The present invention relates to an electronic musical instrument which can externally output a tone generation control signal corresponding to operation on a performance operator unit and can generate and output an audible sound on the basis of a sound signal supplied from an external apparatus, as well as a tone generator apparatus which can generate a sound signal corresponding to a sound generation control signal supplied from outside the apparatus and externally output the thus-generated sound signal. More particularly, the present invention relates to a system which comprises an electronic musical instrument and tone generator apparatus interconnect via a single bidirectional communication network and in which apparatus or equipment setting concerning signal input and output paths to and from a tone generator are automatically set so that both tone generation control signals and sound signals can be appropriately communicated between the electronic musical instrument and tone generator apparatus.
Heretofore, electronic musical instruments have been known which include a performance operator unit for generating a predetermined tone generation control signal (e.g., MIDI signal) in response to user operation on the performance operator unit and sound or audibly generate a tone, via a sounding unit including a speaker, in accordance with a predetermined sound signal (e.g., audio signal) generated via a built-in (internal) tone generator apparatus in response to operation on the performance operator unit. Such electronic musical instruments have the tone generator apparatus fixedly installed therein, and, in some models, the installed tone generator apparatus is of a considerably low grade (or low spec). With recent technologies, it has become possible for an interested user to connect a separate, external tone generator apparatus to an electronic musical instrument, via a communication cable, so that the user can readily replace a low-grade (low-spec) tone generator apparatus with a high-grade (high-spec) tone generator apparatus and extend the functions of a tone generator apparatus. For example, a high-grade tone generator capable of generating high-quality sound signals may be implemented by a personal computer or dedicated tone generator module and then connected to an electronic musical instrument which is provided with only a performance operator unit for generating a predetermined tone generation control signal in response to user's operation and a sounding unit for audibly generating a tone in accordance with a predetermined sound signal. Generally, because personal computers and dedicated tone generator modules have superior processing capability and greater storage capacity as compared to electronic musical instruments, it is very easy to implement a high-grade (high-spec) tone generator, capable of high-quality sound signals, by means of a personal computer or dedicated tone generator module. Therefore, the user can obtain an electronic musical instrument equipped with a high-grade tone generator at relatively low cost, by connecting such a personal computer or dedicated tone generator module (constituting an external tone generator apparatus). Example arrangements for connecting an electronic musical instrument and a personal computer are disclosed in Japanese Patent Application Laid-open Publication No. 2001-356765.
In order to connected an electronic musical instrument and an external tone generator apparatus (i.e., personal computer, dedicated tone generator module or the like) in such a manner that various signals can be communicated (i.e., transmitted and received) between the two apparatus, communication cables corresponding to the types of the various signals to be communicated must be coupled to the respective communication interfaces of the musical instrument and tone generator apparatus per input and output. For example, a separate MIDI cable must be appropriately coupled to corresponding communication interfaces of the two apparatus in order to transmit a MIDI signal, i.e. a tone generation control signal, from the electronic musical instrument to the personal computer, and a separate RCA cable must be appropriately coupled to other corresponding communication interfaces of the two apparatus in order to transmit an audio signal, i.e. a sound signal, from the personal computer to the electronic musical instrument. Further, there are provided a plurality of input and output paths of signals to and from a tone generator section in the tone generator apparatus, and thus, unless the input and output paths of signals to and from the tone generator section are set properly, tone generation control signals received from the electronic musical instrument can not input to the tone generator section, and sound signals generated by the tone generator section can not be output to the electronic musical instrument. Heretofore, such apparatus (or equipment) setting has been performed manually by individual users. However, properly coupling a plurality of different communication cables, corresponding to various types of signals to be communicated, to the individual apparatus as noted above would involve complicated wiring operation, which tends to be very inconvenient. Also, because the users themselves have to perform the apparatus setting pertaining to the input and output paths of signals to and from the tone generator section each time it is necessary to do so, the apparatus setting tends to be very troublesome to the ordinary users and time-consuming, which would often make the users feel a great burden.
