The present invention relates to an apparatus and method for accurately dispensing an operator-selected volume of liquid from a faucet for use in preparing food recipes or general food preparation. Another aspect of the present invention relates to an apparatus and method for controlling a garbage disposal based on the flow of water through a faucet while performing food preparation.
A number of liquid measuring and dispensing devices for use in industrial applications and beverage dispensing devices exist within the industry. An industrial dispenser is typically set up or calibrated for dispensing a consistent volume of liquid and is operated in repetitive batch mode. The calibrated settings may be stored in the industrial dispenser and used again at a later time for consistently producing the same product.
There is a need to improve the accuracy and ease of dispensing liquids in industrial, commercial, and consumer kitchens while preparing recipes and pre-packaged food products. Such a device would be conveniently located within the kitchen and would allow for dispensing precise volumes of liquid, or more specifically water, into a container for reconstituting pre-packaged food or mixing with other recipe ingredients.
There is a need for a dispensing apparatus to automatically adjust the flow rate of liquid based on the volume of liquid to be dispensed. This automatic adjustment of the flow rate compensates for the anticipated container size and will prevent the ensuing mixture from gushing out of the container when the liquid is added.
There is a need for accurately dispensing a precise volume of liquid at specific temperatures. One such example would be for activating yeast for use in baking. Yeast requires a specific volume of liquid at a very narrow temperature range to effectively promote the yeast to produce carbon dioxide necessary for proper rising of flour during baking. If the liquid is too hot, the yeast is instantly killed. If the liquid is too cool, the yeast will cake or not produce sufficient quantities of carbon dioxide for proper rising.
Furthermore, there is a need for accurately dispensing an exact volume of water at extremely elevated temperatures as required when mixing beverages like coffee, tea, or cocoa. Likewise, there is a need for the apparatus to limit the volume of extremely hot liquid that is dispensed in a single dispensing cycle to prevent overflowing the container and to prevent scalding of the operator.
There is a need to allow normal or manual operation of the kitchen faucet.
Numerous other kitchen tasks require the use of the faucet to dispense liquid at varying flow rates and temperatures. These include tasks such as washing pots, pans, and utensils or rinsing food during preparation of recipes. These tasks require the operator to manually adjust the liquid flow rate and temperature for the task undertaken. There is a further desire by the commercial or consumer chef for the kitchen faucet to be quickly converted to allow dispensing of precise volumes, temperature, and flow rates of liquids.
There is a need for the kitchen faucet to control a garbage disposal unit. As the kitchen faucet senses liquid flowing, the garbage disposal may be operated by the operator. Should the kitchen faucet not have sufficient liquid flowing, the garbage disposal unit would not operate, even when requested by the operator.
Furthermore, there is a need for a kitchen faucet that disables or turns off the garbage disposal when the flow of liquid from the kitchen faucet is stopped. This prevents damage to the garbage disposal when insufficient liquid is flowing.
While some manufacturers have attempted to solve the dispensing of specific volumes of liquid for industrial baking or processing, these devices are too big and cumbersome to be retrofitted to a commercial or consumer kitchen sink. One such device is available from Hass Manufacturing Company and sold under the product name of Intellifaucet BC375 Batch Controller. While this device may be useful for dispensing a large volume of liquid for batch processing, it is inadequate for dispensing small volumes of liquid or when dispensing precise volumes of liquid needed in preparing recipes in the commercial or consumer kitchen.
Other products like the one shown in U.S. Pat. No. 5,431,302 entitled Dispensing Liquid Volume Control by Tulley et al. describes a specialty dispenser for dispensing beer or other expensive carbonated beverages. This apparatus improves the volumetric accuracy by compensating for the liquid spilled from the container. This spillage compensation method would not work for kitchen recipes or food preparation. If used in preparing cooking recipes or other food preparation, the results would be disastrous as the outcome of the recipe would be compromised by the spillage of the liquid and the ensuing mixture.
It is therefore an object of the present invention to provide a household or restaurant, consumers and chefs, a means to accurately measure and dispense water or other liquids in the kitchen for use in preparing recipes, while making instant hot or cold beverages, or in the preparation of pre-packaged foods.
Accordingly, a kitchen dispensing faucet apparatus is desired that provides the advantages noted above and that solves the disadvantages.
