The present invention is directed to an electronically controlled paintball marker. In particular, it relates to a paintball firing control system.
In recent years, the popularity of the combat game known as “Paintball” has increased dramatically. In one form of this game, players use a paintball marker (gun) that gas-propels rounds of ammunition called paintballs in an attempt to “paint” another player. The paintballs are usually a spherical gelatin or similar shell filled with a non-toxic, water-soluble, biodegradable paint. Striking another player with one of these balls ruptures the ball and paints the player, which provides dramatic evidence of the hit, without substantially injuring the player.
A typical firing cycle of a paintball marker begins by a user manually cocking a bolt in the breech of the marker rearwardly, opening a hole in the breech through which a paintball falls. Once the paintball is in the breech, the bolt slides forward to contact the paintball. When the trigger is pulled, a valve opens and releases compressed gas through the bolt into the breech, which forces the paintball out of the marker's barrel.
Paintball markers have been developed that are automatic, i.e. fire repeatedly when the trigger is held back without manual recocking. These automatic markers increase a marker's rate of fire, but have also created a problem known as “ball chop.” Ball chop occurs when the bolt moves forward towards the paintball while the paintball is only partially within the breech. This results in the paintball being crushed in the breech, which fouls the paintball marker. This breakage often entirely disables the marker, effectively ending a player's game.
Some markers have been designed to overcome the ball chop problem. Optical and mechanical sensors have been added to paintball markers to detect the presence of a paintball within the breech in conjunction with sensors that detect the position of the bolt relative thereto. A logic circuit works in concert with the sensors to prevent the bolt from being in a position that damages a paintball within the breech.
These solutions employ multiple sensors that detect the bolt and paintball position, are disadvantageously positioned within the breech, or are driven by logic circuits that are not suitable for all paintball markers.
It is therefore an object of the present invention to provide an automatic paintball marker that eliminates ball chop while allowing for faster firing and uses fewer sensors.
To that end, the inventive electronic paintball marker comprises a breech having an opening that receives a paintball to be fired, the paintball having substantially two positions within the breech, a loaded position and a firing position;
a bolt that reciprocates between rearward and forward positions to move the paintball between the corresponding loaded and firing positions;
a valve in communication with a source of compressed gas and the breech, the valve having an open and closed state, the valve's state controlled by an electronic controller, the valve's open state releasing compressed gas from the source of compressed gas into the breech for firing a paintball, the valve's closed state preventing said firing;
a sensor in communication with the electronic controller and positioned to detect a paintball in the loaded position within the breech, wherein, when the sensor detects the paintball in the loaded position, the sensor sends a detection signal to the electronic controller which in turn allows the bolt to move from the rearward to the forward position; and
a trigger that sends a firing signal to the electronic controller, the firing signal initiating a firing sequence comprising the sensor being activated to detect the paintball within the breech, the electronic controller moving the valve from the closed state to the open state, and firing the paintball.
A paintball marker is usually a futuristic “gun-shaped” device having one or two grips for firing, a barrel from which a paintball is discharged, and a trigger for activating the marker to fire the paintball. The actual body and shape of the marker is not shown in the Figures because the invention discussed herein relates to only several components of a marker, and not the body of the marker itself. It should be understood that the invention herein could be adapted for use in almost any paintball marker body.
The controller 32 can receive a signal from the trigger 50, bolt 16, valve 34, sensor 20, and shutter gate 70, all of which are actuated as discussed below. Although the Figures show one central controller 32, there could be multiple controllers that control and receive signals from the components, or the controllers could be integral with the components themselves and not separate as shown. The controller is not limited to receiving only these signals, and it can also control more functions than those described.
Pulling the trigger 50 sends a signal to the electronic controller 32 that reflects a player's desire to fire the marker 10. When the signal is received by the electronic controller, a firing sequence is initiated, the final step in which, in normal operation, is the firing of the paintball. The firing sequence(s) will be discussed in greater detail after the other sensors and components are introduced.
