Electronic interior door release system

Information

  • Patent Grant
  • 10494838
  • Patent Number
    10,494,838
  • Date Filed
    Wednesday, November 23, 2016
    8 years ago
  • Date Issued
    Tuesday, December 3, 2019
    5 years ago
Abstract
A powered door latch may be actuated by a capacitive sensor or by movement of a mechanical release device. A controller may be utilized to prevent unlatching of the powered latch unless the vehicle is in Park and/or certain operating conditions are present.
Description
FIELD OF THE INVENTION

The present invention generally relates to a powered latch for vehicles.


BACKGROUND OF THE INVENTION

Various powered latches with interior door releases for motor vehicles and the like have been developed. However, the powered latch may not operate properly if vehicle power is lost, and mechanical back up release arrangements have been developed to provide for unlatching of the vehicle door in the event the vehicle's main power supply is lost. However, known systems suffer from various drawbacks.


SUMMARY OF THE INVENTION

One aspect of the present invention is a vehicle door assembly including a powered latch release device. The door assembly includes a vehicle door having inner and outer opposite sides and a first side edge portion configured to be movably mounted to a vehicle. A second side edge of the door extends along an opposite edge of the vehicle door. The door assembly further includes a latch having a movable latch member and a powered actuator. The latch is mounted to the door adjacent the second side edge portion. A release member is movably mounted to the inner side of the vehicle door, and a mechanical member operably interconnects the release member to the movable latch member. Movement of the release member causes the movable latch member to move from a latched position to an unlatched position. The door further includes a capacitive or proximity sensor positioned adjacent the release member. The capacitive sensor is configured to detect an object moved to within a predefined vicinity or activation distance of the sensor. The powered actuator is operably connected to the movable latch member and shifts the latch member from a retaining position to a released position if the proximity sensor determines that an object is within the predefined vicinity. The activation distance may be optimized or tuned to provide either non-contact based activation or contact based activation.


The vehicle door assembly may be connected to a main vehicle electrical supply, and the powered actuator and proximity sensor may be operably connected to a programmable controller. The controller may be configured to release the latch only if an object is detected within the predefined vicinity twice within a predefined time interval. The programmable controller may also be configured to utilize vehicle operating parameters to control actuation of the powered actuator and unlatching of the powered latch device. For example, the controller may be operably connected to a sensor that determines when the vehicle transmission is in the Park position or state, and the controller may be configured to release the powered latch only if the vehicle transmission is in Park.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a side elevational view of a vehicle door including a powered latch and interior door released system according to one aspect of the present invention;



FIG. 2 is an enlarged view of a portion of the door of FIG. 1;



FIG. 3 is a cross-sectional view of a portion of the door taken along the line 3-3 of FIG. 2;



FIG. 4 is a partially fragmentary cross-sectional view of a portion of the door according to another aspect of the present invention; and



FIG. 5 is a partially fragmentary cross-sectional view of a portion of the door according to another aspect of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


With reference to FIG. 1, a vehicle 1 includes a door assembly 2 that is movably mounted to a vehicle structure 4 along first edge 3 of door 2. In the illustrated example, the door 2 is pivotally mounted to the vehicle structure 4. The door assembly 2 includes a second side edge portion 6 extending along an opposite edge 7 of the door 2. The door assembly 2 also includes a powered latch device 10 that selectively latches the door to retain it in a closed position. The powered latch device 10 may comprise a powered latch as disclosed in U.S. Pat. No. 8,746,755 entitled “Universal Global Latch System”, (U.S. Patent Publication No. 2010/0235057), and/or U.S. Pat. No. 8,544,901 entitled “Universal Global Latch System” (U.S. Patent Publication No. 2010/0235059), and/or the side door latch of U.S. Pat. No. 8,573,657 entitled “Latch Mechanism” (U.S. Patent Publication No. 2010/0235058), the entire contents of each of these applications being incorporated herein by reference.


As described in more detail in these patent applications, powered latch device 10 includes a movable latch member 11 and a powered actuator 12. The powered latch device 10 is mounted to the door 2 adjacent the second side edge portion 6. A release member 20 is movably mounted to the inner side 8 of the vehicle door 2. The release member 20 may include a capacitive sensor 22 mounted therein. The capacitive sensor 22 detects the presence of an object such as a users' hand that is within a predefined distance of the capacitive sensor 22. The powered latch device 10 and capacitive sensor 22 may be operably connected to a main vehicle power supply 15. The powered latch device 10 and sensor 22 may also be operably connected to a controller 24 that may be programmed to control operation of the powered latch 10. Controller 24 may also be operably connected to a gear shift selector mechanism 26 and/or a vehicle transmission 28. The gear shift selector 26 may comprise a conventional shift selection lever for automatic transmissions, and may define Park, Reverse, Neutral, Drive, and/or other control positions that provide operator input with respect to control of transmission 28. Gear shift selector 26 may also comprise a manual shift lever or other operator input device.


A mechanical member such as a mechanical cable 30 extends through an interior space 34 of door 2, and mechanically interconnects release member 20 to the powered latch device 10. Cable 30 may include an outer sheath 31 and an inner flexible cable member 32 (FIG. 3).


With further reference to FIGS. 2 and 3, release member 20 may be movably connected to a housing or bezel 36 having an opening 37 that receives movable member 20. In the illustrated example, release member 20 has a flat outer surface 38 and a circular peripheral edge 39. However, it will be understood that the release member 20 may comprise a variety of shapes, depending upon the particular vehicle or application. Release member 20 may include a design or other indicia 42 representing the vehicle make and/or providing a decorative appearance. Also, movable member 20 may comprise a button or the like that moves linearly as shown in FIG. 3, or it may comprise a lever or other such movable member.


Referring again to FIG. 3, mechanical cable 30 is mounted to inner vehicle door structure 44 utilizing a conventional fitting 43 or the like. A bellcrank 40 includes a center section 53, a first arm 48, and a second arm 52. Bellcrank 40 is rotatable mounted to a pin 49. First arm 48 includes a pin or boss 45 that is received in an elongated slot 50 of release member 20. Second arm 52 includes an elongated slot 54 that receives an end fitting 55 that is connected to an end of flexible inner cable 32. End fitting 55 may be configured to operably engage a linear guide (not shown) that constrains movement of fitting 55 such that I travels along a linear path.


