Not Applicable.
Not Applicable.
The present invention relates in general to the manufacture of electronic, electromagnetic and electromechanical components and devices, and more particularly to an electronic gaming die.
Without limiting the scope of the invention, its background is described in connection with methods for manufacturing 3D objects and structures, more specifically 3D structural electronic, electromagnetic and electromechanical components and devices.
The recent introduction of MEMs-based accelerometers has enabled many new gaming and commercial electronics applications like enhanced features in cell phones and the Nintendo Wiimote. The introduction of the accelerometry into gaming dice has only recently been made possible by this new technology. Although a LED-lit 20 sided dice has been sold on websites like Thinkgeek, the electronics involved are basic and only involve one side (the 20) with a pressure sensor.
The present invention makes gaming dice more visually stunning and makes the dice outcome more obvious—an important feature in a color and lighting-rich environment such as a casino. The present invention is manufactured using 3D printing of dielectric structures with conductive traces serving as electrical interconnects.
More specifically, the present invention provides an electronic gaming die that includes an enclosure, a flexible substrate, a number of light emitting diodes, a sensor, a processor and a battery. The enclosure has N sides where N is equal to or greater than 4. The flexible substrate folds in a manner that leaves it with N sides and fits into an interior of the enclosure, wherein each side has an inner face, an outer face and is assigned an integer from 1 to N. The light emitting diodes are disposed on the outer face of each side of the flexible substrate, wherein the number of light emitting diodes equals the integer assigned to the side of the flexible substrate. The sensor is disposed on one of the inner faces of the flexible substrate. The processor is disposed on one of the inner faces of the flexible substrate and communicably coupled to the sensor and the one or more light emitting diodes. The battery is disposed on one of the inner faces of the flexible substrate and electrically connected to the one or more light emitting diodes, the sensor and the processor.
In addition, the present invention provides a method for manufacturing an electronic gaming die by first fabricating a flexible substrate. The flexible substrate folds into N sides where N is equal to or greater than 4, wherein each side has an inner face, an outer face and is assigned an integer from 1 to N. A number of light emitting diodes disposed on the outer face of each side of the flexible substrate such that the number of light emitting diodes equals the integer assigned to the side of the flexible substrate. A sensor is disposed on one of the inner faces of the flexible substrate. A processor is disposed on one of the inner faces of the flexible substrate and communicably coupled to the sensor and the one or more light emitting diodes. A battery is disposed on one of the inner faces of the flexible substrate and electrically connected to the one or more light emitting diodes, the sensor and the processor. Next, an enclosure having N sides is provided and the flexible substrate is folded such that the folded flexible substrate fits into an interior of the enclosure. The folded flexible substrate is inserted into the interior of the enclosure and the enclosure is sealed. This method can be implemented as a computer program embodied on a non-transitory computer readable medium wherein the steps are preformed using one or more code segments.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention. For example, the present invention is described with respect to the design of a six sided gaming die that includes a microprocessor and accelerometer in order to detect a roll, measure the direction of gravity and illuminate light emitting diodes (LED) on the upward face. The present invention, however, is not limited to a six sided gaming die or the specific design examples described herein.
To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an,” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
Now referring to
The flexible substrate 104 folds into N sides (see also
The electronic gaming die 100 may automatically enter a sleep mode whenever one or more sleep conditions occur and remain in the sleep mode until one or more wakeup conditions occur. For example, the one or more sleep conditions may include the sensor 108 not detecting motion for a specified period of time, the sensor 108 detecting a specified sleep sequence, the electronic gaming die 100 remains stationary for a specified period of time, etc. The sleep sequence can be orienting the dice for at least two seconds with the “one” side held up, followed by the “two”, followed by the “three” and so on, or any other desired sequence. The low power mode may involve a staged power down of the electronic gaming die 100 (e.g., component-by-component starting with deactivating the light emitting diodes 106). The one or more wakeup conditions may include the sensor 108 detecting motion after the sleep mode has been entered or a specific time period thereafter, the sensor 108 detecting a specified wakeup sequence, the electronic gaming die 100 being “rolled” after the sleep mode has been entered or a specified time period thereafter, etc.