The bolt 16 optionally sends a signal to the controller to indicate its position in the breech 12. The bolt has two positions in the breech 12, a rearward position shown in
The valve 34 may also send a signal to the controller 32 indicating its state as open or closed. When the valve 34 is opened, gas from a source of compressed gas 26, such as CO2 air tank or similar tank as is known in the art of paintball sports, travels through channel 27 through the valve 34, then through channel 28 and into the breech 12. This compressed gas drives the paintball 14 out of the barrel 17 in direction designated by A (see
In a first embodiment shown in
When the sensor sends a signal to the electronic controller 32 that a paintball has been detected within the breech 12, the electronic controller 32 can send a signal to actuate the bolt 16 from the rearward to the forward position. If no such signal is detected, the electronic controller 32 will not move the bolt 16 from the rearward to the forward position, since such movement could crush a paintball 14 that is falling from the feed tube 22, or drive the bolt 16 forward with no paintball 14 within the breech 12, resulting in a non-fire.
The controller 32 receives the signal from the firing sensor and then sends a signal to actuate the bolt 16 from the forward to the rearward position to reload another paintball 14 into the breech 12 through an opening between the feed tube 22 and the breech 12. By waiting for the paintball 14 to pass the firing sensor 20a before moving the bolt from the forward to the rearward position, the marker 10 insures that it will not load a second paintball 14 into the breech 12 if the first paintball 14 did not fire. It further automates a process that demands precision timing.
Although the embodiments shown in
The fourth embodiment sensor 20b in
The fifth embodiment sensor 20c in
Generally, the sensors can be one of several types. A mechanical sensor requires contact of the paintball on the sensor to initiate the sequence. A mechanical sensor system must be adjusted when using paintballs of different weights and is not as accurate as an optical sensor. Further, piezoelectric sensors can be problematic in certain paintball situations, because the marker is often held at different angles and the paintball will not always contact the sensor with the same force. The mechanical or piezoelectric sensor 20 and 20c shown in
Firing Sequence
The firing sequence that is initiated by pulling the trigger 50 will now be described. Generally, the firing sequence comprises the sensor 20 being activated to detect a paintball 14 within the breech 12, the electronic controller 32 moving the valve 34 from the closed state to the open state, and firing the paintball 14. However, this firing sequence can involve more, and also sequential, steps in two types of markers called open bolt and closed bolt markers.
An open bolt marker is so-named because before the firing sequence is initiated, the bolt 16 is in the rearward position, which leaves the breech “open” to loading a paintball 14 from the feed tube 22 through the hole in the breech. In an open bolt marker, the firing sequence comprises the sequential steps of:
(a) the sensor 20 being activated (directly from a signal from the trigger 50 or through the controller 32) to detect the paintball 14 within the breech 12 and if such detection occurs, sending a detection signal to the electronic controller 32 to allow the electronic controller 32 to carry out step (b);
(b) the electronic controller 32 moving the bolt 16 from the rearward position (
(c) the electronic controller 32 moving the valve 34 from the closed position to the open position to fire the paintball 14.
An additional step may be (d) the controller 32 returning the bolt to the rearward position.
A closed bolt marker by contrast, begins with the bolt 16 in the forward position, which blocks the hole in the breech between the feed tube 22 and the breech 12 before the firing sequence is initiated. In such a closed bolt marker, the firing sequence comprises the sequential steps of:
(a) the electronic controller 32 moving the bolt 16 from the forward position to the rearward position;
(b) the sensor 20 being activated (directly from a signal from the trigger 50 or through the controller 32) to detect the paintball 12 within the breech, and if such detection occurs, sending the detection signal to the electronic controller 32 to allow the electronic controller 32 to carry out step (c);
(c) the electronic controller 32 moving the bolt 16 from the rearward position to the forward position; and
(d) the electronic controller 32 moving the valve 34 from the closed position to the open position to fire the paintball 14.
Although the application mentions that the electronic controller 32 controls the movement of several components in the marker 10, it does so using one or more actuators (not shown).
The controller 32 controls the operation of the valve 34 and shutter gate 70 through the actuator that moves the components between an open and closed state.
The bolt 16 is reciprocated between the rearward position (
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/29760 | 9/10/2004 | WO | 3/10/2006 |
Number | Date | Country | |
---|---|---|---|
60502037 | Sep 2003 | US |