This application claims priority of Taiwanese Invention Patent Application No. 108120439, filed on Jun. 13, 2019.
The disclosure relates to an input apparatus, and more particularly to an input apparatus for an electronic lock.
A conventional electronic lock uses full-power scan to detect user operations on a touch panel thereof. That is, a high-level signal that has a predetermined duration is inputted to each touch button of the touch panel in order to detect operation performed on any of plural touch buttons of the touch panel during a time period corresponding to the predetermined duration. Such full-power scan approach consumes much power. Electronic locks usually use independent power sources, such as batteries, to avoid malfunction due to power outages. Because of lack of power efficiency, batteries of said conventional electronic lock using full-power scan need to be replaced frequently. Such frequent replacement of the batteries brings inconvenience to the users.
Therefore, an object of the disclosure is to provide an electronic lock and an input apparatus therefor that can alleviate at least one of the drawbacks of the prior art.
According to one aspect of the disclosure, an input apparatus for an electronic lock includes a keypad module, and a processor module in communication with said keypad module. The keypad module includes plural button devices each being operable to output a detection signal. The button devices are arranged in plural rows extending in a first direction and in plural columns extending in a second direction. The processor module includes a signal-processing unit, a sleep unit and a wake-up unit. The signal-processing unit is configured to switch between a sleep mode and a work mode. The signal-processing unit is further configured to, when operating in the work mode, repeatedly perform an emission process of inputting the detection signal to each column of the button devices. In the emission process, the signal-processing unit is to input the detection signal to each column from a first column of the plural columns of the button devices to a last column of the plural columns of the button devices in an order in the first direction. The detection signal includes a pulse wave composed of plural pulses. The signal-processing unit is configured to cease performing the emission process in the sleep mode. The signal-processing unit is further configured to, when operating in the work mode, repeatedly perform a scan process to detect whether the detection signal is outputted from one row of the plural rows of the button devices. The scan process is performed each time the detection signal is inputted to one of the columns of the button devices. In the scan process, the signal-processing unit is to, for each row from a first row of the plural rows of the button devices to a last row of the plural rows of the button devices in an order in the second direction, attempt to receive the detection signal from the row of the button devices. The signal-processing unit is further configured to, when operating in the work mode and when the detection signal outputted from one row of the button devices is detected while the signal-processing unit is inputting the detection signal to one column of the button devices, generate an input signal corresponding to one of the button devices that is located in the one row of the button devices and also in the one column of the button devices, and output the input signal thus generated. The sleep unit configured to switch the signal-processing unit from the work mode to the sleep mode when no input signal has been outputted by the signal-processing unit fora predetermined time period. The wake-up unit is configured to switch the signal-processing unit from the sleep mode to the work mode when receiving an activation signal.
According to one aspect of the disclosure, an electronic lock includes an input apparatus, a lock mechanism, and an electronic controller device in communication with the input apparatus and the lock mechanism. The input apparatus includes a keypad module, and a processor module in communication with the keypad module. The keypad module includes plural button devices each being operable to output a detection signal. The button devices are arranged in plural rows extending in a first direction and in plural columns extending in a second direction. The lock mechanism is configured to be electrically driven to switch between a lock state and an unlock state. The electronic controller device is configured to store a predetermined password, to receive a series of input signals from the input apparatus during a time period to compose an input password based on the input signals, to compare the input password with the predetermined password, and to drive, when the input password matches the predetermined password, the lock mechanism to switch from the lock state to the unlock gate. The processor module includes a signal-processing unit, a sleep unit and a wake-up unit. The signal-processing unit is configured to switch between a sleep mode and a work mode. The signal-processing unit is further configured to, when operating in the work mode, repeatedly perform an emission process of inputting the detection signal to each column of the button devices. In the emission process, the signal-processing unit is to input the detection signal to each column from a first column of the plural columns of the button devices to a last column of the plural columns of the button devices in an order in the first direction. The detection signal includes a pulse wave composed of plural pulses. The signal-processing unit is configured to cease performing the emission process in the sleep mode. The signal-processing unit is further configured to, when operating in the work mode, repeatedly perform a scan process to detect whether the detection signal is outputted from one row of the plural rows of the button devices. The scan process is performed each time the detection signal is inputted to one of the columns of the button devices. In the scan process, the signal-processing units to, for each row from a first row of the plural rows of the button devices to a last row of the plural rows of the button devices in an order in the second direction, attempt to receive the detection signal from the row of the button devices. The signal-processing unit is further configured to, when operating in the work mode and when the detection signal outputted from one row of the button devices is detected while the signal-processing unit is inputting the detection signal to one column of the button devices, generate one of the input signals corresponding to one of the button devices that is located in the one row of the button devices and also in the one column of the button devices, and output the one of the input signals thus generated to the electronic controller device. The sleep unit is configured to switch the signal-processing unit from the work mode to the sleep mode when no input signal has been outputted by the signal-processing unit for a predetermined time period. The wake-up unit is configured to switch the signal-processing unit from the sleep mode to the work mode when receiving an activation signal.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment(s) with reference to the accompanying drawings, of which:
Before the disclosure is described in greater detail, it should be noted that where considered appropriate, reference numerals or terminal portions of reference numerals have been repeated among the figures to indicate corresponding or analogous elements, which may optionally have similar characteristics.
A power-saving electronic lock is provided in this disclosure.
Referring to
Referring to
The processor module 412 includes a signal-processing unit 420, a sleep unit 423 and a wake-up unit 424, wherein the signal-processing unit 420 includes an emission unit 421 and a detection unit 422. The processor module 42 may be embedded as a circuit or a system on a chip (SoC), and may at least include, but not limited to, a single core processor, a multi-core processor, a microprocessor, microcontroller, a digital signal processor (DSP), a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), and/or a radio-frequency integrated circuit (RFIC), etc.