In view of the foregoing, it is an object of the present invention to provide an electronic musical instrument which allows a user to readily use a tone generator apparatus outside the electronic musical instrument. It is another object of the present invention to provide a tone generator apparatus which is located outside an electronic musical instrument and can readily provide a tone generator function to the electronic musical instrument. It is still another object of the present invention to provide a system where an electronic musical instrument and external tone generator apparatus can be removably connected with each other via a single bidirectional communication cable permitting communication of a tone generation control signal and sound signal between the electronic musical instrument and the tone generator apparatus, and which can automatically set apparatus setting concerning input and output paths of each signal to and from a tone generator of the external tone generator apparatus and can thereby eliminate a need for a user to perform complicated wiring and apparatus setting.
According one aspect of the present invention, there is provided an electronic musical instrument connectable with an external apparatus for communication therewith, the external apparatus being capable of establishing a plurality of input/output paths between the external apparatus and another apparatus, said electronic musical instrument comprising: a performance operation section that generates a tone generation control signal in response to performance operation; a sound output device that outputs an audible sound in accordance with a given sound signal; a communication interface capable of bidirectionally communicating one or more types of signals via a common communication path in accordance with a common communication standard; and a control section that performs control to transmit the tone generation control signal, generated by said performance operation section, to the external apparatus via said communication interface and receive a sound signal from the external apparatus via said communication interface, the received sound signal being delivered to said sound output device. Here, when the external apparatus has been connected to said electronic musical instrument via said communication interface, said control section transmits, to the external apparatus, predetermined information for setting signal input/output paths in the external apparatus.
According to the present invention, a tone generation control signal and sound signal are communicated between the electronic musical instrument and the external apparatus, using the communication interface, such as a USB interface, that is capable of bidirectionally communicating one or more types of signals via the common communication path in accordance with the common communication standard. Thus, where the electronic musical instrument does not have its own internal tone generator while the external apparatus has its own tone generator, a sound signal of a tone, corresponding to the tone generation control signal output from the electronic musical instrument, can be generated by the external apparatus and then supplied to the electronic musical instrument, so that the electronic musical instrument can sound the sound signal. Further, because one or more types of signals are communicated via the common communication path, the present invention can eliminate a need for the user to perform cumbersome wiring operation for, for example, individually connecting communication cables, corresponding to the types of various signals to be communicated, when the electronic musical instrument and external apparatus are to be interconnected for communication therebetween of the various signals.
According another aspect of the present invention, there is provided a tone generator apparatus connectable with a plurality of external apparatus for communication therewith, said tone generator apparatus being capable of establishing a plurality of input/output paths between said tone generator apparatus and another apparatus, said tone generator apparatus comprising: a tone generator section that generates a sound signal of a tone indicated by a tone generation control signal; a communication interface capable of bidirectionally communicating one or more types of signals via a common communication path in accordance with a common communication standard; a setting section that, when a given external apparatus has been connected to said tone generator apparatus via said communication interface, receives, from the given external apparatus, predetermined information for setting signal input/output paths in said tone generator apparatus and then automatically sets input and output paths between said tone generator section and said communication interface in accordance with the received predetermined information; and a control section that, in accordance with settings by said setting section, performs control to receive a tone generation control signal from the external apparatus via said communication interface and transmit the sound signal, generated by said tone generator section, to the external apparatus, the received tone generation control signal being delivered to said tone generator section.
Namely, when the external apparatus, such as an electronic musical instrument, has been connected to the tone generator apparatus via the communication interface, input and output paths between the tone generator section and the communication interface are automatically set in accordance with the predetermined information received from the electronic musical instrument so that signals can be input and output via the thus-set input and output paths; consequently, there is no need for the user to bother to perform apparatus setting concerning the input and output paths to and from the tone generator section. As a result, the present invention can significantly lessen the burden felt by the user.
According further aspect of the present invention, there is provided an electronic musical instrument system in which an electronic musical instrument and a tone generator apparatus are interconnected via an Internet, said electronic musical instrument comprising: a performance operator unit that generates a tone generation control signal in response to user operation; a control section that performs control to transmit the tone generation control signal, generated by said performance operator unit, to said tone generator apparatus connected to said electronic musical instrument via the Internet and receive a sound signal, corresponding to the tone generation control signal, from said tone generator apparatus; and a sound output section that audibly generates a tone in accordance with the sound signal received from said tone generator apparatus, and said tone generator apparatus comprising: a tone generator that generates a sound signal in accordance with the tone generation control signal; and a control section that performs control to receive the tone generation control signal from said electronic musical instrument connected to said tone generator apparatus via the Internet and transmit a sound signal, generated by said tone generator in accordance with the received tone generation control signal, to said electronic musical instrument.
