The present invention relates generally to an electronic plumbing fixture fitting with an electronic valves having sequential operation, such as an electronic faucet with an electronic valves having sequential operation.
Electronic plumbing fixture fittings, such as electronic faucets, are well known. Such electronic plumbing fixture fittings are used in residential and commercial applications, such as in kitchens, bathrooms, and various other locations.
The present invention provides an electronic plumbing fixture fitting with an electronic valves having sequential operation.
In an exemplary embodiment, the electronic plumbing fixture fitting comprises a discharge outlet, a hot water electronic valve, a cold water electronic valve, and an actuation device. The discharge outlet is operable to deliver water. The water electronic valve and the cold water electronic valve are operable to permit flow of water through the discharge outlet when at least one of the hot water electronic valve and the cold water electronic valve is activated and to not permit flow of water through the discharge outlet when both of the hot water electronic valve and the cold water electronic valve are deactivated. The actuation device is operable to indicate a desired change to at least one parameter of water flowing through the discharge outlet. When the desired change to the water flowing through the discharge outlet requires activation of both the hot water electronic valve and the cold water electronic valve, the hot water electronic valve and the cold water electronic valve are alternately activated until desired positions of both the hot water electronic valve and the cold water electronic valve are reached.
In an exemplary embodiment, the electronic plumbing fixture fitting comprises a discharge outlet, a hot water electronic valve, a cold water electronic valve, and an actuation device. The discharge outlet is operable to deliver water. The water electronic valve and the cold water electronic valve are operable to permit flow of water through the discharge outlet when at least one of the hot water electronic valve and the cold water electronic valve is activated and to not permit flow of water through the discharge outlet when both of the hot water electronic valve and the cold water electronic valve are deactivated. The actuation device is operable to indicate a desired change to at least one parameter of water flowing through the discharge outlet. When the desired change to the water flowing through the discharge outlet will result in an increasing volume through one of the hot water electronic valve and the cold water electronic valve and a decreasing volume through the other of the hot water electronic valve and the cold water electronic valve, whichever of the hot water electronic valve and the cold water electronic valve has the increasing volume is activated first and whichever of the hot water electronic valve and the cold water electronic valve has the decreasing volume is activated second.
In an exemplary embodiment, the electronic plumbing fixture fitting comprises a discharge outlet, a hot water electronic valve, a cold water electronic valve, and an actuation device. The discharge outlet is operable to deliver water. The water electronic valve and the cold water electronic valve are operable to permit flow of water through the discharge outlet when at least one of the hot water electronic valve and the cold water electronic valve is activated and to not permit flow of water through the discharge outlet when both of the hot water electronic valve and the cold water electronic valve are deactivated. The actuation device is operable to indicate a desired change to at least one parameter of water flowing through the discharge outlet. When the actuation device is moved quickly, each of the hot water electronic valve and the cold water electronic valve is alternately activated a single time to desired positions of both the hot water electronic valve and the cold water electronic valve. When the actuation device is moved slowly, the hot water electronic valve and the cold water electronic valve are alternately activated multiple times until desired positions of both the hot water electronic valve and the cold water electronic valve are reached.
The present invention provides an electronic plumbing fixture fitting. In an exemplary embodiment, the electronic plumbing fixture fitting is an electronic faucet. However, one of ordinary skill in the art will appreciate that the electronic plumbing fixture fitting could be an electronic showering system, an electronic showerhead, an electronic handheld shower, an electronic body spray, an electronic side spray, or any other electronic plumbing fixture fitting.
An exemplary embodiment of an electronic plumbing fixture fitting 10, such as an electronic faucet 12, is illustrated in
In the illustrated embodiment, as best shown in
Additionally, in the illustrated embodiment, as best shown in
In an exemplary embodiment, the hot water electronic valve 34 and the cold water electronic valve 36 are proportional valves and, more specifically, stepper motor actuated valves. However, one of ordinary skill in the art will appreciate that, in some embodiments, the electronic valves could be any type of electronic valves.
Further, in the illustrated embodiments, as best shown in
In an exemplary embodiment, the toggle sensor 44 is a proximity sensor and, in particular, an infrared sensor. The toggle sensor 44 is also referred to as a latching sensor and a sustained-flow sensor. In the illustrated embodiment, the toggle sensor 44 is mounted on an apex of the spout 16. The toggle sensor 44 defines a toggle zone. In an exemplary embodiment, the toggle sensor 44 is operable to activate the hot water electronic valve 34 and the cold water electronic valve 36 when an object enters the toggle zone and to deactivate the hot water electronic valve 34 and the cold water electronic valve 36 when the object exits and reenters the toggle zone. As used herein, an “object” can be any portion of a user's body or any item used by the user to trigger the toggle sensor 44. In an exemplary embodiment, the toggle zone extends generally upwardly from the toggle sensor 44. Additionally, in an exemplary embodiment, the toggle zone has a generally cone-like shape.
