Claims
- 1. An electronic insect killer comprising a plurality of spaced electrodes adapted to be electrically contacted by the bodies of insects, means for attracting insects toward said electrodes comprising at least one fluorescent lamp, and solid state circuitry interconnected with said electrodes and also with said lamp for providing both a high voltage and a lower voltage at a high AC frequency, said high voltage being supplied across said electrodes and said lower voltage being supplied to said lamp for ballast-free energization of said lamp said high voltage being DC.
- 2. An electronic insect killer according to claim 1 and further characterized by said solid state circuitry comprising a high frequency transformer and electronic switching means interconnected with a primary winding of said transformer, said transformer having a first secondary winding providing high AC voltage, means for rectifying said high AC voltage to provide said high DC voltage, and a further secondary winding interconnected with said lamp.
- 3. An electronic insect killer according to claim 2 and further characterized by said electronic switching means comprising a high frequency timer and at least one transistor interconnected with said timer for being alternately driven between conductive and non-conductive states for controlling the supply of current to said primary winding.
- 4. An electronic insect killer according to claim 3 and further characterized by said transistor comprising a field effect transistor, said high frequency timer comprises an integrated circuit timing device.
- 5. An electronic insect killer according to claim 4 and further characterized by overload protection means for causing said timing device to cease operation in the event of overload of said solid state circuitry.
- 6. An electronic insect killer according to claim 5 and further characterized by said overload protection means comprising a transistor interconnected with said field effect transistor for causing said solid state timing device to cease providing pulses to said field effect transistor in the event of excessive current being switched by said field effect transistor under overload conditions.
- 7. An electronic insect killer comprising a plurality of spaced electrodes adapted to be electrically contacted by the bodies of insects, means for attracting insects toward said electrodes, and solid state circuitry, including transistor switching means and a high frequency transformer having a primary winding, provided with current by said switching means, and a secondary winding, for providing a high AC voltage, means for rectifying said high AC voltage to provide a high DC voltage for insect electrocution, said means for attracting insects comprising at least one fluorescent lamp, said transformer having a further secondary winding for providing a lower AC voltage at high frequency to said lamp for ballast-free energization of said lamp, said electrodes surrounding said lamp, and means for supplying said high DC voltage across said electrodes.
- 8. An electronic insect killer according to claim 7 comprising oscillator means constituting a source of high frequency pulses for being provided to said transistor switching means for causing high frequency current to be provided to said primary winding be said transistor switching means.
- 9. An electronic insect killer according to claim 8 and further characterized by said oscillator means comprising a high frequency timer, and overload protection means for causing said oscillator means to cease operation in the event of overload of said solid state circuitry, as indicated by increase in the current through said primary winding above a preselected threshold.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of the U.S. patent application of Mark D. Hedstrom, Ser. No. 42,940, filed May 29, 1979, for ELECTRONIC INSECT KILLER, Pat. No. 4,248,005.
US Referenced Citations (17)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
42940 |
May 1979 |
|