The present invention may be constructed and implemented not only as the apparatus invention as discussed above but also as a method invention. Also, the present invention may be arranged and implemented as a software program for execution by a processor such as a computer or DSP, as well as a storage medium storing such a software program. Further, the processor used in the present invention may comprise a dedicated processor with dedicated logic built in hardware, not to mention a computer or other general-purpose type processor capable of running a desired software program.
The following will describe embodiments of the present invention, but it should be appreciated that the present invention is not limited to the described embodiments and various modifications of the invention are possible without departing from the basic principles. The scope of the present invention is therefore to be determined solely by the appended claims.
For better understanding of the objects and other features of the present invention, its preferred embodiments will be described hereinbelow in greater detail with reference to the accompanying drawings, in which:
First, a description will be given about example construction of an electronic musical instrument and tone generator apparatus in accordance with the present invention.
In the illustrated example of
Behavior of the entire electronic musical instrument A is controlled by a computer A1 including a CPU, ROM, RAM, etc. (not shown). Storage device A2 stores therein various control programs. such as the USB driver unit A5, to be executed by the computer A1. Here, the USB driver unit A5 is a communication-controlling software program that is used for electrically communicating predetermined signals with the external tone generator apparatus B via the USB cable C connected to a USB connector AC. Namely, hardware connection between the electronic musical instrument A and the tone generator apparatus B is implemented via the USB cable C and USB connector AC, and software connection between the electronic musical instrument A and the tone generator apparatus B, which communicate predetermined signals via the hardware connection, is implemented by the USB driver unit A5. In the instant embodiment, the USB driver unit A5 includes a MIDI-OUT driver for externally output a MIDI signal generated in response to operation on the performance operator unit A4 and an Audio-IN driver for inputting an audio signal from outside, and these drivers perform input/output control of corresponding signals. In the electronic musical instrument A, settings have been made in advance such that communication control is performed by the corresponding drivers in accordance with hardware construction of the communication interface used. The storage device A2 may be one using a hard disk (HD), a removable external storage medium, such as a flexible disk (FD), compact disk (CD), magneto optical disk (MO) or DVD (Digital Versatile Disk), or a semiconductor memory, such as a flash memory.
Setting operator unit A3 includes various operators, switches, etc. for controlling a volume etc. of each tone to be generated via one or more of the speakers A8. The performance operator unit A4 is, for example, in the form of a keyboard including a plurality of keys for selecting a pitch of each tone to be generated, and it also includes a sensor section S including key switches provided in corresponding relation to the keys. The performance operator unit A4 (e.g., keyboard) can be used not only as means for generating a MIDI signal in response to user's operation, but also as an input means for entering various settings. Needless to say, the performance operator unit A4 may be of any structural or operating type other than the keyboard type, such as a stringed instrument type, wind instrument type or percussion instrument type; namely, the electronic musical instrument A (i.e., performance operator unit equipped with the sounding unit) may be other than the keyboard type. Digital audio signal input from the external tone generator apparatus B is converted, via the D/A converter A6, into an analog audio signal, then amplified via the amplifier A7, and then sounded or audibly generated via the speaker 8A.
