1. Technical Field
The invention generally relates to mounting arrangements for electronic monitoring devices and, more particularly, to an electronic monitoring device and patch assembly wherein the electronic monitoring device is removably attached to the patch so that the electronic monitoring device may be repeatedly removed from and reattached to the patch. Specifically, the present invention relates to a patch that removably and re-attachably holds an electronic monitoring device having a rounded body.
2. Background Information
Monitoring the engineering conditions of tires is becoming more and more desirable in the art. The monitored engineering conditions include internal pressure and internal temperature and other conditions that are useful for improving tire efficiency in the field. Monitoring tire conditions on large off-the-road equipment has become especially desirable given the costs of the tires.
Prior art methods of monitoring large truck tires have included passive integrated circuits embedded in the body of the tire, or self-powered circuits which are positioned external to the tire. The passive integrated circuits rely on inductive magnetic coupling or capacitative coupling to energize the circuit, thus providing power to the circuit from a source remote from the tire. Self-powered circuits positioned external to the tire are exposed to damage from the environment such as weather, road hazards and even vandalism.
Recent engineering advances have permitted the installation of monitoring devices having active integrated circuits within tires. One such device is described in U.S. Pat. No. 5,562,787 to Koch et al. entitled Method of Monitoring Conditions of Vehicle Tires, incorporated herein by reference, and assigned to the assignee of the present invention. These devices include an active circuit powered by a dedicated long life, miniature battery and at least one sensor for detecting, optionally storing and transmitting real time engineering conditions within the tire. Such devices are capable of being programmed to remain in an active, but dormant condition, but will switch automatically to an “awakened” condition in response to an external signal or a condition which exceeds preset limits.
These devices have been mounted to the tires in some prior art situations. Other systems have placed the monitoring device loosely inside the tire so that the monitoring device could roll freely within the tire while performing its monitoring functions. An example of this type of device is explained in U.S. Pat. No. 6,082,192. Although these “loose” devices have been accepted for use in some tires and in some situations, other tires and other situations are believed to perform better when the monitoring device is fixed to the tire. In these situations, a mount is desired that can be used to mount a “loose” monitoring device—such as the monitoring device having the rounded body of U.S. Pat. No. 6,082,192—into a tire.
The invention provides a monitoring device and patch assembly wherein the patch is configured to removably and re-attachably hold a monitoring device having a body that is outwardly curved. In one embodiment of the invention, the patch includes a tube that removably and re-attachably receives the monitoring device.
The invention also provides a monitoring device that has a feature that allows the monitoring device to be removed from the patch. In one embodiment, the feature is an opening in the body of the monitoring device that allows a hook to be connected to the body to extract the monitoring device from the patch.
The invention also provides a monitoring device and patch combination that positions the monitoring device in a predictable orientation with respect to the tire so that the antenna of the monitoring device may be tuned for the orientation. The invention provides embodiments wherein the antenna is encapsulated and freely extending.
The invention also provides an embodiment having a teardrop shaped monitoring device that is attached to a patch. The antenna of the monitoring device may extend into the tail portion of the teardrop. The teardrop shaped monitoring device may also be removably and re-attachably connected to the patch.
Similar numbers refer to similar parts throughout the specification.
Embodiments of the present invention will be described below with reference to the drawings.
Affixed to the second side 18 of the vulcanized tire patch is a dual cure bonding layer 20, which has a first side (not shown) and a second side 22. This dual cure bonding layer may be assembled to the patch at any time following vulcanization of the patch and prior to assembly of the patch assembly to the tire innerliner. The dual cure bonding layer is permanently assembled to the patch to form patch assembly 60. A non-curing cement (not shown) is applied to side 18 of the patch in order to hold the dual cure bonding layer 20 onto the patch. Exemplary non-curing cement and an exemplary dual cure bonding layer are products of Patch Rubber Company. The important feature of the dual cure bonding layer is that it can be chemically activated and cured, without the need for heating to an elevated temperature. The process is diffusion controlled, however, and some minimal heating will speed the curing process. The dual cure bonding layer may be any material which can be activated and cured to the vulcanized rubber of the tire innerliner and the vulcanized patch. Preferably, however, the dual cure bonding rubber is natural rubber. The dual cure bonding rubber, after application of the activating cement, may cure at room temperature over a period of seventy-two (72) hours. However, if more rapid curing is desired, this may be accomplished by heating to 45.degree. C. for at least twenty-four hours.
