This invention relates to electronic locks, and more specifically to electronic locks having a solenoid servomechanism.
Electronic locks use an electrical servomechanism to reversibly block locking or unlocking. In some locks, the plunger of the solenoid functions as the bolt or latch of the lock. In other locks, the plunger is configured to reversibly prevent the movement of a separate bolt or latch. In either case, the plunger performs a linear movement or rotation under the influence of electromagnetic forces and elastic elements.
The present invention provides an electronic locking mechanism. In accordance with the invention, the locking mechanism includes a cam that is rotatable in a cylindrical bore. Insertion or removal of a shackle or strike from the lock is coupled with rotation of the cam. In a locked configuration of the mechanism, a blocking pin prevents rotation of the cam, and hence removal of the shackle or strike. In an unlocked configuration, rotation of the cam is not prevented, thus allowing removal of the shackle or strike.
In a lock having the mechanism of the invention, the need for a micro-switch to detect the presence of the shackle is eliminated. Thus, when the lock is in an unlocked state, the mechanism may enter a stand-by mode that consumes little electricity. Furthermore, when the plunger of the solenoid moves between its extended and retracted positions, it does not experience friction from other components of the locking mechanism. This reduces the size of the solenoid that may be used. The mechanism may be brought into the locked state just by inserting the shackle or strike, without use of a key or code.
The invention thus provides a mechanism for an electro-mechanical lock comprising:
a shackle or strike moveable in a bore;
a cam rotatable between a first cam position in which movement of the shackle or strike in the bore is prevented and a second cam position in which movement of the shackle or strike in the bore is not prevented;
a blocking pin moveable between a first pin position in which rotation of the cam is prevented and a second position in which rotation of the cam is not prevented; and
a solenoid having a plunger having a stable extended position in which movement of the blocking pin is prevented and a stable retracted position in which movement of the blocking pin is not prevented.
The invention further comprises an electro-mechanical lock comprising the mechanism of the invention. The lock may be, for example, a padlock, door lock, or drawer lock.
In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Activation of the solenoid 12 to bring the plunger 14 from its extended position in the retracted position, may be any means known in the art for activating an electronic lock. For example, the solenoid 12 may be activated by means of a key, or by inputting a numeric code into a keyboard associated with the lock. Alternatively, a coded series of impacts may be delivered by a hand-held electronically programmed impacting device.
a shows the mechanism in a locked configuration. In this configuration, the cam 24 engages a shackle or strike 34 located in a cylindrical bore 36. The plunger 14 is latched in an extended state. The spring 20 is in an extended state. Movement of the blocking pin 16 towards the attachment site 19 is prevented by the plunger 14. The blocking pin 16 in its position shown in
b shows the mechanism 10 in an unlocked configuration. In this configuration, the plunger is in its retracted position. Movement of the shackle or strike 34 in the bore 36 in the direction of the arrow 38 rotates the cam 24 in a clockwise direction. Rotation of the cam 24 pushes the blocking pin 16 towards the attachment site 19 against the spring 20, as shown in
The mechanism 10 is programmed to automatically return the plunger to its extended at a predetermined time (e.g. 6 sec) after its retraction. If the shackle or strike 34 has been removed from the bore 36 during this time interval, the mechanism 10 enters a meta-stable “cocked” state shown in
With the mechanism 10 in the cocked state as shown in
With the mechanism of the invention, there is no need for a micro-switch to detect the presence of the shackle or strike 34 in the bore 36. Thus, in the cocked state shown in
a shows a padlock 42 comprising the mechanism 10 of the invention that is unlocked by delivering to it a coded series of impacts. The padlock 42 has a U-shaped shackle 34 (shown separately in
The padlock 42 has an associated impact generating electronic key 76, which is a hand-held programmable data-transmitting device. The key includes an impact head 78 using, for example, electromagnetic, piezoelectric or magnetostriction effect. The key 76 further comprises a programmable controller with memory, and a battery. The key 76 is designed to produce a coded series of pulse-like, high-energy impacts of the impact head 78, in accordance with a key access code stored in the memory. Methods of coding a series of impacts are described in U.S. Pat. No. 6,411,195, included herein by reference. The key may have a numeric keypad for programming the key access code or, alternatively, the access code may be programmed in a special device.
In order to unlock the padlock 42, the key 76 is urged by hand to any point of the housing 18. A key access code (a number) is input via the keypad and a corresponding series of impacts is delivered by the impact head 78 to the surface of the housing 18. Alternatively, the key access code may be pre-programmed in the memory or pre-dialed, in which case a coded series of impacts may be initiated by pressing a single button on the key. The microphone 72 picks up vibrations inside the padlock resulting from the impacts. The vibrations are suitably processed and decoded by the controller 22, and are then compared to the lock access code programmed in the memory of the controller 22. Upon successful match, the controller 22 energizes the coil 56 of the solenoid 12, overcoming the action of the spring 66. When the head 64 of the plunger 14 approaches the magnet 58, the magnet 58 latches the plunger 14 in its retracted state in which the cam 24 is free to rotate in the bore 26. The shackle or strike 34 can now be removed by hand.
a shows a door lock 50 comprising the mechanism 10. The door lock 50 has components in common with the padlock 42, and similar components are indicated by the same numeral. In the door lock 50, the housing 18 is securely fixed onto a door 52 for example, by means of screws 53. The strike 34 is similarly fixed onto an adjacent doorframe or wall 54 by screws 55. The strike 34, cam 24 and blocking pin 16 are shown separately in
a shows a drawer lock 54 comprising the mechanism 10. The drawer lock 57 has components in common with the padlock 42 and the door lock 50, and similar components are indicated by the same numeral. In the drawer lock 52, the housing 18 is securely fixed onto front drawer panel 57 by means of screws (not shown) and the strike 34 is fixed onto the drawer frame 59.
a shows the padlock 60 in its locked state, and
In order to lock the lock 60, the shackle 62 is inserted into the through bore 64 and into the blind bore 68, pushing the dummy plug 92 out of the blind bore 68. The blocking pin 16 is then urged into the blind bore 68 by the spring 20 so as to engage the shackle 62.
Number | Date | Country | Kind |
---|---|---|---|
154788 | Mar 2003 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL04/00226 | 3/7/2004 | WO | 9/2/2005 |