If a sufficiently large force “F” is applied to release member 20 by a user, release member 20 moves from the position “P1” to an inner position “P2.” As the release member 20 moves from position P1 to position P2, pin 45 moves upwardly in slot 50 of release member 20, thereby rotating first arm 48 from position “A” to position “B.” As arm 48 rotates, second arm 52 rotates from position “A1” to position “B1.” As arm 52 rotates, an end fitting 55 of flexible inner cable 32 moves in slot 54 of arm 52 thereby pulling shifting flexible inner cable 32 in a linear manner in the direction “C.” A spring 56 (FIG. 3) provides a biasing force F1 tending to prevent movement of release member 20 from position P1 to position P2, and causing movement of release member 20 from position P2 back to position P1 when a force F is no longer applied to release member 20.


Referring again to FIG. 1, cable 30 operably interconnects release member 20 and powered latch device 10. Powered latch device 10 is configured such that movement of inner cable 32 causes movable latch member 11 to shift from a latched position to an unlatched position. As discussed in more detail in previously identified U.S. Pat. Nos. 8,746,755, 8,544,901; and 8,573,657, powered latch 10 may be configured such that a first push on release member 20 by a user shifts or changes the powered latch device from a locked position/state (“locked”) to an unlocked position/state (“unlocked state”), but does not shift movable latch member 11 from a latched position to an unlatched position. Powered latch device 10 may be configured to shift movable latch member 11 from a latched position to an unlatched position if release member 20 is pushed twice. In this example, a first movement of release member 20 causes powered latch device 10 to shift from a “double locked” state to a “single locked” state, and a second movement of release member 20 causes the powered latch device 10 to change from the “single locked” state to an unlatched state. When in the unlatched state, powered latch device 10 actuates solenoid 12, and solenoid 12 shifts latch member 11 from a latched position to an unlatched position. Thus, powered latch device 10 and release member 20 can be configured to provide unlatching based on two separate movements of member 20 in a manner that is similar to the two pulls that are required to unlock and unlatch a door having a conventional mechanical door handle and lock/latch.


Movable release member 20 may include a capacitive or proximity sensor 22 (FIG. 3) that is operably connected with controller 24. Sensor 22 may be configured to generate a signal if an object such as a user's hand has come within a predefined distance “D” (dashed line 57) of sensor 22. Sensor 22 may be configured to provide a signal if an object comes closer than the predefined distance D, sending a signal to controller 24 if this occurs. Alternately, sensor 22 may be configured to provide a variable signal to controller 24 corresponding to a variable distance of an object from sensor 22, and controller 24 may be configured to determine if the object is closer than a predefined distance D based on the variable signal.


Controller 24 may be configured to release latch 10 if an object closer than the predefined distance “D” is detected twice within a predefined time. For example, the predefined distance D could be in the range of about 0 to 6 inches. It will be understood that the magnitude of the predefined distance D may be set for the requirements of a particular application. Specifically, the same release member 20 may be utilized in different vehicle types or models, and the distance D can be set as required for each type of vehicle. Also, the time interval between detection of an object within distance D may also be set for a particular application. For example, the time interval may be in the range of 0 seconds to about 5 seconds, 0 seconds to about 2 seconds, or other suitable time interval. Latch device 10 may have three different “states” or conditions corresponding to states or conditions of conventional mechanical door handles, latches, and locks. Specifically, latch device 10 may include a start or first (“locked”) state, an “unlocked” or second state, and an “unlatched” or third state. Latch device 10 may be configured to reset to the first state (locked and latched) automatically such that the first state is the default state. If latch device 10 is in the default/first state and it receives a signal indicating that an object is closer than the predefined distance D, latch device 10 shifts from the first state to the second “unlocked” state. If an object is not detected within distance D within a predefined time interval, latch device 10 resets to the first state. However, if two discreet occurrences of an object being within distance D occur within the predefined time interval, latch device 10 changes from the first state to the second state, and then from the second state to the third state. Once the latch device 10 shifts to the third state, powered latch device 10 causes actuator 12 to unlatch movable latch member 11.


Controller 24 may be configured to provide a signal to powered latch device 10 under certain vehicle operating conditions. For example, controller 24 may be configured such that a signal allowing unlatching of latch device 10 is only generated if main power supply 15 is operational and gear shift selector 26 (and transmission 28) are in Park. In this way, inadvertent latch release while the vehicle is moving is prevented, even if an object is moved within the predefined distance D within the predefined time interval. Also, controller 24 may be operably connected to a vehicle speed indicator (not shown), whereby the powered latch is only unlatched if the vehicle speed is at or below a predefined level. Also, powered actuator 12 may be a solenoid that is powered only when the vehicle is parked to thereby prevent inadvertent release when the vehicle is in motion. Under power loss from main vehicle power supply 15 or low battery conditions, a backup power supply such as a battery 60 or capacitor (not shown) can be utilized to power the latch device 10, and release member 20 can be shifted mechanically to release the latch 11.


However, if power is being supplied by main power supply 15 at a normal or acceptable level, and if the vehicle is in motion (e.g. not in Park) mechanical activation of release member 20 will not release the movable latch member 11 due to the logic programmed into controller 24. As described in more detail in U.S. Pat. Nos. 8,746,755; 8,544,901; and 8,573,657, powered latch device 10 includes a mechanism that mechanically sets the latch device such that latch member 11 unlatches if release member 20 is pushed a second time. Also, powered latch device 10 may include a micro switch (not shown) or other suitable sensor that generates a signal to controller 24 upon movement of an internal latch member that is mechanically connected to inner cable member 32. In this way, controller 24 can determine if release member 20 has been shifted twice within a predefined time interval, and controller 24 can actuate the solenoid/powered actuator 12 upon a second push/movement of release member 20.