In an exemplary embodiment, the presence sensor 46 is a proximity sensor, and, in particular, an infrared sensor. The presence sensor 46 is also referred to as a quick-strike sensor. In the illustrated embodiment, the presence sensor 46 is mounted on the upstream end of the spout 16. The presence sensor 46 defines a presence zone. In an exemplary embodiment, the presence sensor 46 is operable to activate the hot water electronic valve 34 and the cold water electronic valve 36 when an object enters the presence zone and to deactivate the hot water electronic valve 34 and the cold water electronic valve 36 when the object exits the presence zone. Again, as used herein, an “object” can be any portion of a user's body or any item used by the user to trigger the presence sensor 46. In an exemplary embodiment, the presence zone extends generally horizontally from the presence sensor 46. Additionally, in an exemplary embodiment, the presence zone has a generally cone-like shape.
As described above, the toggle sensor 44 and the presence sensor 46 are proximity sensors and, in particular, infrared sensors. Proximity sensors are sensors that detect the presence of an object without any physical contact. However, one of ordinary skill in the art will appreciate that the toggle sensor 44 and the presence sensor 46 could be any type of electronic sensors that can be triggered, including, but not limited to, other proximity sensors, touch sensors, and image sensors. Exemplary electronic sensors include, but are not limited to, electromagnetic radiation sensors (such as optical sensors and radar sensors), capacitance sensors, inductance sensors, piezo-electric sensors, and multi-pixel optical sensors (such as camera sensors). Moreover, the toggle sensor 44 and the presence sensor 46 may not be the same type of sensor. As further described above, the toggle sensor 44 is mounted on the apex of the spout 16 and the presence sensor 46 is mounted on the upstream end of the spout 16. However, one of ordinary skill in the art will appreciate that the toggle sensor 44 and the presence sensor 46 could be mounted in any location on the faucet 12 or in a location remote from the faucet 12. Furthermore, the toggle sensor 44 and the presence sensor 46 may be located in close proximity to each other or fairly remote from each other.
Similarly, as described above, the sensors are a toggle sensor 44 and a presence sensor 46. However, one of ordinary skill in the art will appreciate that the toggle sensor 44 and the presence sensor 46 could be any type of sensors that provide information useful in determining whether to activate or deactivate the hot water electronic valve 34 and the cold water electronic valve 36, including, but not limited to, flow sensors, pressure sensors, temperature sensors, and position sensors. Moreover, the toggle sensor 44 and the presence sensor 46 may be the same type of sensor.
Further, in the illustrated embodiment, as best shown in
In the illustrated embodiments, the handle 22 operates as it would with a standard faucet. In other words, the handle 22 can be moved between various positions to indicate a desired temperature and volume of water discharged from the faucet 12.
More specifically, with regard to the temperature of water, the handle 22 can be rotated about a longitudinal axis of the side opening in the hub 14. At one extent of a range of rotation, the position of the handle 22 indicates all hot water (a full hot position). At the other extent of the range of rotation, the position of the handle 22 indicates all cold water (a full cold position). In between the extents of the range of rotation, the position of the handle 22 indicates a mix of hot and cold water (mixed temperature positions) with hotter temperature water as the position nears the full hot extent of the range of rotation and colder temperature water as the position nears the full cold extent of the range of rotation.
With regard to the volume of water, the handle 22 can be moved toward and away from the side opening in the hub 14. At one extent of a range of movement, the position of the handle 22 indicates no volume of water (a full closed position). At the other extent of the range of movement, the position of the handle 22 indicates full volume of water (a full open position). In between the extents of the range of movement, the position of the handle 22 indicates an intermediate volume of water (less than full open positions) with reduced volume water as the position nears the full closed extent of the range of movement and increased volume water as the position nears the full open extent of the range of movement.
Additionally, in the illustrated embodiment, as best shown in
Further, in the illustrated embodiment, as best shown in
In an exemplary embodiment, as best shown in
In an exemplary embodiment, the hot water electronic valve 34 and the cold water electronic valve 36 are the same type of valve, i.e., a proportional valve and, more specifically, a stepper motor actuated valve. The following description of the electronic valve applies to both the hot water electronic valve 34 and the cold water electronic valve 36.
