The following disclosure relates to a level detecting device and related methods for use with a container or server which holds a quantity of liquid or beverage. The level detecting device detects and displays the level of the liquid in the container.
A variety of beverage devices have been developed which include a sight gauge to identify the level of beverage in a server or container associated with the beverage device. Such a container or server includes a reservoir area which is connected to an outlet tube. The outlet tube extends to a controllable faucet. Such controllable faucets may either be electronic or mechanical. Positioned along the outlet tube is a coupling for mounting a sight gauge or level gauge.
Such sight gauges are typically a generally hollow tubular structure having at least a portion of the tubular structure being transparent. While the entire tubular structure may be transparent, only a portion is required to be transparent or semi-transparent so that the level of liquid in the container can be determined by viewing the level of liquid in the hollow tube. The level of liquid in the reservoir can be “read” or visually identified by the level of liquid in the hollow tube. This is because the level in the tube is generally equal to the level in the reservoir as a result of the tube communicating with the reservoir by way of the outlet tube.
While such configurations are used in the prior art, a potential problem that arises is that the liquid in the hollow tube is usually the first quantity of liquid to be dispensed through the valve when the valve is opened to dispense beverage from the server. This becomes a problem when the beverage is held in the reservoir for a period of time during which the quantity of beverage in the sight tube tends to cool. The quantity of beverage in the sight tube tends to cool because it is external to the reservoir. In contrast, the beverage retained in the reservoir tends to maintain a higher temperature as the reservoir is typically insulated to prevent heat loss. When beverage is dispensed from the server the cooled portion of the beverage in the sight tube is dispensed first. Depending on the quantity of beverage in the sight tube, the cooled beverage may result in a lowering of the temperature of the first cup served after such cooling.
As an additional matter, such sight tubes are prone to breakage as a result of the transparent material being somewhat fragile. Even the plastic materials which are used for such devices may become damaged over time.
As an additional matter, such prior art sight gauges may become visually undesirable to the customer. This may result from the accumulation of material and sediment in the sight tube. While this is generally not a difficult component to clean, the component may not be cleaned from time to time and therefore detrimental to the appearance of the beverage server.
Additional features will become apparent to those skilled in the art upon consideration of the following detailed description of drawings.
The detailed description particularly refers to the accompanying figures in which:
While the present disclosure may be susceptible to embodiment in different forms, there is shown in the drawings, and herein will be described in detail, embodiments with the understanding that the present description is to be considered an exemplification of the principles of the disclosure and is not intended to limit the disclosure to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings.
With reference to the figures,
With reference to
A benefit of attachment of the level gauge 20 by the coupling 34 and faucet fitting 36 is that the level gauge 20 can be interchangeable with a mechanical or liquid level sight gauge as known in the prior art. Such a liquid level sight gauge 40 is shown in
The present disclosure provides a structure which allows for interchangeability of the electronic level gauge 20 with a traditional hollow tube sight gauge 40. This interchangeability allows the owner of a server 24 having a traditional hollow tube sight gauge 40 to replace it with an electronic level gauge 20. Interchangeability is possible because the electronic level gauge 20 is designed to attach to the same outlet assembly configuration used to attach the sight gauge 40.
While a large quantity of beverage does not rise up into the gauge 20, compared to the quantity which may rise in a hollow tube sight gauge 40, the gauge 20 nevertheless senses the pressure of the liquid retained in the server reservoir to produce a signal on the display 28 relating to the relative level in the reservoir. In this regard, the liquid in the reservoir creates hydrostatic pressure on the outlet line. The hydrostatic pressure is proportional to the quantity or volume of liquid retained in the reservoir. As such, a pressure sensing device 76 (see
With reference to
The check valve housing 58 has a first coupling 62 for mating with the tube 56 and a second coupling 64 for mating with a secondary tube 66. The secondary tube 66 extends upwardly to a pressure sensor assembly 70 which has a sensor coupling 72. The sensor coupling 72 mates with the secondary tube 66. The pressure sensor assembly 70 includes a pressure sensor 76 (see
With reference to
As shown in the enlarged views of
With further reference to
With further reference to
The equipment selector 96 is provided so as to allow a single level gauge 20 to be used with a variety of different pieces of equipment or sizes or dimensions of the reservoir. While three different pieces of equipment are shown associated with the equipment selector 96 in
For example, a pressure reading relating to the level of liquid in a large capacity server does not directly correlate to the same pressure reading in a small capacity server. For this reason, the selector 96 and the programming associated therewith, allows the gauge 20 to be used with a variety of different pieces of equipment. This solves the problem of having one electronic gauge 20 designed for each piece of equipment. This solution greatly expands the applicability of the level gauge 20 to a variety of products. Moreover, it is foreseeable that a single level gauge 20 can be designed for a variety of equipment produced by a variety of manufacturers. In this regard, if one manufacturer wishes to use the level gauge, the system can be calibrated to that manufacturer's equipment and a selector choice can be added to the selector 96. One skilled in the art will recognize that the equipment selector or calibration means, can be implemented in a number of ways. In one embodiment, the microprocessor 102, includes appropriate programming to scale or calibrate either the signal received from the pressure sensor 76, or scale the signal sent to the display 28. In other embodiments, additional components are included external to the microprocessor, to scale the signal from the sensor, or to scale the signal going to the display.