The invention relates to an apparatus and method for accurately dispensing an operator-selected volume of liquid from a kitchen faucet for use in preparing food recipes or general food preparation. Another aspect of the present invention relates to an apparatus and method for controlling a garbage disposal based on the flow of water through a faucet while performing food preparation.
It is therefore an object of the invention to provide a liquid-dispensing apparatus comprising a base adapted for mounting to a kitchen sink. A spout extends from the base for dispensing the total amount of liquid. A first circuit is constructed and adapted for connection to a first source of liquid. The first circuit includes a valve to control the flow of liquid from the first source through the circuit. A first flow meter is adapted to measure the volume of the first source liquid flowing through the liquid-dispensing apparatus. A programmable controller is operably connected to the first flow meter and to the first valve contained within the first circuit. The programmable controller is adapted to receive first signals from the flow meter representing the volume of liquid flowing through the meter and dispensed from the liquid-dispensing apparatus. The programmable controller also is adapted to generate second signals to control the first valve to dispense an accurate total amount of dispensed liquid from the spout.
It is therefore an object of the invention to provide a liquid-dispensing apparatus comprising a first and second circuit constructed and adapted for connection to a first source of liquid. The first and second circuits each include a valve to control the flow of liquid from the first source through their respective circuit. A first flow meter is adapted to measure the volume of the first source liquid flowing through the liquid-dispensing apparatus. A programmable controller is operably connected to the first flow meter and to the first and second valves contained within the first and second circuits. The programmable controller is adapted to receive first signals from the flow meter representing the volume of liquid flowing through the meter and dispensed from the liquid-dispensing apparatus. The programmable controller also is adapted to generate second signals to control the first and second valves to dispense an accurate total amount of dispensed liquid.
It is therefore an object of the invention to provide a device that is readily available in the kitchen near the sink, cooking, or food preparation areas that would dispense an operator-selected volume of liquid with the accuracy required by recipes or pre-packaged foods. The device rapidly dispenses the desired volume of liquid into a container, and is programmed to limit the liquid flow rate based on the volume of liquid desired to prevent splashing or loss of the ensuing mixture. The device also dispenses a wide range of volumes ranging from a fractional teaspoon to gallons of liquid with sufficient accuracy and consistency required by cooking recipes and food preparation.
It is a further object of this invention for this new device to dispense a measured volume of extremely hot water for preparing instant or hot beverages, and for reconstituting pre-packaged foods. The measured volumes are programmed and stored in the memory contained within the device and may be adjusted by the operator. These predefined measured volumes are typical for such foods and beverages and provide the operator a margin of safety by reducing the risk of scalding or overflowing the container as the hot liquid is dispensed.
It is a further object of this invention for this new device to provide for changing the temperature of the liquid to be dispensed across a range of temperatures. The dispensed liquid temperature may be adjusted on demand by the consumer throughout the temperature range of below room temperature but above freezing to a temperature near boiling. The device may include preset temperatures for dispensing liquids at temperature commonly needed within the kitchen for recipes and food preparation.
It is a further object of the invention to provide a method of dispensing a desired volume wherein the operator dispenses several arbitrary volumes of liquid, followed by a final dispensing of liquid to the desired preset volume.
It is a further object of the invention to provide a method of rapidly dispensing the desired volume of liquid while controlling the flow of liquid through the faucet into a container filled with ingredients, thereby preventing the liquid splashing out or a loss of mixture from the container while the liquid is being added.
Accordingly, in one of its aspects, the present invention may be retrofitted to a kitchen faucet assembly for measuring and dispensing a desired volume of water by controlling the hot and cold water supply sources to the existing faucet or sprayer.
Another aspect of this device is a control signal attached to a kitchen sink garbage disposal. The garbage disposal control signal is activated only when the liquid flow sensor detects a sufficient volume of water flowing through the faucet. The garbage disposal would turn off when the flow of water through the faucet is interrupted; thereby preventing damage to the garbage disposal.
The apparatus 1 for an electronic dispensing kitchen faucet consists of a base 48, a spout 49, a first circuit 50, a first flow meter 7, and a programmable controller 3 as shown in
The first flow meter 7 measures the volume of liquid dispensed through the first circuit 50. The first flow meter 7 is shown in
The programmable controller 3 is operably connected to the first flow meter 7 and to the first valve 9. The controller 3 is programmed and adapted to receive first signals from the first flow meter 7. The controller 3 generates control signals to actuate and de-actuate the first valve 9 to dispense an accurate total amount of liquid from the spout 49.
