body, mounted within the cover or a combination thereof. The pressure regulator may be one of mounted in a second fuel component cover or an externally mounted pressure regulator.
According to some embodiments, an electronic fuel injection throttle body assembly comprises a throttle body having an upper inlet side and a lower outlet side, the throttle body configured to mount to an internal combustion engine, at least one bore extending through the throttle body, a fuel inlet passage located on one side of the throttle body, an external fuel conduit which passes fuel from the first fuel inlet on the one side, to a second fuel inlet passage on a second side, a fuel outlet on the second side, an electronic control unit mounted to the throttle body and a cover mounted over the electronic control unit, the cover and the electronic control unit mounted on a side of the throttle body other than the first side and the second side, a notched area of the throttle body defining a wire pathway from the electronic control unit to within a covered area having at least one fuel injector.
Optionally, the electronic control unit may be one of mounted to the throttle body, mounted within the cover or a combination thereof.
All of the above outlined features are to be understood as exemplary only and many more features and objectives of a throttle body fuel injection system or assembly may be gleaned from the disclosure herein. Therefore, no limiting interpretation of this summary is to be understood without further reading of the entire specification, claims and drawings, included herewith.
In order that the embodiments may be better understood, embodiments of the throttle body fuel injection system will now be described by way of examples. These embodiments are not to limit the scope of the claims as other embodiments of the throttle body fuel injection system will become apparent to one having ordinary skill in the art upon reading the instant description. Non-limiting examples of the present embodiments are shown in figures wherein:
It is to be understood that the electronic fuel injection throttle body assembly is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The throttle body assembly is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
Referring now in detail to the drawings, wherein like numerals indicate like elements throughout several views, there are shown in
With reference to
The EFI throttle body assembly 110 is configured to be compact allowing use in a variety of configurations. Due to the wide variety of engine manufactures and vehicle types and sizes, it is desirable to provide a structure which may be used in many of these vehicles/engines. This also requires consideration of space relative to the engine hood and space relative to surrounding engine components. It may also be desirable to provide a device of minimal height, for example less than 6 inches, a forward to rear length of less than about 10 inches and a side to side length of less than 11 inches. These dimensions are merely illustrative of a non-limiting embodiment, but provide a compact design desirable for use across many engine sizes and vehicle types.
With reference to
The base 122 may also include various pipe ports where for example some vehicle engines require vacuum ports. For example, a manifold vacuum port, distributor spark and other may be provided along, or near the base 122 and on the throttle body 120. The ports may be plugged at time of manufacture and unplugged by the end user to make these ports functional.
The depicted embodiment shows a four barrel throttle body assembly 110, however, the present throttle body assembly 110 is scalable so that it may include one barrel, two barrels, four barrels as shown or more. These barrels 140 are also referred to as bores 140 throughout this description. Additionally, more than one throttle body assembly 110 may be used in the engine depending on the engine type and configuration of intakes.
The front of the throttle body assembly 110 is shown in the instant view. For purpose of reference of description, but not limiting, the front 126 of the throttle body assembly 110 is shown and the rear 128 is shown in
The throttle body 120 also comprises sides 127, 129 (
In addition to the fuel passage componentry in the component covers 131, 132, these structures also cover fuel injectors 1170 (
Further for purpose of clarification, the fuel injector 1170 (
Also shown extending between the fuel component covers 131, 132 is an external fuel conduit 150 which provides a fuel pathway from one side of the throttle body 120 to a second side, in this instance from side 129 to side 127. The fuel conduit 150 is not contained within the body 120 and is not cast or machined in the body 120. Thus the conduit may also be considered modular as it is replaceable and may further be capable or re-routing if necessary.
Also shown at the lower side 129 of the assembly 110 is a throttle lever assembly 136. The assembly 136 is in communication with a mechanical linkage for example, which causes movement of the lever assembly 136 and specifically a shaft 138 connected to the lever assembly 136. With rotation of the shaft 138 (
Referring now to
The fuel component cover 132 is also shown in
An external accessory port 144 may be used to accommodate accessories such as instrumentation like pressure gauges, pressure transducers and the like. Other accessories may be outfitted as well.
Large double-line arrows are shown on the exterior of the fuel component cover to depict fuel flow therein. The fuel flow passes from the inlet 142 into the component cover 132 and continues horizontally through the lower passage. Once the lower passage fills with fuel, the fuel follows a vertical passage which leads to the upper passage. The upper passage fills with fuel and the fuel moves to the external fuel conduit 150 and around the throttle body 120 to the opposite side where the second component cover 131 is positioned. The component cover 131 receives fuel in the upper passage, and then moves to the lower passage through the vertical passage therein. Connected to the component cover 131 is a pressure regulator 154. This pressure regulator 154 can be set to allow fuel to flow from the outlet of the component cover 131 when the fuel pressure reaches a certain level. A fitting 159 is also shown in fluid communication with the regulator 154 to allow fluid flow return to the fuel tank.