As discussed above, controller 24 may be configured to prevent shifting of movable latch member 11 to an unlatched position if the vehicle is moving. Specifically, controller 24 may be configured to continuously and automatically reset to the first state at very short time intervals unless the controller determines that the vehicle is Parked. Thus, if the vehicle is in motion and movable release member 20 is pushed twice within the predefined time interval, controller 24 prevents actuation of solenoid 12 by rapidly resetting to the first state before a user is able to push or release member 20 a second time. Thus, the movements of release member 20 when the vehicle is not in Park result in powered latch device 10 shifting from the first state to the second state, even if release member 20 is manually moved twice within the predefined time interval. This prevents shifting to the third state which would otherwise permit movement of movable latch member 11 to an unlatched position.


If powered latch device 10 is configured to continuously reset to the first state at a rapid rate unless the vehicle is in Park, detection of an object within predefined distance D by sensor 22 within a predefined time interval will also not result in shifting of movable latch member 11. More specifically, a first detection of an object within the predefined distance resets powered latch device 10 to the second state. However, powered latch device 10 rapidly resets (within a fraction of a second) to the first state unless the vehicle is in Park, such that detection of an object within the predefined distance D a second time will not cause powered latch device 10 to shift from the second state to the third state. In general, powered latch device 10 is configured to automatically reset from the second state to the first state if the vehicle is not in Park at a very rapid rate at very small time intervals that are much less than the predefined time interval between detected movements of release member 20 (or detections of an object by sensor 22) that would otherwise result in release of the powered latch 10. Also, it will be understood that powered latch device 10 and controller 24 may utilize additional vehicle operating parameters (other than the vehicle being in Park) to determine if powered latch device 10 should be unlatched.


It will be understood that the powered latch device 10 may be configured to require activation (i.e. “power on”) of solenoid 12 to unlatch powered latch 10. Alternately, a spring or the like may be utilized to store energy and act in a direction that is opposite that of the solenoid to provide for actuation of the solenoid when the solenoid is changed from an energized state to a de-energized state. If configured in this way, solenoid 12 is normally actuated, and unlatching of latch device 10 requires that solenoid 12 be deenergized to allow the spring to shift latch member 11 to the unlatched position. As used herein, the term “actuation” with respect to a powered actuator such as solenoid 12 refers to both energizing and deenergizing of the powered actuator to shift latch member 11 to the unlatched position.


If the main power supply 15 is interrupted, backup power supply 60 provides sufficient power to actuate solenoid 12 to unlatch the powered latch 10. If the main power supply 15 is interrupted, a user can still unlatch the door by pushing the release member 20 twice, provided the vehicle is in Park.


With further reference to FIG. 4, a second version of the release device further includes a solenoid 65 that is utilized to prevent movement of release member 20 under specified operating conditions. Also, as discussed below, controller 24A utilizes different control logic than the device of FIG. 3. Solenoid 65 includes a movable lock member 66 that shifts in the direction of the arrow “L” between an actuated or extended position 66A and a retracted position 66B. When lock member 66 is in position 66A, lock member 66 prevents movement of release member 20 inwardly. However, when lock member 66 is retracted to the position 66B, release member 20 can be shifted inwardly in substantially the same manner as discussed above in connection with the device of FIG. 3. In the device of FIG. 4, if main power supply 15 is operating normally, controller 24A is programmed such that lock member 66 of solenoid 65 is in position 66A, thereby preventing inward movement of release member 20 if main power supply 15 is operating normally. Controller 24A may also be configured to ensure that lock member 66 is in the extended position 66A if gear shift selector 26 and transmission 28 are not in Park and/or if the vehicle speed is not below a predefined maximum speed (the predefined maximum speed may be zero). However, if main power supply 15 is interrupted spring 68 in solenoid 65 causes solenoid 65 to retract lock member 66 to retracted position 66B, thereby allowing an operator to shift release member 20 inwardly twice to release powered latch device 10. A spring 68 biases lock member 66 into the retracted position 66A, such that power must be supplied to solenoid 65 to extend lock member 66 to the extended position 66B.


Thus, in the arrangement of FIG. 4, under normal vehicle power conditions the mechanical lock-out 66 blocks the movement of release member 20, such that an operator cannot shift release member 20 while vehicle power is normal to prevent mechanical release of powered latch device 10. However, controller 24A is configured such that detection of an object within predetermined distance D within a predefined time interval causes powered latch device 10 to unlatch if power supply 15 is operating normally and the vehicle is in the Parked condition. Thus, mechanical release 20 can be utilized only if power supply 15 is interrupted, whereas the sensor 22 will cause release of powered latch device 10 if the vehicle power supply 15 is normal and the vehicle is in the Parked position. However, if the power supply 15 is operating normally and the vehicle is not in Park, sensor 22 cannot cause unlatching of powered latch device 10 due to the predefined conditions programmed into controller 24A.