On the other hand, the external tone generator apparatus B is, for example, in the form of a personal computer or dedicated tone generator module, which includes the tone generator section B4. The tone generator apparatus B (personal computer or dedicated tone generator module) also includes a computer B1, storage device B2, setting operator unit B3, and a plurality of communication interfaces. The computer B1 controls behavior of the entire tone generator apparatus B. The setting operator unit B3 includes various operators, switches, etc. for, for example, selecting and setting a sound color (timbre), volume, effect, etc. The tone generator apparatus B includes, as the communication interfaces, a plurality of communication connectors (not shown), and the storage device B2 stores therein communication drivers corresponding to the communication connectors. For example, the tone generator apparatus B includes various communication connectors, such as a USB connector, IEEE1394 connector and RS-232C connector, and communication drivers corresponding to these communication connectors are stored in the storage device B2. In the tone generator apparatus B, communication control is performed by corresponding ones of the communication drivers in accordance with the type of the communication interface hardware-connected with the electronic musical instrument A. In the case where the hardware connection between the electronic musical instrument A and the tone generator apparatus B is implemented via the USB cable C and USB connector BC as seen in
The tone generator section B4, which is capable of simultaneously generating audio signals in a plurality of channels, inputs a MIDI signal supplied via a predetermined signal input path to generate an audio signal on the basis of the input MIDI signal and also outputs the thus-generated audio signal via a predetermined signal output path. Details of the tone generator section B4 will be explained below with reference to
The tone generator section B4 may employ any of various tone synthesis methods, such as the FM, PCM, physical model and formant synthesis. Also, the tone generator section B4 may be implemented by either dedicated hardware, or software processing executed by a computer. Example where the tone generator is implemented by software processing by a computer will be later described with reference to
As noted earlier, the hardware connection between the electronic musical instrument A and the tone generator apparatus B is implemented by connecting the USB cable C to the respective USB connectors (AC and BC) of the two apparatus (i.e., electronic musical instrument A and tone generator apparatus B). There are provided a plurality of input and output paths of signals to and from the tone generator section B4 as noted above, and a MIDI signal received from the electronic musical instrument A can not be input to the tone generator section B4 and an audio signal generated by the tone generator section B4 can not be output to the electronic musical instrument A, unless the input and output paths of signals to and from the tone generator section B4 are set appropriately. Thus, in order to allow the electronic musical instrument A to audibly generate a tone using the tone generator section B4 of the external tone generator apparatus B, it is necessary to appropriately set the input and output paths of signals to and from the tone generator section B4, in accordance with each communication interface connected with the electronic musical instrument A. Because the electronic musical instrument A and the external tone generator apparatus B are interconnected via the USB means in the instant embodiment as shown in
In the electronic musical instrument system of the present invention, the electronic musical instrument A can audibly generate a tone using the tone generator apparatus B4 of the tone generator apparatus B, by automatically setting the signal input and output paths to and from the tone generator apparatus B in accordance with the communication interface connecting the electronic musical instrument A. So, a description will hereinafter be described about control processing for allowing the electronic musical instrument A to audibly generate a tone using the tone generator apparatus B4 of the tone generator apparatus B.
First, at step S1, a determination is made, in the tone generator apparatus B, as to whether or not the electronic musical instrument A has been connected, as an apparatus external to the apparatus B, to any one of the plurality of communication interfaces (e.g., USB, IEEE1394) provided in the apparatus B If the electronic musical instrument A has been connected to any one of the plurality of communication interfaces (YES determination at step S1), the tone generator apparatus B requests the connected electronic musical instrument A to transmit apparatus information of the musical instrument A, at step S2. Upon receipt, from the tone generator apparatus B, of the request for the apparatus information, the electronic musical instrument A transmits the requested apparatus information to the tone generator apparatus B, at step S11. The apparatus information comprises pieces of information concerning, for example, the manufacturer's name, product name, model number, etc. of the electronic musical instrument A, which are stored in the storage device A2 of the electronic musical instrument A. Upon receipt of the apparatus information from the electronic musical instrument A, the tone generator apparatus B automatically sets the signal input and output paths to and from the tone generator section B4 on the basis of the received apparatus information, at step S3. As information concerning the signal input and output paths (i.e., input/output path setting information), predetermined information, including information of “communication interfaces”, “types of input signals, “types of output signals” et., may be prestored, for each connectable apparatus, in the storage device B2, or information of the above-mentioned contents prestored in the storage device A2 of the electronic musical instrument A may be acquired from the musical instrument A along with the apparatus information. With such arrangements, each MIDI signal received from the electronic musical instrument A can be input to the tone generator section B4, and each audio signal generated by the tone generator section B4 can be output to the electronic musical instrument A; thus, the electronic musical instrument A can audibly generate a tone using the tone generator section B4 of the tone generator apparatus B.