Referring now to
The electronic monitoring device is a circuit board which includes sensors and may include an antenna. The electronic monitoring device may include a power source or battery, although the battery may be attached to the electronic monitoring device at a later time. In the preferred embodiment, the battery is not included as part of the electronic monitoring device. The electronic monitoring device 34 is encapsulated in a potting material 40 which solidifies into a rigid material as shown in
The tag assembly 70 may be of any configuration which allows it to fit within the contour of the cavity 16, both of which are cylindrical in the embodiment shown in
The positioning of the lock pin is not critical, so long as lock pin 78 positively secures tag assembly 70 into position within cavity 16 and prevents tag assembly 70 from moving. After insertion through the housing 14, the lock pin 76 is deformed so that it will not back out of the apertures. Tag assembly 70 may then be removed from the housing by simply drilling lock pin 76 out of aperture 78.
Many different methods of positively locking the tag assembly can be accomplished. By way of illustration of equivalent locking techniques, instead of a locking pin, a self-tapping screw may be inserted through aperture 78 and screwed into position within the potting.
In a second embodiment of the present invention, illustrated in
In a third embodiment of the present invention,
From the foregoing, other embodiments should be obvious. For example, a slot and spline arrangement not shown may be used to lock the tag assembly into the housing. Mating slots and splines are formed in the potting of the tag assembly and in the housing. After placing the tag assembly into the housing, an optional locking device as previously discussed may be used to prevent the tag assembly from backing out of the housing.
In yet another embodiment, depicted in
The fifth embodiment of the monitoring device (tag) and patch assembly of the invention is indicated generally by the numeral 200 in
The fifth embodiment of monitoring device 204 has an outer surface that is rounded or curved in a manner that allows the body to roll as described in U.S. Pat. No. 6,082,192. The exemplary embodiments of the invention depict monitoring devices that are free of flat surfaces. The exemplary embodiments in these drawings depict a sphere and an oblong sphere although other shapes are contemplated by the inventors. Other embodiments of monitoring device 204 may have outer surfaces that have substantially outer curved or rounded surfaces when the outer surfaces include a plurality of small flat surfaces that cooperate to define an, outer rounded surface. These types of monitoring devices are designed to be placed loosely within a tire such that they may roll around being bounded by only the tire and the rim. Monitoring device 204 may have the same structure as the monitoring device disclosed in U.S. Pat. No. 6,082,192; the disclosures of this patent are incorporated herein by reference. As such, monitoring device 204 and those having the same type of configuration (a rounded outer surface) do not have any features that may be used to secure them to a patch. Patch 202 of the present invention is designed to hold monitoring device 204 in a fixed position with respect to tire 71 without requiring any special modification to monitoring device 204 that would prevent monitoring device 204 from being used in a tire in a loose, free rolling configuration.
Patch 202 includes a base 206 and a tube section 208 that projects up from base 206. Patch 202 may include a bonding layer 20 as described above. Tube section 208 is annular and continuous and defines a cavity 210. Tube section 208 includes a continuous lip 211 that defines an opening 212 that provides access to cavity 210. Lip 211 and tube section 208 are free of interruptions, such as slits, that would allow lip 211 and tube section 208 to unintentionally open when used with the rounded monitoring devices of the invention. The continuity of lip 211 increases the retaining ability of patch 202 which is important when holding a spherical, oblong sphere, or teardrop shaped monitoring device. The continuity of lip 211 also reduces the risk that lip 211 will tear during extended use. Tube section 208 tapers closed toward lip 211.
The resting position of lip 211 and opening 212 is smaller than the maximum width of monitoring device 204 such that opening 212 must be stretched wider to allow monitoring device 204 to be inserted into and removed from cavity 210. Lip 211 thus has a closed resting position and an open stretched position. Cavity 210 has a depth that is greater than half of the height of monitoring device 204 such that tube section 208 will close around monitoring device 204 to hold it in place. The walls of tube section 208 have sufficient elasticity and extensibility such that opening 212 may be stretched open to accommodate monitoring device 204 to seat monitoring device 204 within patch 202 as depicted in
Opening 212 may be centered about the longitudinal axis of patch 202 such that opening 212 is directed toward the center of tire 71 when patch 202 is mounted to tire 71. Centrifugal forces will thus force monitoring device 204 against patch 202.