With further reference to FIG. 5, a latch device according to another aspect of the present invention includes a movable member 20A that is movably disposed within a housing 36A. Release member 20A includes an extension 75 having an angled surface 76 that engages a lever 71 to rotate the lever 71 from a first position “G1” to a second position “G2.” Arm 70 is rotatably mounted to a pivot member 73, and rotation of arm 70 from position G1 to position G2 generates a force shifting inner cable 32A in the direction of the arrow “C1.” Thus, the device of FIG. 5 causes movement of inner cable member 32 in a manner that is similar to the device of FIG. 3. A spring 56A generates a force “F2” tending to bias release member 20A outwardly against a force F applied by an operator. Controller 24B may be configured in substantially the same manner as the devices of FIGS. 3 and 4. Also, it will be understood that a locking solenoid 65 (FIG. 4) may be utilized to prevent movement of release member 20A of the device of FIG. 5, and controller 24 may be configured in substantially the same manner as described above in connection with the device of FIG. 4.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A vehicle having a vehicle structure and a door assembly pivotably mounted to the vehicle structure for rotation about a front edge of the door assembly, the door assembly comprising: a powered latch release device;a vehicle door having inner and outer opposite sides;a latch mounted to the vehicle door, the latch having a movable latch member and an electrically powered actuator that is configured to shift the movable latch member between a retaining position and a released position;a movable release member movably disposed on the inner side of the vehicle door such that a user can push on the release member to cause movement of the release member into the door;a mechanical member operably interconnecting the release member to the movable latch member such that movement of the release member into the door causes the movable latch member to move from the retaining position to the released position without actuation of the electrically powered actuator; anda proximity sensor mounted to the release member, wherein the proximity sensor is configured to detect an object moved to within a predefined vicinity of the sensor, and wherein the proximity sensor moves with the release member when the release member is actuated, anda controller operably connected to the electrically powered actuator and the proximity sensor, and wherein the controller actuates the electrically powered actuator and shifts the latch member from the retaining position to the released position if the proximity sensor determines that an object is within the predefined vicinity, even if the release member is not moved.
  • 2. The vehicle door assembly of claim 1, including: a support member movably supporting the release member for linear reciprocating motion in an inward direction and an opposite outward direction.
  • 3. The vehicle door assembly of claim 2, wherein: the mechanical membercomprises an elongated cable that shifts between a rest position and an actuated position upon movement of the release member; andthe latch defines a locked mode in which the movable latch member is in its latched position, and wherein a single longitudinal shifting of the elongated cable from its rest position to its actuated position causes the latch to change from the locked mode to an unlocked mode with the movable latch member remaining in its latched position, and wherein shifting of the elongated cable from its rest position to its actuated position a second time causes the movable latch member to shift from its latched position to its unlatched position.
  • 4. The vehicle door assembly of claim 1, wherein: the predefined vicinity includes contact with the proximity sensor.
  • 5. The vehicle door assembly of claim 1, wherein: the predefined vicinity does not include contact with the proximity sensor.
  • 6. The vehicle door assembly of claim 1, wherein: the controller is configured such that the powered actuator only releases the latch member if the proximity sensor senses the presence of an object twice within a predefined time interval.
  • 7. The vehicle door assembly of claim 1, wherein: the controller is configured to prevent shifting of the movable latch member from the retaining position to the released position if the vehicle is moving.
  • 8. The vehicle door assembly of claim 1, wherein: the controller prevents shifting of the movable latch member from the retaining position to the release position upon movement of the release member into the door if the vehicle is not in park.
  • 9. The vehicle door assembly of claim 1, wherein: the controller prevents shifting of the movable latch member from the retaining position to the release position if the vehicle is moving.