The apparatus 1 for an electronic dispensing kitchen faucet consists of a first circuit 50, a second circuit 52, a first flow meter 7, and a programmable controller 3 as shown in
The second circuit 52 is adapted for connection to a first source of liquid 15 to dispense liquid from the first source at a second flow rate 53. The second circuit 52 includes a second valve 10 for controlling the flow of the liquid from the first source through the second circuit 52.
The first flow meter 7 measures the volume of liquid dispensed through the first and second circuits 50, 52. The first flow meter 7 is shown in
The programmable controller 3 is operably connected to the first flow meter 7 and to the first and second valves 9 and 10, respectively. The controller 3 is programmed and adapted to receive first signals from the first flow meter 7. The controller 3 generates control signals to actuate and de-actuate the first and second valves 9, 10 to dispense an accurate total amount of liquid.
Another embodiment of the apparatus 1 for an electronic dispensing kitchen faucet consists of a first circuit 50, a second circuit 52, a common outlet circuit 26, and a programmable controller 3. The first circuit 50 is adapted for connection to a first source of liquid 15 to dispense liquid from the first source at a first flow rate 51. The first circuit 50 includes a first valve 9 for controlling the flow of the liquid from the first source through the first circuit 50.
The second circuit 52 is adapted for connection to a first source of liquid 15 to dispense liquid from the first source at a second flow rate 53. The second circuit 52 includes a second valve 10 for controlling the flow of the liquid from the first source through the second circuit 52.
The first and second circuits 50, 52 are connected together to form a common outlet circuit 26. The first flow meter 7 measures the volume of liquid dispensed through the common outlet circuit 26.
The programmable controller 3 is operably connected to the first flow meter 7 and to the first and second electric solenoid valves 9 and 10, respectively. The controller 3 is programmed and adapted to receive first signals from the first flow meter 7. The controller 3 generates control signals to actuate and de-actuate the first and second valves 9, 10 to dispense an accurate total amount of liquid.
Another embodiment of the apparatus 1 for an electronic dispensing kitchen faucet consists of a first flow meter 7, a first and second electric solenoid valves 9 and 10 respectively, an operator input device 2, a start input switch 31, and a programmable controller 3.
The first flow meter 7 connects to a first source of liquid 15 and produces a first flow signal indicating the volume of liquid flowing through the flow meter and a faucet exit 29. The first electric solenoid valve 9 is connected to a first source of liquid 15 and to the first flow meter 7 and controls the liquid flow rate at a first flow rate 51. The second electric solenoid valve 10 is connected to the first source of liquid 15 and to the first flow meter 7 and controls the liquid flow rate at a second flow rate 53. The second flow rate 53 is typically 3-5 times greater than the first flow rate 51.
The operator input device 2 allows the operator to specify the volume of liquid desired, as well as other parameters, settings, and values useful for liquid dispensing. The operator input contains a display 30 for communicating information to the operator such as volume dispensed, volume to be dispensed, temperature of the liquid being dispensed, and other parameters or settings. The parameters and settings are stored in memory 36 and used by the programmable controller 3 while operating the faucet apparatus 1.
The start input switch is used to initiate liquid dispensing through the electronic kitchen dispensing faucet apparatus. When the start input switch 31 is depressed, the apparatus initiates dispensing. If the start input switch 31 is depressed while the apparatus is dispensing, the apparatus will pause the liquid dispensing pending further action by the operator. The liquid dispensing will complete the dispensing operation if the start input switch 31 is depressed while the apparatus 1 is paused.
The programmable controller 3 receives input from the operator input 2 and start input switch 31 and contains an audible signal generator 4 for alerting the operator of errors or when the liquid dispensing cycle is complete. The programmable controller 3 communicates with the operator by displaying information on the display 30. The programmable controller 3 generates control signals to initiate liquid flowing from the first source of liquid 15. These control signals actuate the first and second electric solenoid valves to achieve the desired flow rate through the faucet apparatus 1.
The programmable controller 3 receives input signals from the first flow meter 7 representing the volume of liquid flowing. The controller 3 sums the first flow signals and compares the total volume dispensed to the desired operator volume input. The controller 3 generates control signals to the first and second electric solenoid valves 9, 10 to stop the flow of liquid when the desired volume of liquid has been dispensed from the faucet apparatus 1 into the container 44.
