This invention relates generally to lighting sources and more particularly to a light source with flasher and glow stick function.
Portable lighting is typically designed with the task in mind. Accordingly, flashlights are designed to focus a beam of light for peering into dark corners or cast light longer distances whereas lanterns are designed to cast light short distances but in all directions. One such general lighting source is the chemical-based glow stick. The glow stick embeds two or more chemicals within a hollow plastic tube that, when combined, fluoresce for a brief period of time along the length of the tube. To use the glow stick, the tube is bent so that a capsule containing one of the chemicals is broken. The tube is shaken to mix the two chemicals and start the fluorescence process. Light from this process is radiated out the sidewalls of the tube in all directions.
One disadvantage of chemical-based glow sticks is that they are unable to selectively turn off once activated other than the slow decay of light output over time once the chemical reaction causing fluorescence decreases and stops. Furthermore, such chemical-based devices are unable to flash in an off-on-off-on state, and thus may not confer as much safety advantage as a flashing light.
There is thus a desire to provide a glow stick-like device with the ability to glow and/or flash along a length of the lighting source.
In various representative aspects, the present invention describes an elongated lighting device.
A lighting device, constructed according to the invention, comprises a module having a light source at one end of the module and a power source and an actuator biased in an extended position on a surface of the module. The lighting device further includes an elongate glow stick housing comprising an end cap and an illuminated portion coupled together to form a cavity. The module is received within the cavity so that the light source is directed along an axis of the illuminated portion. Further, the end cap and illuminated portion are configured to be moveable relative to one another so as to change an axial length of the cavity, and a surface of the illuminated portion is configured to be moveable against the module so as selectively compress the actuator to a compressed position. In this configuration, the light source is activated when the actuator is in one of the extended position or compressed position, and the light source is deactivated when the actuator is in the other of the extended position or compressed position.
In another implementation of the invention, the lighting device comprises an elongate illuminated portion having translucent side walls spaced about a long axis of the illuminated portion. A light source is configured to direct light along a length of the illuminated portion and out the translucent side walls. An actuator extends in a biased position oppositely from the light source in a deactivated position. Further, a circuit is electrically coupled between the actuator and light source for activating the light to a first lighting function for so long as the actuator is moved to a compressed position, detecting the actuator being moved back to its biased position, and activating the light to a second lighting function for so long as the actuator is moved back to the compressed position.
In yet another implementation of the invention, the lighting device comprises a module having a light source at one end of the module and a power source. An actuator is positioned on a surface of the module opposite the light source for activating the light source. The lighting device further includes an elongate glow stick housing comprising an end cap and an illuminated portion coupled together, the module received within the end cap so that the light source is directed along a long axis of the illuminated portion. The illuminated portion has translucent side walls spaced about the long axis of the illuminated portion, where the side walls taper to a distal end of the illuminated portion so that side walls proximal to the end cap have a first diameter and the side walls distal to the end cap having a second diameter, wherein the second diameter is less than the first diameter so that the side walls move inwardly toward the long axis of the illuminated portion as they extend from the end cap.
The invention also includes a method for configuring an electronic glowstick lighting device having an elongate illuminated portion coupled along an axial length of the electronic glowstick to an end cap. The method comprises installing an integrated module within a cavity formed by the illuminated portion and end cap, where the integrated module has a light source at one end directing light along the illuminated portion and an actuator at the other end of the integrated module with a power source located between the light source and actuator. The actuator is in an extended, deactivated position, and is adapted to be forced during operation of the lighting device against a wall of the cavity to a compressed position and maintained in the compressed position. Movement of the actuator to the compressed position is detected and, responsive to this detection, the light source of the lighting device is activated in a first lighting function for so long as the actuator is in the compressed position. Movement of the actuator to an extended position is then detected and, responsive to this detection, the light source is deactivated.
The foregoing and other objects, features and advantages of the invention will become more readily apparent from the following detailed description of a preferred embodiment of the invention that proceeds with reference to the accompanying drawings.