Now also referring to
Referring now to
Each side 400 of the flexible substrate 104 is assigned an integer from 1 to N (e.g., 4001 to 4006). A number of light emitting diodes 106 are disposed on the outer face 420 of each side 400 of the flexible substrate 104. The number of light emitting diodes 106 equals the integer assigned to the side 400 of the flexible substrate 104 and the corresponding side of the enclosure 102. For example and as shown in
As shown in
The flexible substrate 104 can be fabricated using traditional flexible circuit board methodologies or fabricated using 3D printing process wherein the electrical conductors that connect the various components are printed conductive traces that can traverse one or more folds of the flexible substrate 104. An example of such a 3D printing system is described in U.S. patent application Ser. No. 13/343,651, which is incorporated by reference in its entirety. The three-dimensional printing device creates one or more layers of a three-dimensional substrate by depositing a substrate material in a layer-by-layer fashion. The three-dimensional printing device can be a fused deposition modeling machine, a selective laser sintering machine or other suitable device.
Referring now to
Each side 400 of the flexible substrate 104 is assigned an integer from 1 to N (e.g., 4001 to 4006). A number of light emitting diodes 106 are disposed on the outer face 420 of each side 400 of the flexible substrate 104. The number of light emitting diodes 106 equals the integer assigned to the side 400 of the flexible substrate 104 and the corresponding side of the enclosure 102. For example and as shown in
As shown in
The flexible substrate 104 can be fabricated using traditional flexible circuit board methodologies or fabricated using 3D printing process wherein the electrical conductors that connect the various components are printed conductive traces that can traverse one or more folds of the flexible substrate 104. An example of such a 3D printing system is described in U.S. patent application Ser. No. 13/343,651, which is incorporated by reference in its entirety. The three-dimensional printing device creates one or more layers of a three-dimensional substrate by depositing a substrate material in a layer-by-layer fashion. The three-dimensional printing device can be a fused deposition modeling machine, a selective laser sintering machine or other suitable device.
Now referring to
Each side 400 of the flexible substrate 104 is assigned an integer from 1 to N (e.g., 4001 to 4006). A number of light emitting diodes 106 are disposed on the outer face 420 of each side 400 of the flexible substrate 104. The number of light emitting diodes 106 equals the integer assigned to the side 400 of the flexible substrate 104 and the corresponding side of the enclosure 102. For example and as shown in
The sensor 108 is disposed the outer face (e.g., 4207) of one of the added sides 1002. The processor 110 is disposed on outer face (e.g., 4208) of the one of the added sides 1004. Additional components, such as resistors R4, R5, R7 and R8 are disposed on the outer face (e.g., 4209) of one of the added sides 1006. Two leads 402 are used to connect the circuit to the battery 112 (not shown). An additional side 404 is used to mount the interface 118 (e.g., mini USB-A, mini USB-b, micro USB-A, micro USB-b, etc.) and orient the interface 118 to be accessible via the opening 406 in side 4002. As will be appreciated by those skilled in the art, the circuit includes various capacitors Cx, resistors Rx, electrical traces (conductors) and other desired components. In addition, one or more inner faces 420 or one or more outer faces 440 of the flexible substrate 104 can be coated with an ultraviolet photocurable polymer to further protect the various components and the flexible substrate 104.
The flexible substrate 104 can be fabricated using traditional flexible circuit board methodologies or fabricated using 3D printing process wherein the electrical conductors that connect the various components are printed conductive traces that can traverse one or more folds of the flexible substrate 104. An example of such a 3D printing system is described in U.S. patent application Ser. No. 13/343,651, which is incorporated by reference in its entirety. The three-dimensional printing device creates one or more layers of a three-dimensional substrate by depositing a substrate material in a layer-by-layer fashion. The three-dimensional printing device can be a fused deposition modeling machine, a selective laser sintering machine or other suitable device.
