The present invention relates generally to hand-held devices. In particular the invention concerns user interfaces, especially user input means, in hand-held terminals and PDAs (Personal Digital Assistant).
Modern wireless communication systems such as GSM (Global System for mobile communications) and UMTS (Universal Mobile Telecommunications System) are capable of providing the users thereof with various types of services requiring or at least supporting also different means for active interaction. Mobile terminals are typically equipped with keypad type UI with a number of buttons associated with certain characters, numbers, symbols, actions etc. Additionally, a touch pad, a mouse, a pen-usable touch screen, voice command recognition, trackball/TrackPoint, and many other techniques have been suggested to be used in connection with contemporary terminal/PDAs for supporting easy-to-use and quick device control.
Most of the widely adopted solutions, however, rely on some kind of direct physical contact between the device and the user, as e.g. sound recognition-based solutions are not feasible alternatives in cases where either the privacy of the user is endangered considering e.g. public places, crowded meeting rooms etc due to the nature of audio input, or the technology as such does not work with a sufficient level of reliability with reference to e.g. noisy environments or to long and awkward, maybe too homogenous, voice instructions that can actually be more cleverly and reliably inputted via a quick selection button or through a menu element if available.
Ongoing trend with terminal devices such as mobile terminals and PDAs dictates that the overall size of the device should be generally minimized and, at the same time, the display size be maximized to enable e.g. livable visualization of pictures and videos with both reasonable resolution and quality (colour palette/maximum number of simultaneous colours on-screen etc). Thus, in order to keep the dimensions of the device as small as possible the keypad or corresponding touchable input means thereof and respectively any other space-requiring parts are often of almost annoyingly small size, and an average big-fingered user without substantial experience with or even interest in modern terminal devices as such may find using the fully-loaded but tiny device somewhat cumbersome.
Typical prior art mobile terminal 102 is disclosed in
In addition to the obvious compromise that has to be made concerning the different component's placement and sizing on the terminal surface, also other drawbacks exist in such a straightforward solution. Namely, character/symbol markings are in practise necessary on the keys/keypad area to indicate to the user the response that a press of a certain button initiates. The markings may wear over time and require renovation. Still, the markings are in practise permanent and more or less fix the low level response behind the buttons from further user adjustments. Admittedly software configurable key arrangements may be used but then the pre-printed symbols on the keys at least confuse the user if differing much from the tailored active key/button press -> symbol/response configuration.
Moreover, often a single button or a corresponding pressure sensitive area in a keypad has been associated with a plurality of actions to be performed depending on the number of detected presses within a certain time period. For character whereas two short presses within a predetermined period refer to another character, and so forth. It may happen when the display and the keypad/pressure sensitive areas are located near each other that the user's hand/finger at least partially disadvantageously masks the display and/or other parts of keypad from the user while pressing a certain button. Moreover, the user may forget upon pressing the button how many sequential presses are needed to a initiate or complete certain action, and the maximum allowed time period between the subsequent presses for attaining the following pre-programmed characters may expire when the user has to re-check the button output/markings between the presses. A related problem arises from the simple one-step press procedure; upon a false button press the user has to first correct the falsely taken action before being able to perform a new try.
Even the touch-screens contain some deficiencies in a form of inadequate optical performance and inborn structural weaknesses. Furthermore, even due to normal usage, the touch-screen collects fingerprints and related dirt that lowers the sensed picture quality. As to the various pen-input based UI devices, the small-sized pens tend to get lost and without them the devices can be really frustrating or near impossible to play with. Still further, learning to use pointing pens, which may slightly differ from a device to another, may take a while.
Accordingly, notwithstanding some clever character input means like predictive T9 text input in the existing terminal devices equipped with only a limited number of keys in a keypad or other buttons, the traditional keyboard/keypad style input is in many ways still unbeatable as to the usage speed, learning curve (especially based on previous typewriter/computer/phone use), and control accuracy, as long as the size aspect is not count. However, if the device size is to be minimized, it is evident that either the number of keyboard/keypad buttons must be reduced or at least the size of a single button cut down possibly to an annoying level.
The object of the present invention is to alleviate the defects of prior art solutions and to provide means for illustrative and fast device control being still easy to adopt.
The object is achieved by an arrangement in which a keyboard/keypad or separate keys (˜buttons) are organized on one side, e.g. back cover, of a hand-held device having a display on another, typically front, side, and indications of key etc presses or other recognised (physical) interaction are then visualized on said another side in a manner depending on the physical interaction such as the sensed pressure. Alternatively, the device may only contain an adapter to an external display instead of an internal one. In addition to mobile terminals, PDAs, and alike clearly separate hand-held devices, the device may be hand-held in the sense that it is a projection type part of a larger entity, such as a controller of manufacturing equipment, a vehicle, or some other device.