The signal-processing unit 420 has two operation modes including a sleep mode and a work mode, and is configured to switch therebetween. The wake-up unit 424 is configured to switch the signal-processing unit 420 from the sleep mode to the work mode when receiving an activation signal that is related to a user operation of the input apparatus 4, or is related to presence of a user in proximity of the input apparatus 4. According to some embodiments, the activation signal may be generated by a proximity sensor that detects a hand of a user coming near the input apparatus 4, or generated in response to one of the button devices 414 being pressed or touched, but the disclosure is not limited thereto.
When operating in the work mode, the emission unit 421 of the signal-processing unit 420 repeatedly performs an emission process of inputting the detection signal to each column of button devices 414, and the detection unit 422 of the signal-processing unit 420 repeatedly performs a scan process to detect whether the detection signal is outputted from one of the rows of button devices 414. When operating in the sleep mode, the emission unit 421 ceases performing the emission process, and the detection unit 422 ceases performing the scan process.
In the emission process, the emission unit 421 inputs the detection signal to each column from a first one of the columns of button devices 414 (referred to as “first column of button devices 414” hereinafter) to a last one of the columns of button devices 414 (referred to as “last column of button devices 414” hereinafter) in an order in the first direction 901 (i.e., in the illustrations of
The scan process is performed each time the detection signal is inputted to one of the columns of button devices 414. In the scan process, the detection unit 422 attempts, for each row from a first one of the rows of button devices 414 (referred to as “first row of button devices 414” hereinafter) to a last one of the rows of button devices 414 (referred to as “last row of button devices 414” hereinafter) in an order in the second direction 902, i.e., in the illustrations of
The detection signal includes a pulse wave composed of plural pulses. An example of the detection signal is illustrated in
When the detection unit 422 detects the detection signal that is outputted from one row of button devices 414 while the emission unit 421 is inputting the detection signal to one column of button devices 414, it means that one of the button devices 414 that is located in said one row and also in said one column has been operated by a user. Therefore, upon detection of the detection signal, the detection unit 422 generates an input signal corresponding to the one button device 414, and outputs the input signal thus generated. Also, upon detection of the detection signal, the detection unit 422 stops performing the scan process that is currently performed, and then start the scan process again from the first row conducting line 412. In addition, the emission unit 421 also stops performing the emission process that is currently performed, and then start the emission process again from the first column conducting line 411 simultaneously with the starting of the scan process.
The sleep unit 423 starts a timer each time the detection unit 422 outputs an input signal. When no input signal has been outputted by the detection unit 422 fora predetermined time period, the sleep unit 423 switches the signal-processing unit 420 from the work mode to the sleep mode to save power.
The described operations of the processor module 42 may be implemented as a method, apparatus or computer readable storage medium using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. The described operations may be implemented as code or logic maintained in a “computer readable storage medium”, which may directly execute the functions or where a processor may read and execute the code from the computer storage readable medium. The computer readable storage medium includes least one of electronic circuitry, storage materials, inorganic materials, organic materials, biological materials, a casing, a housing, a coating, and hardware. A computer readable storage medium may include, but is not limited to, a magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs, DVDs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, flash memory, firmware, programmable logic, etc.), solid state devices (SSD), etc. The computer readable storage medium may further include digital logic implemented in a hardware device (e.g., an integrated circuit chip, a programmable logic device, a programmable gate array (PGA), field-programmable gate array (FPGA), application specific integrated circuit (ASIC), etc.)
The electronic controller device 5 stores at least one predetermined password in, for example, a memory thereof, and is configured to receive a series of the input signals outputted by the detection unit 422 during a time period to compose an input password based on the input signals, and then compare the input password thus composed with the at least one predetermined password. When the input password matches one of the at least one predetermined password, the electronic controller device 5 drives the driver 32 of the lock mechanism 3 to perform a corresponding operation, e.g., drive the lock bolt 32 to switch from the lock state to the unlock state.
A beneficial characteristic of the disclosed electronic lock with the input apparatus 4 is that, in comparison with the conventional electronic lock using full-power scan approach, the disclosed electronic lock may save about 50% to 80% electrical power used in user-input detection by utilizing a pulse-composed detection signal that has a ratio of the total pulse width (Tp) and the predetermined time duration (Tt) (i.e., Tp/Tt) being between 20% and 50%. In addition, the disclosed electronic lock may save more power with the signal-processing unit 420 that enters the sleep mode (in which no emission process and no scan process is performed) when not being operated by the user for a predetermined time period.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment(s). It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects, and that one or more features or specific details from one embodiment may be practiced together with one or more features or specific details from another embodiment, where appropriate, in the practice of the disclosure.
While the disclosure has been described in connection with what is (are) considered the exemplary embodiment(s), it is understood that this disclosure is not limited to the disclosed embodiment(s) but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
108120439 | Jun 2019 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5151554 | Matsuda | Sep 1992 | A |
5430443 | Mitchell | Jul 1995 | A |
5677687 | Valdenaire | Oct 1997 | A |
5872561 | Figie | Feb 1999 | A |
6020833 | Chang | Feb 2000 | A |
6295282 | Buer | Sep 2001 | B1 |
6359547 | Denison | Mar 2002 | B1 |
8258985 | Huang | Sep 2012 | B2 |
9122871 | Bellahcene | Sep 2015 | B2 |
9372547 | Bellahcene | Jun 2016 | B2 |
9575580 | Nurmi | Feb 2017 | B2 |
20130249714 | Ho | Sep 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20200392757 A1 | Dec 2020 | US |