  • 10. A vehicle door assembly including a powered latch release device, the door assembly comprising: a vehicle door having a window and a beltline below the window, the vehicle door further including inner and outer opposite sides, the inner side having a substantially planar portion below the beltline;a latch mounted to the vehicle door, the latch having a movable latch member and an electrically powered actuator that is configured to shift the movable latch member between a retaining position and a released position;a movable release member movably disposed on the inner side of the vehicle door within the substantially planar portion such that a user can push on the release member to cause movement of the release member into the door;a mechanical member operably interconnecting the release member to the movable latch member such that movement of the release member into the door causes the movable latch member to move from the retaining position to the released position without actuation of the electrically powered actuator; anda proximity sensor mounted to the release member, wherein the proximity sensor is configured to detect an object moved to within a predefined vicinity of the sensor, and wherein the proximity sensor moves with the release member when the release member is actuated, anda controller operably connected to the electrically powered actuator and the proximity sensor, and wherein the controller actuates the electrically powered actuator and shifts the latch member from the retaining position to the released position if the proximity sensor determines that an object is within the predefined vicinity, even if the release member is not moved.
  • 11. The vehicle door assembly of claim 10, wherein; the vehicle door is configured to be pivotably mounted to a vehicle structure for rotation about a front edge of the vehicle door.
  • 12. The vehicle door assembly of claim 10, including: a support member movably supporting the release member for linear reciprocating motion in an inward direction and an opposite outward direction.
  • 13. The vehicle door assembly of claim 10, wherein: the mechanical membercomprises an elongated cable that shifts between a rest position and an actuated position upon movement of the release member; andthe latch defines a locked mode in which the movable latch member is in its latched position, and wherein a single longitudinal shifting of the elongated cable from its rest position to its actuated position causes the latch to change from the locked mode to an unlocked mode with the movable latch member remaining in its latched position, and wherein shifting of the elongated cable from its rest position to its actuated position a second time causes the movable latch member to shift from its latched position to its unlatched position.
  • 14. The vehicle door assembly of claim 10, wherein: the predefined vicinity includes contact with the proximity sensor.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/287,362, filed Nov. 2, 2011, and entitled “ELECTRONIC INTERIOR DOOR RELEASE SYSTEM,” now U.S. Pat. No. 9,551,166, issued on Jan. 24, 2017, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (362)
Number Name Date Kind
2229909 Wread Jan 1941 A
3479767 Gardner et al. Nov 1969 A
3751718 Hanchett Aug 1973 A
3854310 Paull Dec 1974 A
3858922 Yamanaka Jan 1975 A
4193619 Jerila Mar 1980 A
4206491 Ligman et al. Jun 1980 A
4425597 Schramm Jan 1984 A
4457148 Johansson et al. Jul 1984 A
4640050 Yamagishi et al. Feb 1987 A
4672348 Duve Jun 1987 A
4674230 Takeo et al. Jun 1987 A
4674781 Reece et al. Jun 1987 A
4702117 Tsutsumi et al. Oct 1987 A
4848031 Yamagishi et al. Jun 1989 A
4858971 Haag Aug 1989 A
4889373 Ward et al. Dec 1989 A
4929007 Bartczak et al. May 1990 A
5018057 Biggs et al. May 1991 A
5056343 Kleefeldt et al. Oct 1991 A
5058258 Harvey Oct 1991 A
5074073 Zwebner Dec 1991 A
5239779 Deland et al. Aug 1993 A
5263762 Long et al. Nov 1993 A
5297010 Camarota et al. Mar 1994 A
5332273 Komachi Jul 1994 A
5334969 Abe et al. Aug 1994 A
5494322 Menke Feb 1996 A
5497641 Linde et al. Mar 1996 A
5535608 Brin Jul 1996 A
5547208 Chappell et al. Aug 1996 A
5558372 Kapes Sep 1996 A
5581230 Barrett Dec 1996 A
5583405 Sai et al. Dec 1996 A
5618068 Mitsui et al. Apr 1997 A
5632120 Shigematsu et al. May 1997 A
5632515 Dowling May 1997 A
5644869 Buchanan, Jr. Jul 1997 A
5653484 Brackmann et al. Aug 1997 A
5662369 Tsuge Sep 1997 A
5684470 Deland et al. Nov 1997 A
5744874 Yoshida et al. Apr 1998 A
5755059 Schap May 1998 A
5783994 Koopman, Jr. et al. Jul 1998 A
5802894 Jahrsetz et al. Sep 1998 A
5808555 Bartel Sep 1998 A
5852944 Collard, Jr. et al. Dec 1998 A
5859417 David Jan 1999 A
5896026 Higgins Apr 1999 A
5896768 Cranick et al. Apr 1999 A
5901991 Hugel et al. May 1999 A
5921612 Mizuki et al. Jul 1999 A
5927794 Mobius Jul 1999 A
5964487 Shamblin Oct 1999 A
5979754 Martin et al. Nov 1999 A
5992194 Baukholt et al. Nov 1999 A
6000257 Thomas Dec 1999 A
6027148 Shoemaker Feb 2000 A
6038895 Menke et al. Mar 2000 A
6042159 Spitzley et al. Mar 2000 A
6043735 Barrett Mar 2000 A
6050117 Weyerstall Apr 2000 A
6056076 Bartel et al. May 2000 A
6065316 Sato et al. May 2000 A
6072403 Iwasaki et al. Jun 2000 A