For example, when a keypad key on the back side of the device is pressed lightly, a corresponding character/symbol on the front side of the device may be highlighted with a “spotlight” type effect directly on the display or through separate visual indicators (light sources) as explained later herein. If the key is pressed more, e.g. heavily down to the bottom, the highlighted key is, for example, flashed and a corresponding action is taken at the device, e.g. function associated with such key is executed. In a somewhat typical case a character may be associated with a key and then inserted in the current cursor position as a response to a fully performed key press.
The utility of the invention is based on a plurality of issues. First, e.g. the fingers of a user even if lying on the backside keys do not hide the corresponding key symbols used for navigation on the backside but now residing on the other side of the terminal. Simultaneously, hands/fingers of the user support the device in a natural manner surely still depending on the overall design of the device itself. Secondly, the actual keypad/keyboard area does not require any character or symbol markings anymore, and thus wearing or altering thereof is not a relevant issue in contrast to the contemporary solutions. The keypad can be made waterproof by utilizing a membrane or a layer type surface, and the classic arrangement based on separate keys is not necessary although still applicable. Further, by having an SW configurable keypad “mat” or a number of likewise SW configurable separate keys on the backside, the user/device manufacturer etc can realize preferred character/symbol/action associations and mappings with buttons or pressure sensitive keypad areas. Yet, if a keypad mat is installed in a device back cover, the device may be turned e.g. 90 degrees after which the internal keypad area <-> character/symbol/action associations are automatically re-configurable to better match with the rotated device and display thereof. If the shape of the device in principle enables both one-handed and two-handed use, the button/keypad configuration may be switchable to better support either of the modes one at a time. Additional benefits of the invention are described in connection with the disclosure of the embodiments of the invention.
According to the invention, an electronic hand-held device having at least two sides and capable of receiving user input via physical contact comprises
a keypad area or a number of separate keys for sensing at least pressure, said keypad area or number of separate keys located substantially on one side of the device,
a display for visualizing information, said display located substantially on another side of the device,
a memory for storing instructions and data, and
a processor for processing instructions and data, said processor upon receiving sensation information of a first type from said keypad area or the number of separate keys relating to a certain sub-area or key of the keypad area or the number of keys and based on the instructions stored in the memory arranged to visually indicate to the user via the another side of the device the detected sub-area or key-specific sensation of the first type and
upon receiving sensation information of a second type, being at least a pressure sensation, from said keypad area or the number of keys relating to said certain sub-area or said key of the keypad area or the number of separate keys and based on the instructions stored in the memory further arranged to visually indicate to the user via the another side of the device the detected sub-area or key-specific sensation of the second type and perform a pre-determined action depending on the sub-area or key.
By defining “at least two sides” it is referred both to some “shell-shaped” hand-held devices with only two bent surfaces connected together at the ends, such surfaces acting exclusively as the sides of the device, and, on the other hand, to devices with more sides, most popular design probably being the one with four sides: so-called front, back, left, and right side, the sides named in accordance with the predetermined usage direction and view for the device.
The term “key pad area” refers herein to an area comprising either a number of discrete pressure sensitive sub-areas, i.e. keys (˜buttons, both expressions referring herein substantially to the same issue), or a membrane/layer type continuous surface with a number of distinct touch/pressure sensitive sub-areas, or both. Every sub-area may, for example, have a number of pressure sensors of if its own, or one or more areas may utilize common sensor(s) capable of detecting the location of pressure within the areas to form such sub-areas from a practical point of view. Alternatively, a number of keys, generally referring to elements for detecting pressure with at least on/off type resolution, may have been located as physically separated over the surface of the device without common parts or continuous surface to form a “key pad” as such but still to provide the device with required input information. In addition to keys and surfaces relating to the invention disclosed herein the device in question may contain additional other keys or surfaces for conventional user input, positioning of which being however not limited to any particular side of the device by the invention.
The term “physical contact” refers to either direct or indirect tangible handling of a device, e.g. pressing a keypad key. The user may utilize his finger to press a key, for example, for direct physical contact. Respectively, also middle-devices such as a pen etc can be used to input data/control information to a device via indirect physical contact. The direct/indirect physical contact may also relate to some other measured parameter than just pressure. For example, based on measuring the changes in conductivity due to a fingertip contact of conductive areas placed on the device a physical contact can be detected. Likewise, light cells or other photo-sensitive sensors may be used to detect one's finger on a certain location of the device surface based on the (absolute value or change in the) intensity of received light etc. In accordance with the current invention the sensation of the second type has a pressure component included while the sensation of the first type has more degrees of freedom and does not necessarily rely on pressure information. Accordingly, more than one parameter may be linked to (trigger) a sensation of a first or second type.
According to a second aspect of the invention, a method for triggering the execution of an action in a hand-held device comprising a display on one side and a keypad area or a number of keys located substantially on another side thereof, has the steps of
detecting a sensation of a first type on said another side of the device,
indicating at least visually said sensation of the first type to the user via said one side of the device,
detecting a sensation of a second type on said another side of the device, being at least a pressure sensation, relating to the same location with said sensation of the first type,
indicating at least visually said sensation of the second type to the user via said one side of the device, and
performing a predetermined action, said action being dependent on the location of said sensations of first and second type.