With reference to
With reference to
If beverage or “coffee” is being dispensed from a server or “flowing”, the sensor 76 pressure falls to 0. When this pressure change occurs, the microcontroller 102 then starts a timer to reduce or decrement the level on the display based on a predetermined flow rate stored at the microcontroller. This process eliminates a sudden drop in level on the display. This sudden drop is one of the problems with the prior art which is resolved by this process and apparatus. The predetermined flow rate can be calculated based on the physical parameters of the outlet assembly 22 including the faucet 26. While there may be some variation in flow based on hydrostatic pressure within the server depending on whether the server is full or nearly empty, a numerical assumption can be made to provide a predetermined flow rate.
When flow stops, and dispensing has ceased, the microcontroller 102 takes an actual pressure reading from the sensor 76 and adjusts the level at the display 28 to provide an accurate display of the contents of the server.
With further reference to the flow chart of
If the beverage has not been refilled or refreshed over a specified duration of time, the display will cease its signal and turn on an alarm in the form of a visual or auditory alarm. This will alert the operator in the event the operator failed to notice the initial alert. The specified duration of time may be different than the amount of time related to the triggering of the response signal.
As an additional step, the controller 102 will power down the pressure sensor 76 and op amp 104 and go into a “sleep mode” for 5 seconds. The controller 102 will then reactivate the system 100 after a 5 second delay. The process shown in
The electronic level gauge 20 provides a useful interface that lets the user of the server 24 know how much beverage such as coffee remains in the server. The gauge 20 is also programmed and operates to indicate the freshness of the coffee and the level of battery power. The pressure sensor 76 is powered directly from the controller 102 and converts pressure sensed at the port into an electrical signal. The signal is then processed through a signal conditioning circuit including the op amp 104 to amplify and filter the signal for use by the microcontroller 102. The controller 102 converts the signal 108 from analog to digital. Based on the voltage level sensed by the controller, the controller will drive the appropriate portions of the display 28 to indicate the level of beverage in the server. The battery power level is also monitored by the controller to inform the user when batteries are low and need to be replaced. Another feature that is incorporated on the display is a freshness indicator. Based on pressure changes over time, the microcontroller 102 will determine if the beverage is fresh.
While a preferred embodiment of the disclosure is shown and described, it is envisioned that those skilled in the art may devise various modifications and equivalents without departing from the spirit and scope of the disclosure.
This application claims priority to U.S. Provisional application No. 60/460,555 filed on Apr. 4, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3592219 | Giese et al. | Jul 1971 | A |
3803917 | Reese et al. | Apr 1974 | A |
3904174 | Giese | Sep 1975 | A |
4022062 | Basel et al. | May 1977 | A |
4044998 | Giese | Aug 1977 | A |
4166606 | Kawolics et al. | Sep 1979 | A |
4343184 | Jaulmes | Aug 1982 | A |
4630478 | Johnson | Dec 1986 | A |
4669309 | Cornelius | Jun 1987 | A |
4747062 | Esau | May 1988 | A |
5105662 | Marsh et al. | Apr 1992 | A |
5163324 | Stewart | Nov 1992 | A |
5167155 | Rodgers | Dec 1992 | A |
5207251 | Cooks | May 1993 | A |
5210769 | Seidel et al. | May 1993 | A |
5375508 | Knepler et al. | Dec 1994 | A |
5388501 | Hazan et al. | Feb 1995 | A |
5449144 | Kowalics | Sep 1995 | A |
5563584 | Rader et al. | Oct 1996 | A |
5604315 | Briefer et al. | Feb 1997 | A |
5661228 | Young | Aug 1997 | A |
5704275 | Warne | Jan 1998 | A |
5705747 | Bailey | Jan 1998 | A |
5802910 | Krahn et al. | Sep 1998 | A |
5862738 | Warne | Jan 1999 | A |
5901635 | Lucas et al. | May 1999 | A |
5944225 | Kawolics | Aug 1999 | A |
6105437 | Klug et al. | Aug 2000 | A |
6220091 | Chen et al. | Apr 2001 | B1 |
6234018 | Kelada | May 2001 | B1 |
6282952 | Kawolics | Sep 2001 | B1 |
6298721 | Schuppe et al. | Oct 2001 | B1 |
6675654 | Hegner et al. | Jan 2004 | B1 |
6741180 | Lassota | May 2004 | B1 |
20010032954 | Kawolics et al. | Oct 2001 | A1 |
20040195263 | Lassota | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2014868 | Sep 1979 | GB |
2149925 | Jun 1985 | GB |
Number | Date | Country | |
---|---|---|---|
20050016267 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60460555 | Apr 2003 | US |