Also shown in
Advantageously, fuel may be supplied from an external source to the top fuel passage or bottom fuel passage. For example if an engine uses a dropped base air cleaner, fuel may be supplied to the bottom fuel passage for additional clearance. Conversely, if there are space constraints near the base 122 of the throttle body 120, for instance plumbing for a nitrous system or the like, then fuel may be supplied to a top fuel passage. As discussed below, in one embodiment, different fuels or fluids may be supplied simultaneously to the top and bottom fuel passages. The fuel passages may be sized the same as an external supply hose that connects with the system to optimize fuel flow to the one or more fuel injectors.
With reference now to
The first passage 160 provides fuel flow to two lower injector ports 170, 172 and the corresponding injectors. As the passage 160 fills with fuel, the fuel moves through the internal connecting passage 162. In the instant embodiment, the internal connecting passage 162 is substantially vertical but the passage need not be solely vertical as the path may also be angled or curved and changing elevation.
At the second elevation, the internal connecting passage 162 reaches the second passage 164. At this second elevation, the passage 164 extends laterally, to two additional fuel injector ports 171, 173 and the corresponding injectors. The fuel injector ports 171, 173 and respective injectors are vertically stacked above the lower injector ports 170, 172 and respective injectors. Thus for each bore 140, where two or more injectors are required for each bore 140, there is a stacked arrangement of injectors. The lower passage 160 provides fuel to the lower injector and the upper passage 164 provides fuel to the upper injector. As shown in the instant embodiment, there are two bores 140 on each side of an axis extending from front 126 to rear 128. Thus in the section view of
With reference to
After filling the upper passage 164, the fuel moves through the external crossover conduit 150 to the fuel component cover 131.
Also shown in this figure is a wire routing tray 180 which maintains cable routing between the electronic control unit 190 (
Referring now to
The injectors 170, 170′ deliver fuel as directed by the electronic control unit 190 to the bores 140. The bores 140 include apertures 175 through which the fuel passes to a fuel ring or sleeve 152. The ring or sleeve 152 is generally cylindrical in shape and has hollowed interior with open ends. The ring or sleeve 152 seals the hole 175 so that fuel is directed through channel 153 (
With reference additionally to
Also shown within the ring 152 is a groove 157 which may be used to move the ring 152 during installation. A tool may be inserted from one end of the bore 140 (
As noted previously, the embodiment of
With this in mind, and now with reference to
As shown more clearly in the section view of
Either of these rings 152, 252 are substantially cylindrically shaped and hollow. The rings 152, 252 may be formed in the shape of a substantially cylindrically shaped inner wall or may alternatively have a venture shape. The upper ends of the rings 152, 252 may also have a slight taper along at least the outer surface to improve sealing of the rings within the bores 140.
Further, the height of the rings 152, 252 may also be shorter than the length of the bores 140. It may be desirable to keep the rings 152, 252 as short as possible and negate any need to machine an additional opening through the rings for an internal air temperature sensor 192, (
With reference briefly to
Referring now to
Also as shown in the end view, the port 159 may be positioned off-center relative to the cover 166. The cover 166 is also clockable, or rotatable, in 90 degrees increments to rotate the position of the port 159. The cover 166 may comprise one or more fasteners 165 which may be removed and reinstalled to rotate the cover 166 into a position wherein the port 159 does not interfere with other parts. Thus, depending on the surrounding equipment in the engine, the port 159 position may be altered so as to limit interference or otherwise increase clearance relative to either or both of the engine compartment or other engine components.
Also shown in
With reference to
Additionally, another advantage of the present assembly provides that the regulator 154 may be removable. This may be desirable if for example the regulator operates at a fixed, preselected value, but an end user would like a different operating pressure. In order to do so, the cover 166 may be removed and the regulator 154 may also be removed from inside the component cover 131. As a result, when the regulator 154 is removed, an alternate external regulator may be utilized and placed in fluid communication, direct or indirect, with the port 159. Further, no other plugs, fittings or other plumbing hardware is needed within the fuel component cover 131.
Referring to
As shown in
Also depicted in
Still further,
Still further, the views show the distinction between the fuel injection ports 170-173 and 170′-173′ and the injectors 1170. In
As an alternative, rather than not machining all of the cast ports of each bore, all of the ports could be machined but the unused ports could be closed with a plug. In future use, an end user or a manufacturer could subsequently unplug any plugged ports for use of additional fuel injectors.