According to a third aspect of the invention, an electronic hand-held device having at least two sides and capable of receiving user input via physical contact comprises
a keypad area or a number of separate keys for sensing at least pressure, said keypad area or number of separate keys located substantially on one side of the device,
means for connecting to an external display for visualizing information,
a memory for storing instructions and data, and
a processor for processing instructions and data, said processor upon receiving sensation information of a first type from said keypad area or the number of separate keys relating to a certain sub-area or key of the keypad area or the number of keys and based on the instructions stored in the memory arranged to visually indicate to the user via another side of the device or through external display accessed via said means for connecting the detected sub-area or key-specific sensation of the first type and
upon receiving sensation information of a second type, being at least a pressure sensation, from said keypad area or the number of keys relating to said certain sub-area or said key of the keypad area or the number of separate keys and based on the instructions stored in the memory further arranged to visually indicate to the user via another side of the device or through external display accessed via said means for connecting the detected sub-area or key-specific sensation of the second type and perform a pre-determined action depending on the sub-area or key.
The above hand-held device of the third aspect, in contrast to the device of the first aspect, does not encompass a display of its own, or at least it is not used for the purpose especially set forth by the invention. Such device may be a controller of another device comprising the display, for example. Means for connecting to an external display possibly included in another device may be wired, e.g. a serial or parallel interface may be used, or wireless, e.g. in the case of IR or radio frequency transceivers. It is still possible to make use of the device itself for visually indicating the sensations, all or only some of them, to the user by introducing, for example, key and/or associated action specific lights (e.g. LEDs) to the front cover thereof.
In one embodiment of the invention, a hand-held device includes a display on the front cover and a number of keys on the back cover. Furthermore, the device includes a number of so-called “phantom buttons”, e.g. lights, on the front side to illustrate hand/finger position and associated button pressure detected on the back cover. Also alternative solutions for implementing the elements of the inventive concept are disclosed. For example, the display on the front cover may be configured to visualize also the hand/finger positions and key pressure on the back cover.
Dependent claims disclose embodiments of the invention.
Hereinafter the invention is described in more detail by reference to the attached drawings, wherein
A “shift-key” type modifying of the visualization area on the front cover is also possible to be introduced for the realization of the invention. For example, pressing a certain key on the back cover may trigger a change in the visualization of the front cover “phantom buttons” to indicate numbers instead of characters, special characters, specific actions, etc or vice versa. Depending on the particular visualization technique used, either the phantom button area of the generic display may thus be altered as a response to a sensed key press or the purpose-specific phantom buttons be modified as such.
One of the advantages of the invention is that the user may position his fingers naturally on the device surface and keypad area/keys thereof. First, the device senses and indicates to the user the light pressure or other sensations to inform the user about the current position of his fingers and characters/symbols/actions about to be selected. Then, a subsequent more forceful key-area or button press that may or may not also contain a finger release in between the presses, or in case of a double click, a second click within a pre-determined period, is indicated in another manner being distinguishable from the previous one. Finally, an associated action, for example inserting a character/symbol in a cursor position, launching/terminating an application, sending a mail etc is performed. Advantageously the user may constantly track his fingers and movements thereof on the sensor areas of the device surface.
In addition to displaying symbols on the front side of the device via a common use or separate display or e.g. a number of symbol-specific LEDs, also an EL (electroluminescence) membrane/cover layer can be used for the purpose. The EL layer may be configured to illustrate, for example, a static set of key symbols in accordance with the prevailing keypad area/button <-> related response/action associations. User initiated button press can be then indicated by increasing the luminescence of the associated symbol on the EL surface. The EL layer or some other layer used for the purpose may include both flexible SW configurable portions and static portions with fixed characters/symbols respectively, if preferred. As the EL layer typically requires relatively high (e.g. 100V) voltage supply, the EL surface has to be covered with protective material to prevent the user from getting electric shocks from the device's front side.
Concerning especially mobile terminals and PDAs, text input prediction methods like T9 are in principle still applicable with the current inventive concept as certain keys/buttons or keypad (sub-)areas may carry several different associations with characters/symbols/actions that are then adaptively modified/executed in run-time. Aforementioned tactile feedback or button “kick-back” functionality can be implemented by utilizing e.g. a set of piezoelectric motors below the keypad surface area.
Should a keypad/keyboard be included in the device instead of few separate keys/buttons, one may find the commonly known QWERTY type keyboard arrangement as the most sensible option. QWERTY type keyboard generally includes the basic alphabet with one character per key principle with certain predetermined ordering plus some standardized additional symbols. Alternatively, truncated version thereof may be utilized for special purposes or to just save some space.
Code for the execution of the proposed method can be stored and delivered on a carrier medium like a floppy, a CD, a hard drive, or a memory card.
The scope of the invention can be found in the following claims. However, utilized devices, method steps, UI arrangements etc may vary depending on the target application, still converging to the basic inventive idea presented herein.