An example of such a flow meter is produced by Omega Engineering and sold as the FTB2000 Series Economical Flowrate Sensor. The Omega Engineering flow rate sensor is available in several flow rate resolutions and flow capacities. It should be noted that other flow meter designs may be equally substituted for measuring the volume of liquid flowing through the faucet outlet. These flow meters may generate pulsed signals or frequency output signals representative of the finite volume of liquid flowing through them.
The first electric solenoid valve 9 controls the flow of the first source liquid 15 at a first flow rate 51. The second electric solenoid valve 10 controls the flow of the first source liquid 15 at a second flow rate 53. The cumulative volume of first source liquid 15 flowing through the first and second electric solenoid valves 9, 10 flows through the first flow meter 7 and is dispensed from the faucet exit 29.
The first flow meter 7 generates first flow signals representative of the volume of liquid flowing through the first flow meter 7. The first flow signals are connected to the programmable controller 3 for processing. The programmable controller 3 sums the first flow signals and stores the resulting total volume of first source liquid dispensed from the faucet exit 29 in memory 36 for later use.
The operator input 2 provides a means for the operator to specify the volume of first source liquid 15 to be dispensed from the faucet apparatus 1. The operator may select from volumetric units typical of recipes or volumes of liquid used in the kitchen which would be displayed to the operator on a display 30. These volumetric units may be either English or metric. English volumetric units include teaspoon (tsp), tablespoon (Tbsp), ounces (oz), cups (c), pints (pt), quarts (qt), or gallons (gal). Metric volumetric units include milliliters (ml) or liters (l). Once the operator selects the volumetric units for input, the quantity is specified by the operator using the operator input 2. The operator may specify the quantity of the specified volumetric unit in either decimal or fractional increments. As an example, English units are typically required in fractional increments of the selected volumetric unit. (e.g., ⅔ teaspoon, ¼ cup, ½ gallon, etc.)
The operator input 2 includes an audible signal generator 4. Numerous audible signal generators are known within the industry. These include audio speakers of various designs and manufacturing styles; some are designed for direct exposure to high moisture environments which may include direct contact with liquids. Other audible signal generators include fixed frequency generators that may be controlled in duration or intensity. The programmable controller 3 audible output signal connects to the audible signal generator 4 for frequency, intensity, and duration control. The programmable controller 3 outputs the appropriate signal to alert the operator of various conditions while dispensing liquid. These operator alerts may include feedback that operator input 2 has been acknowledged, errors have occurred while dispensing liquid, or to alert the operator prior to dispensing elevated or hot temperature liquids from the faucet to prevent scalding the operator.
An alternative operator input device 2 can include individual increment and decrement input buttons for each volumetric unit and parameter to be dispensed as shown in
Another operator input device would include a traditional keypad that includes the numeric digits 0-9 and additional keys for each volumetric unit. The operator would input the desired numeric or fractional value before or after specifying the units.
More specifically, the electronic kitchen dispensing faucet 1 as shown in
The perpendicular input switch 33 selects the volumetric unit or other parameter to be input by the operator. Each press of the perpendicular input switch 33 selects the next volumetric unit or parameter to be adjusted by the operator. As an example when operating in the English volumetric mode, the operator may select between the English units of tsp, Tbsp, oz, pt, qt, and gal. The perpendicular input switch 33 may select between other non-numeric input parameters such as temperature, garbage disposal, and country.
When non-numeric input parameters are selected by the perpendicular input switch 33, the rotary switch 32 would be used to select between the possible values. The possible values may be numeric or specific non-numeric settings. As an example, when the COUNTRY parameter is selected, the rotary switch would allow the operator to select between ENGLISH or METRIC values by rotating the rotary switch 32 in either the forward or reverse direction 34, 35.
A start input switch 31 creates a start signal to the programmable controller 3 indicating the operator's desire to operate the electric kitchen dispensing faucet apparatus 1. The start input switch 31 may be any style switch known within the industry. This switch could be of a mechanical actuator, capacitive sensing, magnetic sensing, or optical switch input means that generates a signal to the programmable controller indicating the operator's intent to operate the faucet apparatus 1.