In the embodiment shown, lighting device 10 has a generally tubular shape extended along a long axis 18 of the device. Illuminated portion 16 includes annular and translucent side walls 20 spaced about the long axis 18 that taper toward a distal end 22. In this fashion, side walls 20 proximal end cap 14 have a first diameter while side walls distal to the end cap have a second diameter, less than the first diameter, so that the side walls move inwardly toward long axis 18 as they extend from the end cap.
End cap 14, like illuminated portion 16, includes annular side walls terminating at one end at an outer wall 24, disposed generally perpendicular to the long axis of the device 10, so as to form a hollow cylinder. As will be appreciated from the discussion below, the end cap and illuminated portion are coupled together so as to form a cavity to hold and maintain electronics for operating the lighting device. The end cap can further include multiple decorative annular ribs 26 formed on its side walls, a pierced flange 28, and a lanyard or wrist-strap 30 attached to the flange 28.
Illuminated portion 16 includes annular threads 42 formed exteriorly on side walls 20 adjacent a proximal end 44 of the illuminated portion 16. Complementary threads 46 (
The end cap 14 and illuminated portion 16 are configured to be moveable relative to one another so as to change an axial length of the cavity 48. When threaded together as shown, rotating the end cap 14 in one direction about the illuminated portion 16 causes the cavity 48 in which module 32 is received to have a decreasing axial length as shown in
In the embodiment shown, facing surface 54 drives against the body of module 32 and forces actuator 38 to compress against inner wall 52. Actuator 38 may be maintained in this compressed position (
Electrical completion of the lighting circuit is done by operation of the actuator 38. Batteries 36 are coupled in series between two terminals 56 and 58. Actuator 38 is in constant electrical contact with terminal 56 via metal plate 60 that bridges across the module 32.
In one embodiment, shown in
The spacing of the contact portion 66 from terminal 58 is preferably linked to the pitch of the threads of threaded portions 42 and 46 so that rotation of the end cap 14 relative to the illuminated portion 16 by less than 90 degrees causes the actuator 38 to move to the compressed position and complete the circuit.
Operation of the actuator completely within cavity 48, and with no external button, has the advantage of simplifying manufacture of the shell of the lighting device as well as protect the module and related electrical components from water intrusion. Further, the lighting device 10 is less likely to be inadvertently activated or deactivated since it is less likely that the end cap would be turned as opposed to an external button accidentally pressed.
Operation of the lighting device 10 according to a preferred embodiment of the invention is illustrated in
Once the end cap 14 and illuminated portion 16 are twisted together a second time, circuit 40 drives the light source 34 to a second function in block 74 as by periodically supplying and then not supplying current to LED 34 to effect a flashing effect. If again the circuit is deactivated, and then reactivated, the function reverts to the first lighting function—e.g. constant ‘on’. The cycle then continues.
The end cap 14 and illuminated portion 16 are configured to be moveable relative to one another so as to change an axial length of the cavity 48. When threaded together as shown, rotating the end cap 14 in one direction about the illuminated portion 16 causes the cavity 48 in which module 132 is received to have a decreasing axial length as shown in
In the embodiment shown, facing surface 54 drives against the body of module 132 and forces actuator button 138 to compress against inner wall 52. Button 138 may be maintained in this compressed position (
An examplary circuit 40 includes an integrated circuit 100 programmed and/or hard wired to effect the functions herein described. Circuit 40 can include two RC pairs—e.g. capacitor C1 and resistor R1, and capacitor C2 and resistor R2—for effecting timing for a flashing effect of light source 34 under control of IC 100 in a second lighting function. Circuit 40 can further include a polarity protection means, such as diode D, for protecting the IC 100 in case of reverse bias when the batteries 36 are placed backwards within module 32. Circuit 100 is operative to detect each completion of the electrical circuit and each deactivation so that the circuit 100 can switch between the first lighting function and the second lighting function with successive operations.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. We claim all modifications and variation coming within the spirit and scope of the invention.