As the performance operator unit A4 is operated in the electronic musical instrument A, MIDI events (MIDI signals) are generated in the electronic musical instrument A. The electronic musical instrument A constantly monitors, at step S12, whether any such MIDI event has been generated. If any MIDI event has been generated, i.e. if the performance operator unit A4 has been operated (YES determination at step S12), the generated MIDI event is transmitted to the tone generator apparatus B at step S13. The tone generator apparatus B constantly monitors, at step S4, whether any MIDI input has been received via any one of the already-set input paths. If any MIDI event has been received from the electronic musical instrument A (YES determination at step S4), the tone generator apparatus B generates a tone (i.e., audio signal) corresponding to the MIDI event at step S5, and transmits the audio signal to the electronic musical instrument A as an audio output via any one of the already-set output paths at step S6. The electronic musical instrument A also constantly monitors, at step S14, whether any audio signal has been received from the tone generator apparatus B. If any audio signal has been received from the tone generator apparatus B (YES determination at step S14), the electronic musical instrument A audibly generates a tone through the sounding devices, such as the speakers A8, on the basis of the received audio signal, at step S15. Note that the tone generator apparatus B may be arranged to generate sound signals of a plurality of channels and transmit these sound signals to the electronic musical instrument A on a time-divisional multiplexing basis.
As set forth above, the tone generator apparatus B acquires the apparatus information from the electronic musical instrument A, connected therewith via the communication interface capable of bidirectional communication, and automatically sets input and output paths of signals to and from the tone generator section B4 on the basis of the acquired apparatus information. Thus, the user does not have to wire a plurality of communication cables, corresponding to the types of various signals to be communicated between the electronic musical instrument A and the tone generator apparatus B, per input/output, each time the tone generator apparatus B is to be connected with the electronic musical instrument A. Further, the user itself does not have to perform apparatus setting concerning the input and output paths of signals to and from the tone generator section B4 whenever necessary, so that it is possible to lessen the feeling of burden of the user in using the external tone generator apparatus B from the electronic musical instrument A.
Note that, after the automatic setting of the signal input and output paths, any of the individual settings may be changed through operation by the user. Needless to say, the input and output paths is not performed where the electronic musical instrument A does not require such automatic setting or when information necessary for the automatic setting could not be acquired.
It is preferable that the color (timbre), volume, effect, etc. of tones to be generated be selected or set via the setting operator unit A3 provided in the electronic musical instrument A (i.e., performance operator unit equipped with the sounding unit).
Note that an external speaker (not shown) may be connected to the electronic musical instrument A via an RCA cable or the like so that a tone can be sounded via the external speaker in response to an analog-converted audio signal supplied from the amplifier A7 to the connected speaker.
Whereas the embodiment has been described above in relation to the case where a USB interface is used as the bidirectional communication interface that interconnects the electronic musical instrument A (i.e., performance operator unit equipped with the sounding unit) and the tone generator apparatus B (i.e., personal computer or tone generator module), the present invention is not so limited. The present invention may use any communication interface as long as it is based on a communication standard permitting simultaneous (bidirectional) reception and transmission (communication) of the MIDI signal and audio signal; the bidirectional communication may be performed in a wired or wireless manner. Further, it is preferable that the bidirectional communication interface (e.g., IEEE1394) used be based on a communication standard of a high signal transmission rate and low latency such that undesired delays, breaks or cutoffs of tones to be generated can be avoided or minimized.
Arrangements may be made such that the tone generator apparatus B (i.e., personal computer or tone generator module), is powered on in interlocked relation to powering-on of the electronic musical instrument A (performance operator unit equipped with the sounding unit). In the case where the electronic musical instrument A is constructed as a USB-based apparatus as in the above-described embodiment, a powering-on instruction can not be given voluntarily from the electronic musical instrument A (USB-based apparatus) to the tone generator apparatus B (USB host); thus, it is preferable that a powering-on instruction be given to the tone generator apparatus B (USB host) in accordance with a communication standard other than the USB communication standard. Alternatively, only a visual indication or sound may be generated for prompting powering-on of the tone generator apparatus B.