Now referring to
As previously mentioned, the flexible substrate can be fabricated using a conductive ink micro-dispensing process wherein the electrical conductors that connect the various components are printed conductive traces that can traverse one or more folds of the flexible substrate 104. An example of such a 3D printing system is described in U.S. patent application Ser. No. 13/343,651, which is incorporated by reference in its entirety. The three-dimensional printing device creates one or more layers of a three-dimensional substrate by depositing a substrate material in a layer-by-layer fashion. The three-dimensional printing device can be a fused deposition modeling machine, a selective laser sintering machine or other suitable device. Other machines may include a micro-machining machine, a CNC micro-machining machine, a micro electrical discharge machining machine, an electrochemical machining machine, a direct write proton micro-machining machine, a laser ablation machine, a radiative source, an ultrasonic cutting machine, a hot wire cutting machine, a waterjet machine, an etching machine, a deep reactive ion etching machine, a plasma etching machine, a crystal orientation dependent etching machine, a wet bulk micromachining machine, a UV-lithography or X-ray lithography (LIGA) machine, a hot embossing lithography machine, a precision mechanical sawing machine, a chemically assisted ion milling machine, a sand blasting machine or a cutting machine. A component placement machine can be used to place and assemble the various components. In addition, the system may include a slide, a conveyor or a robotic device that transports the components and electronic gaming die to each machine. Note that all of the machines can be integrated into a single machine.
The substrate material can be a thermoplastic material, another polymer material, a ceramic material, a metallic material, a mineral material, a glass ceramic material, a semi-conductor material, a nanomaterial, a biomaterial, an organic material, an inorganic material or any combination thereof. The thermoplastic material can be acrylonitrile butadiene styrene (ABS), ABSi, ABSplus, ABS-M30, ABS-M30i, polycarbonate (PC), PC-ABS, PC-ISO, polyphenylsulfone (PPSF/PPSU), ULTEM 9085 or any combination thereof. The another polymer material can be poly(methyl methacrylate) (PMMA), polypropylene, polyolefin, LL-PE, HDPE, polyvinyl acetate, polyester, polyamides, nylon, polyimides, polyketone, polyether ethyl ketone (PEEK), polybutadiene, polylactic acid, polycaprolactone, polyethylene terephthalate, liquid crystalline polymer (LCP), polystyrene, polyvinyl chloride, polyfluoroethylene, polydifluoroethylene, polytetrafluoroethylene, ZEONEX RS420, Eccostock HIK-TPO, co-polymers and block co-polymers of the previous, or any combination thereof.
It may be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
All publications, patents and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications, patents and patent applications are herein incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it may be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
This application is a continuation application of U.S. application Ser. No. 14/327,663, filed Jul. 10, 2014, the disclosure of which is incorporated herein by reference, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/845,334 filed on Jul. 11, 2013 incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D269984 | McKechnie | Aug 1983 | S |
4641840 | Larson | Feb 1987 | A |
4863789 | Arai | Sep 1989 | A |
5096532 | Neuwirth et al. | Mar 1992 | A |
5121329 | Crump | Jun 1992 | A |
5656905 | Tsai | Aug 1997 | A |
5694680 | Yamada et al. | Dec 1997 | A |
6457626 | Sheehan et al. | Oct 2002 | B1 |
