The present application is based on, and claims priority from, Korean Application Serial Number 10-2005-0093392, filed on Oct. 5, 2005, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present invention relates to an electronic gearshift structure incorporated in a vehicular shift-by-wire system.
The shift-by-wire system is an advanced system that electronically controls the gear range by using an electronic shift lever, Electronic Control Unit (ECU), and actuator, which electrically makes the change of gear ratio via a mechanical linkage of the transmission and shift lever. The shift lever of the shift-by-wire system has no mechanical cable connection and should be equipped with a position sensor for generating an electronic signal according to a driver's manipulation. Under such construction, the manipulation force and/or shift feel of the lever is superior and the gears are shifted by a simple maneuver of a switch button.
The shift-by-wire system includes the gearshift lever typically moving along an H-shaped cavity, T-shaped cavity, or Step-gate path. However, a gearshift lever with an H or T-shaped cavity must be manipulated with a push button at a side of the knob for the operation of the lever. Also, the gear range can inadvertently be operated along the step-gate path. Once being shifted, the lever is fixed to the shifted position such that it is difficult to apply above shift paths to the shift-by-wire system.
A trigger type lever having two gear ranges in one direction has been used to overcome the above drawbacks. However, the lever is restored to its original position during the shifting. This tends to cause the driver to mismanage the lever.
Embodiments of the present invention provide an electronic gear shifter structure for a shift-by-wire system.
An electronic gear shifter structure for a vehicle shift-by-wire system comprises a shift lever that is manipulated for gear changes and equipped at one side surface thereof with a park “P” range switch. An indicator may be equipped at one side thereof with a gear range displayer for showing the present gear position according to the movement of the shift lever by a driver. A base plate may be situated underneath the shift lever and indicator.
For a better understanding of the nature and objects of the present invention, reference should be made to the following detailed description with the accompanying drawings, in which:
a is a constitutional view of an electronic gear shifter according to an embodiment of the present invention;
b is a detailed view of a gearshift lever illustrated in
a-2c depicts a shift pattern of an electronic gear shifter;
a is side view illustrating a movement of an electronic gear shifter;
b is front view illustrating a movement of an electronic gear shifter;
a illustrates a lateral pivot shaft of an electronic gear shifter;
b illustrates an anteroposterior pivot shaft of an electronic gear shifter; and
With reference to
A slider 25 is inbetween indicator 20 and base plate 10 for a smooth slide of shift lever 30.
Shift lever 30 includes a knob core 30b, a knob cover 30a enclosing the knob core, and a knob housing 30c in which the knob core is disposed.
Through a trigger method, shift lever 30 is returned to the center position after the shift manipulation. When the ignition key is turned on, shift lever 30 is set into an automatic-shifting mode.
A shift pattern of shift lever 30 according to the embodiment of the invention will be described in reference to
The upward movement of shift lever 30 sets a reverse “R” range, while the downward movement is a drive “D” range. The rightward shift of shift lever 30 represents a neutral “N” range for an automatic-shifting mode or a shift up (+) in case of a manual-shifting mode. The leftward shift of shift lever 30 represents a modification “M” range for selecting either the automatic-shifting mode or manual-shifting mode, or a shift down (−) in case of a manual-shifting mode. The moving path of shift lever 30 is illustrated in
Gear range displayer 50 includes, as illustrated in
With reference to
Referring back to
Primary position sensor 3a is performed in a Hall Magnet manner where hall sensors are located at each gear range for corresponding to the position change of a magnet 35. The hall sensors of primary position sensor 3a include an R detecting hall integrated circuit (IC) 31 for detecting the R range, a +/N detecting hall IC 32 for detecting the +/N range, an M/− detecting hall IC 33 for detecting the M/− range, and a D detecting hall IC 34 for detecting the D range.
In case of the malfunction of the primary position sensor, auxiliary position sensor 3b is further provided to detect the voltage value of the present position of shift lever 30 and then determine the present gear position via the detected value.
With reference to
Shift lever 30 can embody either an automatic shift or a manual shift depending on the vertical and lateral manipulation, and the range P is performed by switch 40 located at a side of the knob.
The shift pattern of the shift lever is set in the R (upward shift), D (downward shift), N (rightward shift), and M (leftward shift). The shift up (+) or shift down (−) is executed in the manual-shifting mode according to the +/−manipulation. The manual-shifting mode can be converted into the automatic-shifting mode by selecting either the R or D.
If the primary position sensor detects that the present selected switch is M/− in a manual-shifting mode, the shift down (−) is performed, however, if the present shift mode is in an automatic mode, the present mode is converted into the manual mode to perform the shift down (−).
In case the present selected switch is +/N in a manual mode, the shift up (+) is carried out, however, the N mode is performed in case the shift mode is in the automatic mode.
If the present selected switch is neither M/− nor +/N (i.e., if the R or D is selected) while the present shift mode is in a manual mode, the shift mode is converted into an automatic mode to perform the R or D range. If the present shift mode is in the automatic mode, the selected gear range, either R or D, is performed.
Thus, electronic gear shifter 100 for a shift-by-wire system of a vehicle can be implemented by a simple manipulation.
The technical concept of the present invention is not limited to the above embodiment but should be determined by a logical interpretation on the basis of the claims of the present invention.
As apparent from the foregoing, there is an advantage in that the electronic gear shifter for the vehicle is facilitated in manipulation and reduced in vibration during the gear shifting without recourse to a mechanical linkage. The park range is also performed by a simply manipulation of a button.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0093392 | Oct 2005 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6046673 | Michael et al. | Apr 2000 | A |
20030172757 | Yone | Sep 2003 | A1 |
20040216549 | Shiomi et al. | Nov 2004 | A1 |
20050109145 | Levin et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070137337 A1 | Jun 2007 | US |