Referring now to
In various implementations, a processor or controller may be associated with one or more storage media (generically referred to herein as “memory” 152 e.g., volatile and non-volatile computer memory such as RAM, PROM, EPROM, and EEPROM, floppy disks, compact disks, optical disks, magnetic tape, etc.). In some implementations, the memory may be encoded with one or more programs that, when executed by the controller, perform at least some of the functions discussed herein. Memory may be fixed within a processor or controller or may be transportable, such that the one or more programs stored thereon can be loaded into a processor or controller so as to implement various aspects of implementations disclosed herein.
Also shown within the cavity between the cover 130 and the throttle body 120, is an intake air temperature (IAT) sensor 192. The IAT sensor 192 is operably connected to the electronic control unit 190, either by wired connection or by plug on the printed circuit board. The IAT sensor 192 extends through a hole in the throttle body toward the bore 140. The IAT sensor 192 does not extend through bore 140 and therefore does not substantively alter airflow characteristics of air moving through the bore 140. An o-ring or other sealing feature may be used with the IAT sensor 192 to inhibit moisture from entering the cavity along the IAT 192 wherein the ECU 190 is located. The IAT 192 is internal and integrated with the ECU 190, again for ease of installation by the end user, and with less likelihood of damage to the IAT 192.
Below the ring 252, the throttle shaft 138 and the valve plate 139. With additional reference to
With reference to
Extending from the injectors 1170 are wired connectors 197 and wires 198 which extend to the electronic control unit 190. The connector 197 connects to a connector 196 which is in electrical communication with the injector 1170. Through this wired connection with the electronic control unit 190, the injector 1170 may be directed to inject fuel by the ECU 190. The remainder of the wires are hidden by the component covers 131, 132 and routed behind the covers where possible.
One skilled in the art should now understand that the electronic fuel injection throttle body assembly 110 also comprises modular applications. By defining many common mounting points and features for the various throttle body subassemblies such as fuel component covers, main bodies, electronic control units, rings and injectors, interchangeability is increased which allows engineers to mix and match the subassemblies to create new throttle body assemblies for new applications.
These new applications may be desired to increase airflow, fuel capacity, fuel inlet/outlet plumbing configurations and mounting locations of various subcomponents to clear other external obstacles (such as air cleaner assemblies). These different applications may be further defined by characteristics such as engine size or configuration, which includes throttle bore number, size, orientation or mounting interface. The applications and characteristics may, in turn, dictate the size, number and placement and potentially concealment of the fuel injectors (if employed), the placement of the ECU (if employed) as well as the inclusion of an internal and/or integral fuel pressure regulator.
The modularity or interchangeability of parts (like a fuel component cover 131,132) allows for use on a 4 barrel throttle body or a 2 barrel versions to reduce engineering, tooling and manufacturing costs. This provides maximum flexibility to build variations of interchangeable parts that differ in size, fuel capacity, etc.
With this in mind, it may be desirable to provide modular features for the throttle body assembly to meet any number or combination of these desired characteristics and/or applications. For example, the position and number of fuel injectors may vary. As described previously, various number of injector ports may be cast or formed, but not all used in each application. Further, to deliver fuel to the fuel injectors, the fuel component covers may also be formed to deliver fuel to upper, lower or both elevation fuel injectors depending on the applications requirements.
Further, the throttle body 120 may also be machined to be used as an air valve only. That is, no injector ports, no fuel routed through the assembly. In this embodiment, separate fuel component covers function to provide wire/cable retention and concealment covers, providing same mounting pattern as fuel component covers 131, 132.
Further, regardless of injector configuration, the modular throttle body 120 may be machined in a fashion such that the electronic control unit 190 may or may not be mounted on the throttle body 120. Alternatively, the ECU may be mounted in the cover 130, or still further may be located remotely with a blank cover mounted on the throttle body 120.
Interchangeability of components also lends itself in the multiple assembly application front to back on an existing intake manifold. This is also referred to as a 2×4 application.
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the invent of embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teaching(s) is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms. The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases.
Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
The foregoing description of methods and embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the claims to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the embodiments and all equivalents be defined by the claims appended hereto.
This non-provisional patent application claims priority to and benefit of, under 35 U.S.C. § 119(e), U.S. Provisional Patent Application Ser. No. 62/414,139, filed Oct. 28, 2016 and titled “Carburetor Retrofit Fuel Injection System”, all of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62414139 | Oct 2016 | US |