6626364 | Taban | Sep 2003 | B2 |
6698089 | Finn et al. | Mar 2004 | B2 |
7017905 | Lindsey | Mar 2006 | B2 |
7334791 | Lindsey et al. | Feb 2008 | B2 |
7419630 | Palmer et al. | Sep 2008 | B2 |
7555357 | Holzwarth | Jun 2009 | B2 |
7556490 | Wicker et al. | Jul 2009 | B2 |
7646029 | Mueller | Jan 2010 | B2 |
7658603 | Medina et al. | Feb 2010 | B2 |
7959847 | Wicker et al. | Jun 2011 | B2 |
8123224 | Deruyter | Feb 2012 | B2 |
8252223 | Medina et al. | Aug 2012 | B2 |
9908037 | Muse | Mar 2018 | B2 |
20040151978 | Huang | Aug 2004 | A1 |
20050164778 | Cooney | Jul 2005 | A1 |
20060119542 | Ho | Jun 2006 | A1 |
20070187137 | Isebo | Aug 2007 | A1 |
20080224293 | Hin | Sep 2008 | A1 |
20080268942 | DeRuyter | Oct 2008 | A1 |
20080314626 | Moore | Dec 2008 | A1 |
20090020919 | Marsac | Jan 2009 | A1 |
20090102296 | Greene | Apr 2009 | A1 |
20090210101 | Hawkins et al. | Aug 2009 | A1 |
20100055895 | Zafiropoulo et al. | Mar 2010 | A1 |
20100058580 | Yasdani | Mar 2010 | A1 |
20100291304 | Becker | Nov 2010 | A1 |
20110121476 | Batchelder et al. | May 2011 | A1 |
20130170171 | Wicker et al. | Jul 2013 | A1 |
20130180450 | Hamilton et al. | Jul 2013 | A1 |
20140131944 | Lehavi | May 2014 | A1 |
20150014923 | Muse et al. | Jan 2015 | A1 |
Entry |
---|
Ahn, et al. “Anisotropic material properties of fused deposition modeling ABS” Rapid Prototyping Journal (2002) 8 (4) pp. 248-257. |
ASTM Standard F2792-12a. (2012). “Standard Terminology for Additive Manufacturing Technologies,” ASTM International, West Conshohocken, PA. |
Espalin, et al. “Fused deposition modeling of polymethylmethacrylate for use in patient-specific reconstructive surgery” Rapid Prototyping Journal, vol. 16, Issue 3, 2010. |
International Search Report and Written Opinion of KIPO for PCT/US2012/072100 dated Apr. 26, 2013, 9 pages. |
International Search Report and Written Opinion of KIPO for PCT/US2014/028206, dated Jun. 27, 2014, 10 pages. |
International Search Report and Written Opinion of KIPO for PCT/US2014/028106. dated Jun. 27, 2014. 12 pages. |
Lopes, Amit J_ “Hybrid manufacturing: Integrating stereolithography and direct print technologies,” Ph.D. Dissertation, The University of Texas at El Paso, 2010, 128 pages. |
Lopes, et al. “Integrating stereolithography and direct print technologies for 30 structural electronics fabrication” Rapid Prototyping Journal, vol. 18, Issue 2, 2012, pp. 129-143. |
Miettinen, et al. “Inkjet printed System-in-Package design and manufacturing” Microelectronics Journal, vol. 39, Issue 12, Dec. 2008, pp. 1740-1750. |
Olivas, et al. “Structural electronics through additive manufacturing and micro-dispensing” IMAPS National Conference, Oct. 2010. |
Roberson, et al. “Ohmic curing of printed silver conductive traces.” Journal of Electronic Materials (2012): 1-14. |
Roberson, et al. “Microstructural and Process Characterization of Conductive Traces Printed from Ag Particulate Inks,” Materials, vol. 4, Issue 6, 2011, pp. 963-979. |
Zein, et al. “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications” Biomaterials, vol. 23, Issue 4, 2002, pp. 1169-1185. |
Lopes, et al. “Expanding rapid prototyping for electronic systems integration of arbitrary form” 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, Aug. 14-16, 2006. |
Office Action, dated Dec. 2, 2016, regarding U.S. Appl. No. 14/327,663, 24 pages. |
Office Action, dated Jun. 29, 2017, regarding U.S. Appl. No. 14/327,663, 8 pages. |
Notice of Allowance, dated Oct. 19, 2017, regarding U.S. Appl. No. 14/327,663, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180140941 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
61845334 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14327663 | Jul 2014 | US |
Child | 15876084 | US |