Next, a description will be made about another embodiment where the electronic musical instrument A has its own tone generator incorporated or built therein and the tone generator apparatus B has both its own tone generator and a sequencer incorporated therein. Namely, in the instant embodiment, the electronic musical instrument A is capable of generating tones via its internal tone generator as well as the external tone generator apparatus B (i.e., via an extended tone generator), and the tone generator apparatus B is capable of generating tone generation control signals via its internal sequencer. These electronic musical instrument A and the tone generator apparatus B are interconnected via a bidirectional communication interface.
The electronic musical instrument A of
On the other hand, the tone generator apparatus B of
As seen in
The tone generator section B4, on the other hand, includes a selector IS for selecting a signal input path to be used from among a plurality of signal input paths, a selector OS for selecting a signal output path to be used from among a plurality of signal output paths, and a tone generation section G for generating an audio signal on the basis of a MIDI signal. The numbers and types of these input and output paths to and from the tone generator apparatus B may vary depending on the numbers and types of the hardware and software (communication drivers) set in the tone generator apparatus B. For instance, examples of the input paths for MIDI signals include a USB-MIDI path, serial (e.g., IEEE1394) MIDI path, sequencer, etc., while examples of the output paths for MIDI signals include a USB-Audio oath, built-in D/A converter, serial (e.g., IEEE1394) path, etc. Namely, the tone generator section B4 and the sequencer 7 include the signal input and output paths for inputting a MIDI signal, output from the sequencer 7, to the tone generator section B4.
In the electronic musical instrument system of
By automatically setting the signal input and output paths to and from the tone generator section B4 and sequencer B7 in accordance with the communication interface used, the embodiment of the present invention allows the electronic musical instrument A to audibly generate tones using the tone generator section B4 and sequencer B7 of the tone generator apparatus B. So, the following paragraphs describe control processing for audibly generating tones through the electronic musical instrument A using the tone generator apparatus B, with reference to
First, at step S31, the sequencer B7 makes a determination as to whether the electronic musical instrument A has been connected, as an external apparatus, to any of the plurality of communication interfaces (e.g., IEEE1394) provided in the sequencer B7. If the electronic musical instrument A has been connected to any of the plurality of communication interfaces (YES determination at step S31), the sequencer B7 requests the connected electronic musical instrument A to transmit apparatus information of the musical instrument A, at step S32. Upon receipt, from the tone generator apparatus B, of a signal requesting the apparatus information, the electronic musical instrument A transmits the requested apparatus information to the tone generator apparatus B, at step S41. Upon receipt of the apparatus information from the electronic musical instrument A, the sequencer B7 automatically sets the signal input and output paths to and from the sequencer B7 on the basis of the received apparatus information and further delivers the received apparatus information to the tone generator section B4, at step S33. Upon receipt of the apparatus information from the sequencer B7, the tone generator section B4 automatically sets the signal input and output paths to and from the tone generator section B4 on the basis of the received apparatus information, at step S21.
As the performance operator unit A4 is performed in the electronic musical instrument A, MIDI events (MIDI signals) corresponding to the operation are generated in the electronic musical instrument A. The electronic musical instrument A constantly monitors, at step S42, whether any such MIDI event has been generated. If any MIDI event has been generated, i.e. if the performance operator unit A4 has been operated (YES determination at step S42), the generated MIDI event is transmitted to the sequencer B7 at step S43. The sequencer B7 constantly monitors, at step S34, whether any MIDI input has been received via any one of the already-set input paths, i.e. whether any MIDI event has been received from the electronic musical instrument A. If any MIDI event has been received from the electronic musical instrument A (YES determination at step S34), the sequencer B7 outputs the MIDI event to the tone generator apparatus B, at step S35; however, this operation is carried out only when the echo-back setting is ON. At step S36, the received MIDI event is recorded into the storage devices B2. If any one of the MIDI events recorded in the storage devices B2 is being currently reproduced (YES determination at step S37), that MIDI event is output to the tone generator section B4, at step S38. If any MIDI event has been received (YES determination at step S22), the tone generator section B4 generates a tone (i.e., audio signal) corresponding to the received MIDI event at step S23, and transmits the audio signal to the electronic musical instrument A as an audio output via any one of the already-set output paths at step S24. The electronic musical instrument A also constantly monitors, at step S44, whether any audio signal has been received from the tone generator apparatus B (more specifically, tone generator section B4). If any audio signal has been received from the tone generator section B4 (YES determination at step S44), the electronic musical instrument A audibly generates a tone through the sounding devices, such as the speakers A8, on the basis of the received audio signal, at step S45.