6075294 Van den Boom et al. Jun 2000 A
6089626 Shoemaker Jul 2000 A
6091162 Williams, Jr. et al. Jul 2000 A
6099048 Salmon et al. Aug 2000 A
6106036 Okada Aug 2000 A
6125583 Murray et al. Oct 2000 A
6130614 Miller Oct 2000 A
6145918 Wilbanks, II Nov 2000 A
6157090 Vogel Dec 2000 A
6181024 Geil Jan 2001 B1
6198995 Settles et al. Mar 2001 B1
6241294 Young et al. Jun 2001 B1
6247343 Weiss et al. Jun 2001 B1
6256932 Jyawook et al. Jul 2001 B1
6271745 Anazi et al. Aug 2001 B1
6341448 Murray Jan 2002 B1
6361091 Weschler Mar 2002 B1
6405485 Itami et al. Jun 2002 B1
6441512 Jakel et al. Aug 2002 B1
6460905 Suss Oct 2002 B2
6470719 Franz et al. Oct 2002 B1
6480098 Flick Nov 2002 B2
6515377 Uberlein et al. Feb 2003 B1
6523376 Baukholt et al. Feb 2003 B2
6550826 Fukushima et al. Apr 2003 B2
6554328 Cetnar et al. Apr 2003 B2
6556900 Brynielsson Apr 2003 B1
6602077 Kasper et al. Aug 2003 B2
6606492 Losey Aug 2003 B1
6629711 Gleason et al. Oct 2003 B1
6639161 Meagher et al. Oct 2003 B2
6657537 Hauler Dec 2003 B1
6659515 Raymond et al. Dec 2003 B2
6701671 Fukumoto et al. Mar 2004 B1
6712409 Monig Mar 2004 B2
6715806 Arlt et al. Apr 2004 B2
6734578 Konno et al. May 2004 B2
6740834 Sueyoshi et al. May 2004 B2
6768413 Kemmann et al. Jul 2004 B1
6779372 Arlt et al. Aug 2004 B2
6783167 Bingle et al. Aug 2004 B2
6786070 Dimig et al. Sep 2004 B1
6794837 Whinnery et al. Sep 2004 B1
6825752 Nahata et al. Nov 2004 B2
6829357 Alrabady et al. Dec 2004 B1
6843085 Dimig Jan 2005 B2
6854870 Huizenga Feb 2005 B2
6879058 Lorenz et al. Apr 2005 B2
6883836 Breay et al. Apr 2005 B2
6883839 Belmond et al. Apr 2005 B2
6896302 Belchine, III May 2005 B2
6914346 Girard Jul 2005 B2
6923479 Aiyama et al. Aug 2005 B2
6933655 Morrison et al. Aug 2005 B2
6948978 Schofield Sep 2005 B2
7005959 Amagasa Feb 2006 B2
7038414 Daniels et al. May 2006 B2
7055997 Baek Jun 2006 B2
7062945 Saitoh et al. Jun 2006 B2
7070018 Kachouh Jul 2006 B2
7070213 Willats et al. Jul 2006 B2
7090285 Markevich et al. Aug 2006 B2
7091823 Ieda et al. Aug 2006 B2
7091836 Kachouh et al. Aug 2006 B2
7097226 Bingle et al. Aug 2006 B2
7106171 Burgess Sep 2006 B1
7108301 Louvel Sep 2006 B2
7126453 Sandau et al. Oct 2006 B2
7145436 Ichikawa et al. Dec 2006 B2
7161152 Dipoala Jan 2007 B2
7170253 Spurr et al. Jan 2007 B2
7173346 Aiyama et al. Feb 2007 B2
7176810 Inoue Feb 2007 B2
7180400 Amagasa Feb 2007 B2
7192076 Ottino Mar 2007 B2
7204530 Lee Apr 2007 B2
7205777 Schultz et al. Apr 2007 B2
7221255 Johnson et al. May 2007 B2
7222459 Taniyama May 2007 B2
7248955 Hein et al. Jul 2007 B2
7263416 Sakurai et al. Aug 2007 B2
7270029 Papanikolaou et al. Sep 2007 B1
7325843 Coleman et al. Feb 2008 B2
7342373 Newman et al. Mar 2008 B2
7360803 Parent et al. Apr 2008 B2
7363788 Dimig et al. Apr 2008 B2
7375299 Pudney May 2008 B1
7399010 Hunt et al. Jul 2008 B2
7446656 Steegmann Nov 2008 B2
7576631 Bingle et al. Aug 2009 B1
7642669 Spurr Jan 2010 B2
7686378 Gisler et al. Mar 2010 B2
7688179 Kurpinski et al. Mar 2010 B2
7705722 Shoemaker et al. Apr 2010 B2
7747286 Conforti Jun 2010 B2
7780207 Gotou et al. Aug 2010 B2
7791218 Mekky et al. Sep 2010 B2
7926385 Papanikolaou et al. Apr 2011 B2
7931314 Nitawaki et al. Apr 2011 B2
7937893 Pribisic May 2011 B2
8028375 Nakaura et al. Oct 2011 B2
8093987 Kurpinski et al. Jan 2012 B2
8126450 Howarter et al. Feb 2012 B2
8141296 Bem Mar 2012 B2
8141916 Tomaszewski et al. Mar 2012 B2
8169317 Lemerand et al. May 2012 B2
8193462 Zanini et al. Jun 2012 B2
8224313 Howarter et al. Jul 2012 B2
8376416 Arabia, Jr. et al. Feb 2013 B2
8398128 Arabia et al. Mar 2013 B2
8405515 Ishihara et al. Mar 2013 B2
8419114 Fannon Apr 2013 B2
8451087 Krishnan et al. May 2013 B2
8454062 Rohlfing et al. Jun 2013 B2
8474889 Reifenberg et al. Jul 2013 B2
8532873 Bambenek Sep 2013 B1
8534101 Mette et al. Sep 2013 B2
8544901 Krishnan et al. Oct 2013 B2
8573657 Papanikolaou et al. Nov 2013 B2
8616595 Wellborn, Sr. et al. Dec 2013 B2
8648689 Hathaway et al. Feb 2014 B2
8746755 Papanikolaou et al. Jun 2014 B2
8826596 Tensing Sep 2014 B2
8833811 Ishikawa Sep 2014 B2
8903605 Bambenek Dec 2014 B2
8915524 Charnesky Dec 2014 B2
8963701 Rodriguez Feb 2015 B2
8965287 Lam Feb 2015 B2
9076274 Kamiya Jul 2015 B2
9159219 Magner et al. Oct 2015 B2
9184777 Esselink et al. Nov 2015 B2
9187012 Sachs et al. Nov 2015 B2
9189900 Penilla et al. Nov 2015 B1
9260882 Krishnan et al. Feb 2016 B2
9284757 Kempel Mar 2016 B2
9405120 Graf Aug 2016 B2
9409579 Eichin et al. Aug 2016 B2
9416565 Papanikolaou et al. Aug 2016 B2
9518408 Krishnan Dec 2016 B1
9546502 Lange Jan 2017 B2
9551166 Patel et al. Jan 2017 B2
9725069 Krishnan Aug 2017 B2
9777528 Elie et al. Oct 2017 B2
9797178 Elie et al. Oct 2017 B2
9834964 Van Wiemeersch et al. Dec 2017 B2
9845071 Krishnan Dec 2017 B1
9903142 Van Wiemeersch et al. Feb 2018 B2
9909344 Krishnan et al. Mar 2018 B2
9957737 Patel et al. May 2018 B2
20010005078 Fukushima et al. Jun 2001 A1
20010030871 Anderson Oct 2001 A1
20020000726 Zintler Jan 2002 A1
20020111844 Vanstory et al. Aug 2002 A1
20020121967 Bowen et al. Sep 2002 A1
20020186144 Meunier Dec 2002 A1
20030009855 Budzynski Jan 2003 A1