The programmable controller 3 receives input signals from the first flow meter 7, operator input 2, and start input switch 31. The programmable control 3 produces control signals to the first and second electric solenoid valves 9 and 10, respectively, and display 30. The programmable controller 3 monitors the start input switch signal to initiate, pause, or stop the flow of liquid through the faucet as shown in
Continuing to refer to
The second source of liquid 16 is typically available in residential or commercial kitchens providing an elevated temperature water source. This elevated temperature water source is typically at a temperature between 130 and 190 degrees Fahrenheit.
The first, second, third, and fourth circuits 50, 52, 54, 56 are connected together to form a common outlet circuit. The first flow meter 7 generates signals representing the volume of liquid flowing through the flow meter 7 and common outlet circuit 26 and dispensed from the faucet exit 29.
The temperature sensor 19 may be selected from several temperature sensors known within the industry. The temperature sensor may be any of a variety of thermocouple sensor styles (J, K, T, E, R, S) which use different bimetal junctions to create an electrical voltage which increases or decreases proportionally as the temperature increases or decreases. Other temperature sensors use various materials to create a change in resistance as the temperature changes. The temperature sensor is positioned within the liquid conduit between the first flow meter outlet and the faucet exit 29. The temperature sensor measures the resulting temperature of the liquids flowing through the faucet exit 29.
The temperature sensor 19 is capable of sensing liquid temperatures between 32 and 212 degrees Fahrenheit. The temperature sensor 19 measures the resulting temperature of the first and second source liquids 15, 16 and the reservoir liquid flowing through the faucet apparatus 1.
The operator input 2 allows the operator to define the resultant liquid temperature dispensed from the faucet exit 29. The operator input 2 allows the operator to select a temperature to be dispensed from commonly used temperatures, or the operator may enter the temperature directly into the operator input 2.
The programmable controller 3 generates control signals that actuate the first, second, third, and fourth electric solenoid valves 9, 10, 11, 12, resulting in liquid flowing through the corresponding valve and circuit. The programmable controller 3 receives an electric voltage signal from the temperature sensor 19 representative of the liquid temperature dispensed from the faucet exit 29. The programmable controller 3 converts the temperature sensor electrical voltage into a dispensed liquid temperature. The programmable controller 3 then compares the dispensed liquid temperature to the desired operator temperature. The programmable controller calculates the pulse rate for the first, second, third, and fourth electric solenoid valves 9, 10, 11, 12 to adjust the temperature and volume of liquid flowing from the faucet exit 29. The programmable controller 3 determines the magnitude of temperature error in the resultant liquid dispensed from the faucet and increases the flow rate in the temperature direction of adjustment required. The solenoid pair attached to the opposing temperature liquid source may be reduced if the flow rate exceeds the maximum flow rate for the volume being dispensed or if a greater temperature error exists.
Continuing to refer to
The fifth circuit 58 is adapted for connection to the outlet of the heated liquid reservoir 6 to dispense hot liquid from the heated reservoir 6 at a fifth flow rate 59. The fifth circuit 58 includes a valve 13 for controlling the flow of hot liquid from the heated liquid reservoir 6 through the fifth circuit 58. The sixth circuit 60 is adapted for connection to the outlet of the heated liquid reservoir 6 to dispense hot liquid from the heated liquid reservoir 6 at a sixth flow rate 61. The sixth circuit 60 includes a valve 14 for controlling the flow of hot liquid from the heated liquid reservoir 6 through the sixth circuit 60. The sixth flow rate 61 is typically 3-5 times greater than the fifth flow rate 59.
The first, second, third, fourth, fifth, and sixth circuits 50, 52, 54, 56, 58, 60 are connected together to form a common outlet circuit 26. The first flow meter 7 generating signals representing the volume of liquid flowing through the first flow meter 7 and common outlet circuit 26 and dispensed from the faucet exit 29.
The programmable controller 3 generates control signals connected to the first, second, third, fourth, fifth, and sixth electric solenoid valves 9-14 for actuating the corresponding valve resulting in liquid flowing through the valve and dispensed from the faucet exit 29. The programmable controller 3 receives an electric voltage signal from the temperature sensor 19 proportional to the liquid temperature dispensed from the faucet. The programmable controller 3 converts the temperature sensor electrical voltage into a dispensed liquid temperature. The programmable controller 3 then compares the dispensed liquid temperature to the operator desired liquid temperature. The programmable controller 3 calculates the pulse rate needed for actuating the first, second, third, fourth, fifth, and sixth electric solenoid valves 9-14 to adjust the temperature and volume of liquid flowing through the faucet exit 29. The programmable controller 3 determines the magnitude of temperature error in the resultant liquid dispensed from the faucet and increases the flow rate in the temperature direction of adjustment required. The solenoid pair attached to the opposing temperature liquid source may be reduced if the flow rate exceeds the maximum flow rate for the volume being dispensed.
