The invention relates to electronic padlocks. The invention particularly relates to electronic padlocks, in which an electronic actuator is arranged to turn a cam piece in order to release latch parts from a locking state. When the latch parts are released from the locking state, the electronic padlock can be opened.
Prior art electronic padlocks often use an electronic actuator for opening the locking. The electronic padlock can receive an opening code in different ways, depending on the implementation method. The opening code can be entered in the electronic padlock for example from a mobile phone via a Bluetooth connection or via some other wireless network. RFID technology or NFC technology can also be used. The electronic padlock can also have a keyboard or a touch screen for entering the opening code, or the lock has for example a fingerprint identifier. When the correct opening code has been entered into the electronic padlock, the electronic actuator in the lock releases the locking, whereby the padlock can be opened. When the locking is released, the padlock shackle can be moved from the closed position to the open position, i.e. the padlock can be opened.
The electronic actuator can for example be an electric motor, which is arranged to turn the cam piece of the padlock. The cam piece is a part, which holds the latch parts against counter holes in the shackle, when the padlock is locked. When the electronic padlock receives the correct opening code, the electronic actuator turns the cam piece (usually 90 degrees), so that the recesses in the cam piece are by the latch parts. Thus, the latch parts can move away from the counter hole in the shackle, i.e. the locking state is released, and the electronic padlock can be opened. When the electronic padlock is locked, the shackle is in the closed position and the electronic actuator turns the cam piece into the locking position, whereby it holds the latch parts against the counter holes in the shackle. The latch parts are normally balls.
Known electronic padlock solutions, which have an electronic actuator, are presented in publications WO 2018184070, US 2013276487, CN 206158371 and WO 2019223522.
In electronic padlocks like the ones described above, the electronic actuator can break, when it turns the cam piece to lock the electronic padlock. If a jerk is simultaneous directed at the shackle, which jerk strives to move the shackle to the open position, the latch parts start to move back into the recesses in the cam piece, which in turn causes the cam piece to turn against the turning force of the electronic actuator. The turning of the cam piece against the turning direction of the electronic actuator can break the electronic actuator.
The object of the invention is to provide an electronic padlock, which eliminates or at least significantly reduces the possibility of breaking of the electronic actuator of the electronic padlock, when the electronic padlock is being locked. This is achieved in the manner presented in the independent claim. The dependent claims present different embodiments of the invention.
The electronic padlock according to the invention comprises a body 2 and a shackle 3. The body has latch parts 7, a cam piece 5 and an electronic actuator 4. The electronic actuator is arranged to turn the cam piece 5 to release the latch parts 7 from a locking state, and to turn the cam piece 5 to hold the latch parts 7 in the locking state. In the locking state, the latch parts 7 prevent the shackle 3 from being moved to open the electronic padlock. The cam piece 5 comprises a cover part 5A and a shaft part 5B. The cover part has a central hole 12 for the shaft part and recesses 10 on the surface of the cover part. The shaft part 5B has a shaft pin 15, which is set into the central hole 12. The shaft part also has a connecting part 19, which is arranged to be in contact with the electronic actuator 4. The cam piece further comprises a spring 9, which is between the shaft pin 15 and the cover part 5A. The spring comprises a first end 9A and a second end 9B. The first end 9A is arranged to be in contact with the cover part 5A. The second end 9B is arranged to be in contact with the shaft part 5B. The spring is arranged to transmit turning force of the electronic actuator from the shaft pin 15 to the cover part 5A in the direction of said locking state.
The shaft part further comprises at least one protrusion 17 on the surface of the shaft pin 15 and/or on the surface of the connecting part 19. This protrusion is arranged to transmit turning force of the electronic actuator from the shaft pin 15 to the cover part 5A to release the latch parts. The spring is further arranged to allow turning of the cover part 5A against the turning force of the electronic actuator from the shaft pin 15 to the cover part 5A.
In the following, the invention will be described in more detail with reference to the appended figures, in which
The electronic padlock according to the invention comprises a body 2 and a shackle 3. The body has latch parts 7, a cam piece 5 and an electronic actuator 4. The electronic actuator is arranged to turn the cam piece 5 to release the latch parts 7 from a locking state, and to turn the cam piece 5 to hold the latch parts 7 in the locking state. In the locking state, the latch parts 7 prevent the shackle 3 from being moved to open the electronic padlock. The locking state is shown in
The body 2 of the electronic padlock 1 has spaces (such as drillings) for different parts of the padlock. These spaces are not shown in more detail in
The electronic actuator 4 can be directly connected to the cam piece 6, so that the electronic actuator can turn the cam piece. The electronic actuator turns the cam piece to open the locking of the electronic padlock or to lock the electronic padlock. The electronic padlock can also comprise a separate power transmission part 6 between the electronic actuator 4 and the shaft part 5B. Thus, the power transmission part 6 transmits the force turning the electronic actuator to the cam piece 5. The power transmission part can also comprise other functions. It can for example also functions as a blocking mechanism. The blocking mechanism allows turning of the cam piece with the electronic actuator, but strives to prevent any other turning of the cam piece 5 in relation to the body 2.