20030025337 Suzuki et al. Feb 2003 A1
20030038544 Spurr Feb 2003 A1
20030101781 Budzynski et al. Jun 2003 A1
20030107473 Pang et al. Jun 2003 A1
20030111863 Weyerstall et al. Jun 2003 A1
20030139155 Sakai Jul 2003 A1
20030172695 Buschmann Sep 2003 A1
20030182863 Mejean et al. Oct 2003 A1
20030184098 Aiyama Oct 2003 A1
20040061462 Bent et al. Apr 2004 A1
20040093155 Simonds et al. May 2004 A1
20040124708 Giehler et al. Jul 2004 A1
20040195845 Chevalier Oct 2004 A1
20040217601 Gamault et al. Nov 2004 A1
20050057047 Kachouh et al. Mar 2005 A1
20050068712 Schulz et al. Mar 2005 A1
20050216133 MacDougall et al. Sep 2005 A1
20050218913 Inaba Oct 2005 A1
20060056663 Call Mar 2006 A1
20060100002 Luebke et al. May 2006 A1
20060186987 Wilkins Aug 2006 A1
20070001467 Muller et al. Jan 2007 A1
20070090654 Eaton Apr 2007 A1
20070115191 Hashiguchi et al. May 2007 A1
20070120645 Nakashima May 2007 A1
20070126243 Papanikolaou et al. Jun 2007 A1
20070132553 Nakashima Jun 2007 A1
20070170727 Kohlstrand et al. Jul 2007 A1
20080021619 Steegmann et al. Jan 2008 A1
20080060393 Johansson et al. Mar 2008 A1
20080068129 Leda et al. Mar 2008 A1
20080129446 Vader Jun 2008 A1
20080143139 Bauer et al. Jun 2008 A1
20080202912 Boddie et al. Aug 2008 A1
20080203737 Tomaszewski et al. Aug 2008 A1
20080211623 Scheurich Sep 2008 A1
20080217956 Gschweng et al. Sep 2008 A1
20080224482 Cumbo et al. Sep 2008 A1
20080230006 Kirchoff et al. Sep 2008 A1
20080250718 Papanikolaou et al. Oct 2008 A1
20080296927 Gisler et al. Dec 2008 A1
20080303291 Spurr Dec 2008 A1
20080307711 Kern et al. Dec 2008 A1
20090033104 Konchan et al. Feb 2009 A1
20090033477 Illium et al. Feb 2009 A1
20090145181 Pecoul et al. Jun 2009 A1
20090160211 Krishnan et al. Jun 2009 A1
20090177336 McClellan et al. Jul 2009 A1
20090240400 Lachapelle et al. Sep 2009 A1
20090257241 Meinke et al. Oct 2009 A1
20100007463 Dingman et al. Jan 2010 A1
20100005233 Arabia et al. Mar 2010 A1
20100052337 Arabia, Jr. et al. Mar 2010 A1
20100060505 Witkowski Mar 2010 A1
20100097186 Wielebski Apr 2010 A1
20100175945 Helms Jul 2010 A1
20100235057 Papanikolaou et al. Sep 2010 A1
20100235058 Papanikolaou et al. Sep 2010 A1
20100235059 Krishnan et al. Sep 2010 A1
20100237635 Ieda et al. Sep 2010 A1
20100253535 Thomas Oct 2010 A1
20100265034 Cap et al. Oct 2010 A1
20100315267 Chung et al. Dec 2010 A1
20110041409 Newman et al. Feb 2011 A1
20110060480 Mottla et al. Mar 2011 A1
20110148575 Sobecki et al. Jun 2011 A1
20110154740 Matsumoto et al. Jun 2011 A1
20110180350 Thacker Jul 2011 A1
20110203181 Magner et al. Aug 2011 A1
20110203336 Mette et al. Aug 2011 A1
20110227351 Grosedemouge Sep 2011 A1
20110248862 Budampati Oct 2011 A1
20110252845 Webb et al. Oct 2011 A1
20110313937 Moore, Jr. et al. Dec 2011 A1
20120119524 Bingle et al. May 2012 A1
20120154292 Zhao et al. Jun 2012 A1
20120180394 Shinohara Jul 2012 A1
20120205925 Muller et al. Aug 2012 A1
20120228886 Muller et al. Sep 2012 A1
20120252402 Jung Oct 2012 A1
20130069761 Tieman Mar 2013 A1
20130079984 Aerts et al. Mar 2013 A1
20130104459 Patel May 2013 A1
20130127180 Heberer et al. May 2013 A1
20130138303 McKee et al. May 2013 A1
20130207794 Patel Aug 2013 A1
20130282226 Pollmann Oct 2013 A1
20130295913 Matthews, III et al. Nov 2013 A1
20130311046 Heberer et al. Nov 2013 A1
20130321065 Salter et al. Dec 2013 A1
20130325521 Jameel Dec 2013 A1
20140000165 Patel et al. Jan 2014 A1
20140007404 Krishnan et al. Jan 2014 A1
20140015637 Dassanakake et al. Jan 2014 A1
20140088825 Lange et al. Mar 2014 A1
20140129113 Van Wiemersch et al. May 2014 A1
20140150581 Scheuring et al. Jun 2014 A1
20140156111 Ehrman Jun 2014 A1
20140188999 Leonard et al. Jul 2014 A1
20140200774 Lange et al. Jul 2014 A1
20140227980 Esselink et al. Aug 2014 A1
20140242971 Aladenize et al. Aug 2014 A1
20140245666 Ishida et al. Sep 2014 A1
20140256304 Frye et al. Sep 2014 A1
20140278599 Reh Sep 2014 A1
20140293753 Pearson Oct 2014 A1
20140338409 Kraus et al. Nov 2014 A1
20140347163 Banter et al. Nov 2014 A1
20150001926 Kageyama et al. Jan 2015 A1
20150048927 Simmons Feb 2015 A1
20150059250 Miu et al. Mar 2015 A1
20150084739 Lemoult et al. Mar 2015 A1
20150149042 Cooper et al. May 2015 A1
20150161832 Esselink et al. Jun 2015 A1
20150197205 Xiong Jul 2015 A1
20150240548 Bendel et al. Aug 2015 A1
20150294518 Peplin Oct 2015 A1
20150330112 Van Wiemeersch et al. Nov 2015 A1
20150330113 Van Wiemeersch et al. Nov 2015 A1
20150330114 Linden et al. Nov 2015 A1
20150330117 Van Wiemeersch et al. Nov 2015 A1
20150360545 Nanla Dec 2015 A1
20150371031 Ueno et al. Dec 2015 A1
20160060909 Krishnan et al. Mar 2016 A1
20160130843 Bingle May 2016 A1
20160138306 Krishnan et al. May 2016 A1
20160153216 Funahashi et al. Jun 2016 A1
20160326779 Papanikolaou et al. Nov 2016 A1
20170014039 Pahlevan et al. Jan 2017 A1
20170074006 Patel et al. Mar 2017 A1
20170247016 Krishnan Aug 2017 A1
20170270490 Penilla et al. Sep 2017 A1
20170306662 Och et al. Oct 2017 A1
20170349146 Krishnan Dec 2017 A1
20180038147 Linden et al. Feb 2018 A1
20180051493 Krishnan et al. Feb 2018 A1