The programmable controller 3 determines the initial flow rate 71 by comparing the operator input volume 75 to a table of volumes 70 with corresponding output flow rate parameters stored in memory 36. The programmable controller 3 selects the appropriate initial flow rate 71. The initial flow rate 71 limits the flow rate of liquid dispensed from the faucet exit 29 to insure the liquid does not splash or gush out of the container 44 used to capture the dispensed liquid. The output flow rate is also determined and limited by the total volume of liquid to be dispensed, and the actual volume of liquid dispensed from the faucet exit 29 into the container 44.
The flow rate through the electric solenoid valves is reduced to a termination flow rate 73 when the actual volume dispensed is near the total volume desired by the operator to insure volumetric accuracy. The programmable controller 3 determines the termination flow rate 73 by comparing the operator input volume 75 to a table of volumes 70 with corresponding output flow rates stored in memory 36. The programmable controller 3 selects the appropriate terminating flow rate 73. The flow rate through the faucet exit 29 may be abruptly terminated as the total volume dispensed increases above a predefined volume. By abruptly terminating the flow of liquid, liquid volumes above this predefined volume are rapidly dispensed without compromising volumetric accuracy dispensed into the container.
The flow rate through the electric solenoid valve is maintained at an average flow rate 72 while dispensing the source liquids when the volume dispensed is greater than the initial volume but less than the operator input volume less the termination volume. The programmable controller 3 determines the average flow rate 72 by comparing the operator input volume to a table of volumes 70 with corresponding output flow rates stored in memory 36. The programmable controller 3 selects the appropriate average flow rate 72.
The flow rate through the faucet exit 29 is limited to a maximum flow rate 74 whenever dispensing a measured volume of liquid. This maximum flow rate 74 is determined by the maximum first flow meter characteristics. By limiting the flow rate through the faucet exit 29 to the maximum flow rate 74, the volumetric accuracy is insured.
Once the operator specified volume has been dispensed through the kitchen faucet or the dispensing operation suspended by the operator, the programmable controller 3 remains idle waiting for additional operator input. If no operator input is received within a selected time interval, the electronic kitchen dispensing faucet apparatus 1 will turn power off to the unit to conserve electricity and to turn off the operator display illumination source which could be annoying to the operator during the nighttime.
Now referring to
The operator activates the On/Off switch signal 108 to retrieve the previous dispensed volume stored in memory 107. The operator input 2 then displays the current value and allows the operator to adjust the units and values to the desired volume and temperature for dispensing 120. When the desired volume has been selected by the operator, the start input switch 31 is depressed by the operator which generates a start input switch signal activation 121 which starts a timing sequence by initializing a start timer value to zero. The start timer value measures the duration the start input switch 31 is activated. The start timer value is compared to a preset value. If the start timer exceeds the preset value, the electric solenoid valves will be actuated while the start input switch 31 remains depressed, activating the start input signal as shown in
If the start input switch 31 is de-activated before the start timer exceeds the preset value 241, the dispensing process continues as shown in
Now referring to
The first flow meter signals are added to the accumulated pulses and calculations performed to determine the total volume of liquid dispensed in step 204. The accumulated total volume dispensed is stored in memory as shown in step 207. The temperature sensor 19 is read by the programmable controller 3 in step 205. The average flow rate through the faucet exit 29 is calculated by dividing the total volume of liquid dispensed by the time elapsed while dispensing as shown in step 206.
The current dispensed liquid temperature is compared to the desired operator input temperature in step 208. Each electric solenoid valve pulse rate is adjusted based on the difference between the current temperature and desired temperature. The flow rate through each electric solenoid is factored into the new pulse rates stored in memory.
The actual dispensed volume is then compared to the desired operator requested volume in step 210; if the electronic kitchen dispensing faucet apparatus 1 has dispensed the desired volume of liquid, an audible alarm is signaled 220 and the electric solenoid valves are de-actuated 221. A courtesy delay is provided in step 222 for the operator to review the liquid dispensing information shown on the display 30 before the electronic kitchen dispensing faucet apparatus is turned off to conserve electricity.