The inner surface 214 that defines cavity 210 may be curved to substantially match the outer curvature of monitoring device 204 as shown in
In the embodiment of the invention depicted in
A predictable proper alignment is important when monitoring device 204 has an antenna 218 that is tuned to function better when positioned in a specific direction. For example, antenna 218 may be aligned with the longest dimension of monitoring device 204 so that the user will known the orientation and can orient antenna 218 with respect to tire 71.
The proper alignment of monitoring device 204 is also important so that the breathing tube 219 for the pressure sensor remains positioned within opening 212.
The proper alignment is also important when monitoring device 204 has a retraction opening 220 that allows a tool or retraction device 222 to engage monitoring device 204 and pull it from patch 202 as shown in
Patch 202 has rounded and curved walls and surfaces that lack points where stresses are concentrated. The lack of stress concentration increases the durability of patch 202. Tube section 208 may also be configured to absorb vibrational forces. Assembly 200 also has the advantage that monitoring device 204 will not harm tire 71 if monitoring device 204 falls out of patch 202 because monitoring device is designed to be used loosely within tire 71 and includes no sharp edges that could damage tire 71.
The seventh embodiment of the monitoring device (tag) and patch assembly of the invention is indicated generally by the numeral 300 in
As described above, patch 202 is generally configured to hold monitoring device 304 in a manner that allows monitoring device 304 to be repeatedly removed from patch 202 and reattached to patch 202 so that monitoring device 202 may be selectively mounted to tire 71 by selectively mounting monitoring device 304 to patch 202. In the seventh embodiment of invention, monitoring device 304 is teardrop shaped with the rounded head 310 of the teardrop being held by patch 202 in the manner described above. The tapered tail portion 311 of monitoring device 304 extends out of patch 202 into the interior of tire 71.
Antenna 307 of the monitoring system may be positioned in tail portion 311 with components 308 being disposed in head 310. Antenna 307 is parallel to the longitudinal axis of patch 202. Antenna 307 is thus disposed substantially perpendicular to the surface of patch 202 that engages tire 71. This configuration allows antenna 307 to be disposed radially with respect to tire 71 when patch 202 is attached to the crown portion of tire 71 as depicted in
The ninth embodiment of the assembly is indicated generally by the numeral 350 in
The tenth embodiment of the assembly is indicated generally by the numeral 400 in
Housing 410 may be fabricated from the same material as protective body 406 or another material more rigid than the material of patch 402. In one embodiment of the invention, housing 410 is encapsulated around the upper portion of patch 402. In other embodiments, housing 410 may be adhesively connected or mechanically connected to patch 402.
Housing 410 defines a cavity 412 adapted to receive all of, or a portion of, monitoring device 404. Housing 410 and monitoring device 404 define cooperating threads 414 that allow monitoring device 404 to be selectively attached to and removed from housing 410. In addition to threads 414, any of the other attachment arrangements described above may be used without departing from the concepts of the invention.
While in accordance with the patent statutes, the best mode and preferred embodiment has been set forth above, the scope of the invention is not limited thereto, but rather by the scope of the attached claims.
This application is a continuation application claiming priority from U.S. Pat. No. 7,009,506, which is a continuation-in-part application claiming priority from U.S. Pat. No. 6,860,303 issued Mar. 1, 2005, which is a divisional of U.S. Pat. No. 6,386,251 issued May 14, 2002, which is a continuation application claiming priority from U.S. Pat. No. 6,030,478 issued Feb. 29, 2000; the disclosures of each are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 09455977 | Dec 1999 | US |
Child | 09976076 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10192567 | Jul 2002 | US |
Child | 11302714 | Dec 2005 | US |
Parent | 09021518 | Feb 1998 | US |
Child | 09455977 | Dec 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09976076 | Oct 2001 | US |
Child | 10192567 | Jul 2002 | US |