20180051498 Van Wiemeersch et al. Feb 2018 A1
20180058128 Khan et al. Mar 2018 A1
20180065598 Krishnan Mar 2018 A1
20180080270 Khan et al. Mar 2018 A1
20180128022 Van Wiemeersh et al. May 2018 A1
Foreign Referenced Citations (59)
Number Date Country
1232936 Dec 2005 CN
201198681 Feb 2009 CN
101527061 Sep 2009 CN
201567872 Sep 2010 CN
101932466 Dec 2010 CN
201915717 Aug 2011 CN
202200933 Apr 2012 CN
202686247 Jan 2013 CN
103206117 Jul 2013 CN
103264667 Aug 2013 CN
203511548 Apr 2014 CN
204326814 May 2015 CN
4403655 Aug 1995 DE
19620059 Nov 1997 DE
19642698 Apr 1998 DE
19642698 Nov 2000 DE
10212794 Jun 2003 DE
20121915 Nov 2003 DE
10309821 Sep 2004 DE
102005041551 Mar 2007 DE
102006029774 Jan 2008 DE
102006041928 Mar 2008 DE
102010052582 May 2012 DE
102011051165 Dec 2012 DE
102015101164 Jul 2015 DE
102014107809 Dec 2015 DE
0372791 Jun 1990 EP
0694664 Jan 1996 EP
1162332 Dec 2001 EP
1284334 Feb 2003 EP
1288403 Mar 2003 EP
1284334 Sep 2003 EP
1460204 Sep 2004 EP
1465119 Oct 2004 EP
1338731 Feb 2005 EP
1944436 Jul 2008 EP
2053744 Apr 2009 EP
2314803 Apr 2011 EP
2698838 Jun 1994 FR
2783547 Mar 2000 FR
2841285 Dec 2003 FR
2948402 Jul 2009 FR
2955604 Jul 2011 FR
2402840 Dec 2004 GB
2496754 May 2013 GB
62255256 Nov 1987 JP
05059855 Mar 1993 JP
406167156 Jun 1994 JP
406185250 Jul 1994 JP
2000064685 Feb 2000 JP
2000314258 Nov 2000 JP
2007138500 Jun 2007 JP
20030025738 Mar 2003 KR
20120108580 Oct 2012 KR
0123695 Apr 2001 WO
03095776 Nov 2003 WO
2013111615 Aug 2013 WO
2013146918 Oct 2013 WO
2014146186 Sep 2014 WO
Non-Patent Literature Citations (31)
Entry
Zipcar.com, “Car Sharing from Zipcar: How Does car Sharing Work?” Feb. 9, 2016, 6 pages.
Department of Transportation, “Federal Motor Vehicle Safety Standards; Door Locks and Door Retention Components and Side Impact Protection,”http://www.nhtsa.gov/cars/rules/rulings/DoorLocks/DoorLocks_NPRM.html#VI_C, 23 pages, Aug. 28, 2010.
“Push Button to open your car door” Online video clip. YouTube, Mar. 10, 2010. 1 page.
Car of the Week: 1947 Lincoln convertible by: bearnest May 29, 2012 http://www.oldcarsweekly.com/car-of-the-week/car-of-the-week-1947-lincoln-convertible. 7 pages.
U.S. Appl. No. 14/276,415, Office Action dated Mar. 28, 2018, 19 pages.
U.S. Appl. No. 12/402,744, Office Action dated Oct. 23, 2013, 7 pages.
U.S. Appl. No. 12/402,744, Advisory Action dated Jan. 31, 2014, 2 pages.
U.S. Appl. No. 14/280,035, filed May 16, 2014, entitled “Powered Latch System for Vehicle Doors and Control System Therefor.”
U.S. Appl. No. 14/281,998, filed May 20, 2014, entitled “Vehicle Door Handle and Powered Latch System.”
U.S. Appl. No. 14/282,224, filed May 20, 2014, entitled “Powered Vehicle Door Latch and Exterior Handle With Sensor.”
George Kennedy, “Keyfree app replaces conventional keys with your smart phone,” website, Jan. 5, 2015, 2 pages.
Hyundai Motor India Limited, “Hyundai Care,” website, Dec. 8, 2015, 3 pages.
Keyfree Technologies Inc., “Keyfree,” website, Jan. 10, 2014, 2 pages.
PRWEB, “Keyfree Technologies Inc. Launches the First Digital Car Key,” Jan. 9, 2014, 3 pages.
General Motors Corporation, 2006 Chevrolet Corvette Owner Manual, © 2005 General Motors Corporation, 4 pages.
General Motors LLC, 2013 Chevrolet Corvette Owner Manual, 2012, 17 pages.
General Motors, “Getting to Know Your 2014 Corvette,” Quick Reference Guide, 2013, 16 pages.
InterRegs Ltd., Federal Motor Vehicle Safety Standard, “Door Locks and Door Retention Components,” 2012, F.R. vol. 36 No. 232—Feb. 12, 1971, 23 pages.
Ross Downing, “Flow to Enter & Exit a Corvette With a Dead Battery,” YouTube video http://www.youtube.com/watch?v=DLDqmGQU6L0, Jun. 6, 2011, 1 page.
Jeff Glucker, “Friends videotape man ‘trapped’ inside C6 Corette with dead battery,” YouTube via Corvett Online video hittp://www.autoblog.com/2011/05/14/friends-videotape-man-trapped-inside-c6-corvette-with-dead-bat/, May 14, 2011, 1 page.
Don Roy, “ZR1 Owner Calls 911 After Locking Self in Car,” website http://www.corvetteonline.com/news/zr1-owner-calls-911-after-locking-self-in-car/, Apr. 13, 2011, 2 pages.
Zach Bowman, “Corvette with dead battery traps would-be thief,” website http://www.autoblog.com/2011/10/25/corvette-with-dead-battery-traps-would-be-thief/, Oct. 25, 2011, 2 pages.
Kisteler Instruments, “Force Sensors Ensure Car Door Latch is Within Specification,” Article, Jan. 1, 2005, 3 pages.
Bryan Laviolette, “GM's New App Turns Smartphones into Virtual Keys,” Article, Jul. 22, 2010, 2 pages.
Hyundai Bluelink, “Send Directions to your car,” Link to App, 2015, 3 pages.
Office Action dated Mar. 10, 2017, U.S. Appl. No. 15/174,206, filed Jun. 6, 2016, 17 pages.
U.S. Appl. No. 14/276,415, filed May 13, 2014, 18 pages.
U.S. Appl. No. 14/282,224, filed May 20, 2014, 15 pages.
U.S. Appl. No. 14/468,634, filed Aug. 26, 2014, 15 pages.
U.S. Appl. No. 13/608,303, filed Sep. 10, 2012, 15 pages.
U.S. Appl. No. 14/281,998, filed May 20, 2014, 20 pages.
Related Publications (1)
Number Date Country
20170074006 A1 Mar 2017 US
Continuations (1)
Number Date Country
Parent 13287362 Nov 2011 US
Child 15359767 US