If all liquid has not been dispensed, the On/Off switch signal is tested by the programmable controller 3 to determine if the operator has decided to turn the kitchen dispensing faucet Off 240. The programmable controller 3 then tests to determine if the start timer has exceeded a preset value to determine if the operator is holding the start input switch depressed 241. If so, the faucet apparatus 1 dispenses the volume of liquid while the operator continues to press and hold the start input switch 31 depressed 243 and will stop dispensing When the start input switch 31 is released.
If the start input switch 31 signal is momentarily pressed, the liquid is dispensed without further intervention by the operator as shown in step 242. If while dispensing the liquid the operator presses the start input switch 31 signal, the programmable controller 3 will stop the flow of liquid through the faucet exit 29 and store the present volume dispensed as shown in step 244. If the operator fails to complete the dispensing before the non-use timer is exceeded 245, power to the electronic kitchen dispensing faucet apparatus 1 is turned off 230. The operator can continue dispensing liquid by pressing the start input switch 31 signal as shown in step 246.
The programmable controller 3 may determine the maximum volume of heated liquid that may be dispensed from the liquid reservoir 6 during a single dispensing. The operator input volume is compared to this maximum heated liquid volume prior to dispensing. If the operator input volume is greater that the maximum heated liquid volume, the programmable controller 3 will alert the operator by controlling the signal connected to the audible signal generator 4.
A table of frequently dispensed heated liquid volumes may be maintained in the memory 36. This table would include the predefined liquid volume and temperature. The operator input 2 will allow the operator to select a predefined volume and temperature of heated liquid for measured dispensing from the electronic kitchen dispensing faucet apparatus 1. These frequently dispensed volumes and temperatures are typical of pre-packaged food products like instant soups, tea, coffee, cocoa, or other hot beverages. The table of volumes and temperatures may be preprogrammed from the manufacturer or input by the operator and stored in memory 36 for future use.
To use the table of frequently dispensed heated liquid volumes and temperatures, the operator input would enable the selection from the table of heated volumes and temperatures. The operator would then scroll through each entry stored in memory 36. When the desired table entry is located by the operator, the operator would then select this entry for subsequent dispensing when the start input switch 31 is activated.
Now referring to
The second flow meter 17 inlet is in fluid connection with the first source of liquid 15 and the outlet being in fluid connection with the first inlet of the manual mixing valve 8. The third flow meter 18 inlet is in fluid connection with the second source of liquid 16 and the outlet is in fluid connection with the second inlet of the manual mixing valve 8. The manual mixing valve 8 outlet is in fluid connection with the liquid conduit connected to the first flow meter 7 outlet, temperature sensor 19, and faucet exit 29.
The second and third flow meters 17, 18 generate signals representative of the volume of liquid flowing through their respective flow meter, these signals are connected to the programmable controller 3 which sums the discrete volumes represented by each signal pulse and accumulating the total volume flowing of the first and second source liquid 15, 16 in its memory 36 for future processing.
The programmable controller 3 may display the accumulated volume of liquid flowing through the second and third flow meters 17, 18, and the average temperature dispensed from the faucet into a container on the display of the operator input 2 while the manual mixing valve 8 is actuated by the operator.
The operator can close the manual mixing valve 8, and using the operator input 2 select a total volume and temperature for dispensing by the electronic kitchen dispensing faucet apparatus 1. The programmable controller 3 will calculate the remaining volume of liquid by subtracting the volume of liquid dispensed through the manual mixing valve from the desired volume selected from the operator input 2. The programmable controller 3 will then actuates the electric solenoid valves in sequence to dispense the remaining volume of liquid from the faucet exit 29.
The programmable controller 3 may also sequence the electric solenoid valves to complete the dispensing of liquid at the average temperature set by the operator using the manual mixing valve position. The programmable controller 3 may also sequence the electric solenoid valves to complete the dispensing of liquid at the same flow rate established by the operator while operating the manual mixing valve 8.
Referring to
The programmable controller 3 continues to monitor the flow meter values and will de-activate the garbage disposal control signal when the volume of liquid flowing through the faucet exit 29 is insufficient to prevent damage to the garbage disposal unit 20.