An embodiment of the cam piece 5 according to the invention is shown in
The spring comprises a first end 9A and a second end 9B. The first end 9A is arranged to be in contact with the cover part 5A. The second end 9B is arranged to be in contact with the shaft part 5B. The spring is arranged to transmit turning force of the electronic actuator from the axle pin 15 to the cover part 5A in the direction of said locking state. In other words, the spring is arranged to transmit the turning force of the electronic actuator, which turns the shaft pin, via the first end 9A of the spring to the cover part 5A to turn it into the locking position.
The shaft part further comprises at least one protrusion 17 on the surface of the shaft pin 15 and/or on the surface of the connecting part 19. This protrusion is arranged to transmit turning force of the electronic actuator from the shaft pin 15 to the cover part 5A to release the latch parts. In other words, when the locking of the electronic padlock is opened, the electronic actuator 4 turns (either directly or via a power transmission part 6) the connecting part 19, the protrusion/protrusions 17, 18 of which transmit the turning force to the cover part 5A. The force used for opening the electronic padlock is thus transmitted via at least one protrusion 17, 18 and the force used for locking via the spring 9. In the embodiment of
The spring is further arranged to allow turning of the cover part 5A against the turning force of the electronic actuator from the shaft pin 15 to the cover part 5A. Such a situation can happen, if simultaneously a jerk is directed at the shackle, which jerk strives to move the shackle to the open position. In the open position, the shackle can be set in the target, so that the target can be locked, when the electronic padlock is locked.
The spring 9, however, allows the cover part to turn in such a situation in the opening direction A, even though the shaft pin turns as turned by the electronic actuator in the locking direction K. Thus, only a part of the force of the jerk is directed at the electronic actuator, because a part of the force goes into tensing the spring 9.
The electronic padlock according to the invention can be implemented in many different ways. For example, there can be various embodiments of the parts of the cam piece 5. As
The latch parts 7 are balls or pins, the ends of which pins are hemispherical. The electronic actuator 4 can be an electric motor or a solenoid. Using an electric motor is usually more straight-forward, but turning the cam piece can be done also with a solenoid. Thus, the electronic actuator 4 has some kind of power transmission to transmit the movement of the solenoid (such as the movement of the pin of the solenoid) into a turning movement. The opening and locking of the electronic padlock (entering the opening code, lock ready to be locked, locking command) is implemented in an otherwise known manner, so it is not described in further detail in this context.
The solution according to the invention effectively prevents breaking of the electronic actuator of the electronic padlock, such as the electric motor, if an external force, which pulls the shackle away from the body of the electronic padlock, is directed at the shackle at the closing phase.
The electronic padlock according to the invention can be realized in many different ways, as can be discerned from the description above. The invention is thus not limited to the examples presented herein, but can be implemented in different ways within the scope of the independent claim.
Number | Date | Country | Kind |
---|---|---|---|
20205701 | Jul 2020 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2021/050452 | 6/16/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/003236 | 1/6/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2132201 | Allman | Oct 1938 | A |
3952559 | Atkinson | Apr 1976 | A |
4763496 | Evans | Aug 1988 | A |
4938039 | Tzung-I | Jul 1990 | A |
6442983 | Thomas | Sep 2002 | B1 |
6761051 | Tsai | Jul 2004 | B1 |
9109379 | Ranchod | Aug 2015 | B1 |
20060288744 | Smith | Dec 2006 | A1 |
20090282876 | Zuraski | Nov 2009 | A1 |
20120011902 | Meekma | Jan 2012 | A1 |
20130086956 | Nave | Apr 2013 | A1 |
20130118216 | Kalous | May 2013 | A1 |
20130276487 | Burmesch | Oct 2013 | A1 |
20140157838 | Nave | Jun 2014 | A1 |
20160049032 | Ranchod | Feb 2016 | A1 |
20160312497 | McGinnis | Oct 2016 | A1 |
20170169637 | Lai | Jun 2017 | A1 |
20170268260 | McGinnis | Sep 2017 | A1 |
20180112437 | Chow | Apr 2018 | A1 |
20180165901 | Lai | Jun 2018 | A1 |
20200248483 | Melkovitz | Aug 2020 | A1 |
20210156172 | Liu | May 2021 | A1 |
Number | Date | Country |
---|---|---|
206158371 | May 2017 | CN |
107524357 | Dec 2017 | CN |
110107165 | Aug 2019 | CN |
110439377 | Nov 2019 | CN |
WO2015049680 | Apr 2015 | WO |
WO2018184070 | Oct 2018 | WO |
WO2019200554 | Oct 2019 | WO |
WO2019223522 | Nov 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20230193658 A1 | Jun 2023 | US |