Namely, in the case where the electronic musical instrument A has its own tone generator A9 incorporated therein and the tone generator apparatus B has the sequencer B7, which generates MIDI signals, incorporated therein, the signal input and output paths to and from the tone generator section B4 etc. are automatically set in accordance with settings in the electronic musical instrument A, such as use/non-use (local-on/local-off) of the tone generator A9, in response to operation of the switches SW1-SW3 (i.e., mode setting) in the electronic musical instrument A. Thus, the user can cause tones to be appropriately audibly generated via the sounding devices (A6-A8) of the electronic musical instrument A, without having to perform cumbersome apparatus setting.
The electronic musical instrument A (i.e., performance operator unit equipped with the sounding unit) may be automatically set to the local-off state or mode so as not to use the internal tone generator A9 (namely, Mode 2 or Mode 3 may be automatically set), upon detecting that the instrument A has been connected to, or made communicatable with, the tone generator apparatus B (personal computer or tone generator module). Further, when the communication with the tone generator apparatus B is not permitted, the electronic musical instrument A may be automatically set to the local-on state or mode so as to use the internal tone generator A9 (namely, Mode 1 may be automatically set). Further, an instruction for performing these control may be given from the tone generator apparatus B (personal computer or tone generator module) to the electronic musical instrument A (i.e., performance operator unit equipped with the sounding unit).
If, in the embodiment of
Whereas each of the embodiments has been described above in relation to the case where an audio signal is generated by the tone generator section B4 incorporated in the tone generator apparatus B, the present invention is not so limited; for example, the tone generator apparatus B may also generate an audio signal using an external tone generator, as will be described below in relation to a tone generator system using the Internet.
As seen in
Next, a description will be given about an embodiment where a tone generator apparatus is implemented through software processing by a computer, with reference to
The monitoring software SF1 detects, at step S51, whether any external apparatus (in this case, the electronic musical instrument A) has been connected to any one of a plurality of communication interfaces (only a USB interface or USB driver unit B5 is shown in
Once the tone generator software SF2 has been started up, the monitoring software SF1 acquires, from the tone generator software SF2, information (signal path information) concerning signal input and output paths to and from the external apparatus, currently set in the tone generator software SF2, and saves the acquired signal path information in a predetermined storage area, at step S54. At step S55, the monitoring software SF1 automatically sets signal input and output paths corresponding to the electronic musical instrument A newly connected, as an external apparatus, to the personal computer PC. At step S56, a determination is made as to whether the electronic musical instrument A connected, as an external apparatus, to the personal computer PC has been disconnected from the personal computer PC. If the electronic musical instrument A has been disconnected from the personal computer PC (YES determination at step S56), the path information saved in the predetermined storage area is transmitted to the tone generator software SF2, and control is performed to restore the information concerning the signal input and output paths to states immediately before the electronic musical instrument A was connected to the personal computer PC, at step S57. In this way, it is possible to set dedicated signal input output paths corresponding to the electronic musical instrument A only while the electronic musical instrument A is being connected to the personal computer PC. Thus, even where some other external apparatus or the like than the electronic musical instrument A is connected and used with the personal computer PC functioning as a tone generator, it is not necessary to re-set signal input and output paths each time the other external apparatus is connected to the personal computer PC.
Note that the monitoring software SF1 performing the above-described operations may be a dedicated program or a program having a function to cause a tone generator driver to perform the above-described operations.
The above-described operation for saving the path information set in the tone generator software SF2 immediately before connection, to the personal computer PC, of some new external apparatus, operation for restoring the path information and operation for automatically setting path information corresponding to the newly-connected external apparatus may be performed by the tone generator software SF2, rather than by the monitoring software SF1. Further, the monitoring software SF1 may perform control to automatically terminate the tone generator software SF2 as the external apparatus is disconnected (see step S56 of
Number | Date | Country | Kind |
---|---|---|---|
2004-249898 | Aug 2004 | JP | national |