The programmable controller 3 may also be operated in a mode where the operator enables the garbage disposal. The programmable controller 3 will then activate and de-activate the garbage disposal control signal as the flow of liquid through the faucet exit 29 is of sufficient volumes to prevent damage to the garbage disposal unit 20. This allows the operator to control the garbage disposal unit 20 by operating the manual mixing valve 8. The programmable controller 3 may include a delay in the garbage control signal after sufficient liquid is flowing to allow the liquid to travel through the sink and into the garbage disposal unit 20. A different delay interval may be used by the programmable controller 3 when de-activating the garbage disposal unit 20 once the liquid flow is terminated through the faucet exit 29.
The electronic kitchen dispensing faucet apparatus 1 as shown in
Referring to
The electronic dispensing kitchen faucet shown in
Continuing to refer to
The second circuit 91 being adapted for connection between a second source of liquid 16 to dispense liquid from the second source at third and fourth flow rates 55 and 57, respectively and adapted for connection to the typical kitchen faucet hot water source inlet 160. The second circuit 91 includes a third and fourth valve 11′ and 12′, respectively, for controlling the flow of the liquid from the second source through the second circuit 91, and a second flow meter 93 for measuring the volume of second source liquid through the second circuit 93 and into the typical kitchen faucet hot water source inlet 160.
The first, second, third and fourth valves 9′, 10′, 11′, and 12′ are of a normally open design which allows liquid to flow from the inlet to the outlet port without a signal applied. When the signal is applied to the normally open valve, the valve flow path is blocked, restricting liquid from flowing between the inlet and outlet ports.
The outlet ports of the first and second valves 9′, 10′ are connected together and in fluid connection with the inlet of the first flow meter 92. The first flow meter 92 outlet is in fluid connection with the typical kitchen faucet cold water source inlet 150, typically referred to as the cold water source. The inlet ports of the first and second electric solenoid valves are connected together and in fluid connection with the first source liquid 15.
The outlet ports of the third and fourth valves 11′, 12′ are connected together and in fluid connection with the inlet of the second flow meter 93. The second flow meter 93 outlet is in fluid connection with the typical kitchen faucet hot water source inlet 160. The inlet ports of the third and fourth valves 11′, 12′ are connected together and in fluid connection with the second source liquid 16.
The programmable controller 3 generates output signals to control the first, second, third, and fourth valves 9′-12′. The operator input 2 consists of an on/off input switch 47 which turns the electronic kitchen dispensing faucet on and off. When the on/off input switch 47 is depressed, the electronic kitchen faucet apparatus 1 is turned on. The first, second, third, and fourth electric solenoid valves 9′-12′ are actuated as shown in
When the start input switch is actuated as shown in
If no activity occurs on the operator input within the non-use timer interval as shown in
The operator input 2 allows the operator to select the desired volume of liquid to be dispensed as shown in
The liquid flow rate through the faucet exit 29 is increased slowly to insure the liquid does not splash out of the container 44 or result in the containers ensuing mixture gushing out as the liquid begins to flow into the container 44. The programmable controller 3 locates the desired volume of liquid 75 within a flow rate table of volumes 70 stored in memory 36. The values for the initial, terminating, average, and maximum flow rates 71, 72, 73, 74, respectively, are extracted from the flow rate table 70 stored in memory 36. The initial, terminating, average, and maximum flow rates 71-74 are based on the dispensed volume 75 and the anticipated container size to be used in collecting the volume dispensed. The flow rate table 70 also contains the initial and terminating flow rate volumes 71 and 73, respectively. The initial flow rate 71 is used when the programmable controller 3 initiates liquid flowing through the faucet exit 29. The initial flow rate 71 will be allowed to flow for up to the initial flow volume before increasing the flow rate to the average flow rate 72. The terminating flow rate 73 is used when the dispensed volume is within the terminating flow volume. The flow rate will be reduced to the terminating flow rate 73 while dispensing the terminating flow volume and therefore dispense the total operator input volume desired.
Once the initial flow volume has been dispensed, the programmable controller 3 increases the liquid flow rate to the average flow rate 72. The programmable controller 3 sequences the first, second, third, and fourth electric solenoid valves 9-12 to maintain the flow rate at approximately the average flow rate 72; but below the maximum flow rate 74. The first, second, third, and fourth electric solenoid valves 9-12 are actuated and de-actuated in sequence to maintain the liquid temperature at the desired operator temperature.
It should be recognized that the above-described embodiments of the invention are intended to be illustrative only. A latitude of modification, change, and substitution is intended in the foregoing disclosure, and in some instances, some features of the invention will be employed without a corresponding use of other features.