In an exemplary embodiment, as best shown in
In an exemplary embodiment, as best shown in
In an exemplary embodiment, as best shown in
In an exemplary embodiment, as best shown in
During operation of the hot/cold water electronic valve 34/36 including the piston 78 and the seat 80, as best shown in
In the completely closed position, the sealing member 82 on the piston 78 is in sealing contact with the inlet portion 106 of the seat 80. Additionally, the first conical portion 94 and the cylindrical portion 96 of the piston 78 interface with the conical portion 110 and the second cylindrical portion 112 of the seat 80. As a result of the sealing contact between the sealing member 82 on the piston 78 and the inlet portion 106 of the seat 80, no fluid flows through the hot/cold water electronic valve 34/36.
As the piston 78 starts to move out of the seat 80, the sealing member 82 on the piston 78 loses sealing contact with the inlet portion 106 of the seat 80. Additionally, the first conical portion 94 and the cylindrical portion 96 of the piston 78 move away from the conical portion 110 and the second cylindrical portion 112 of the seat 80. As a result of the sealing member 82 on the piston 78 losing sealing contact with the inlet portion 106 of the seat 80, fluid starts to flow through the hot/cold water electronic valve 34/36.
As the piston 78 moves further out of the seat 80, the sealing member 82 on the piston 78 moves further away from the inlet portion 106 of the seat 80. Additionally, the first conical portion 94 and the cylindrical portion 96 of the piston 78 move further away from the conical portion 110 and the second cylindrical portion 112 of the seat 80. As a result, an increasing amount of fluid flows through the hot/cold water electronic valve 34/36.
In the completely open position, the sealing member 82 on the piston 78 is furthest away from the inlet portion 106 of the seat 80. Additionally, the first conical portion 94 and the cylindrical portion 96 of the piston 78 are furthest away from the conical portion 110 and the second cylindrical portion 112 of the seat 80. As a result, the maximum amount of fluid flows through the hot/cold water electronic valve 34/36.
Although the hot/cold water electronic valve 34/36 has been described with the sealing member 82 on the piston 78 interfacing with the inlet portion 106 of the seat 80, one of ordinary skill in the art will appreciate that the sealing member 82 could be on the seat 80 and interface with the nose 88 of the piston 78. Additionally, although the hot/cold water electronic valve 34/36 has been described as including a sealing member 82, such as an O-ring, in the sealing member groove 92 on the piston 78, one of ordinary skill in the art will appreciate that the sealing member 82 could be integrally formed with the piston 78 (or the seat 80 if the sealing member 82 is on the seat 80). Further, one of ordinary skill in the art will appreciate that the piston 78 (or the seat 80 if the sealing member 82 is on the seat 80) does not need to include a sealing member groove 92.
In another exemplary embodiment, as best shown in
In another exemplary embodiment, as best shown in
During operation of the hot/cold water electronic valve 34/36 including the piston 78′ and the seat 80′, as best shown in
In the completely closed position, the sealing member 82 on the piston 78′ is in sealing contact with the inlet portion 106′ of the seat 80′. Additionally, the dome-shaped portion 122 of the piston 78′ interfaces with the rounded portion 124 of the seat 80′. As a result of the sealing contact between the sealing member 82 on the piston 78′ and the inlet portion 106′ of the seat 80′, no fluid flows through the hot/cold water electronic valve 34/36.
As the piston 78′ starts to move out of the seat 80′, the sealing member 82 on the piston 78′ loses sealing contact with the inlet portion 106′ of the seat 80′. Additionally, the dome-shaped portion 122 of the piston 78′ moves along the rounded portion 124 of the seat 80′. As a result of the sealing member 82 on the piston 78′ losing sealing contact with the inlet portion 106′ of the seat 80′, fluid starts to flow through the hot/cold water electronic valve 34/36.
As the piston 78′ moves further out of the seat 80′, the sealing member 82 on the piston 78′ moves further away from the inlet portion 106′ of the seat 80′. Additionally, the dome-shaped portion 122 of the piston 78′ moves further away from the rounded portion 124 of the seat 80′. As a result, an increasing amount of fluid flows through the hot/cold water electronic valve 34/36.
In the completely open position, the sealing member 82 on the piston 78′ is furthest away from the inlet portion 106′ of the seat 80′. Additionally, the dome-shaped portion 122 of the piston 78′ is furthest away from the rounded portion 124 of the seat 80′. As a result, the maximum amount of fluid flows through the hot/cold water electronic valve 34/36.
Although the hot/cold water electronic valve 34/36 has been described with the sealing member 82 on the piston 78′ interfacing with the inlet portion 106′ of the seat 80′, one of ordinary skill in the art will appreciate that the sealing member 82 could be on the seat 80′ and interface with the nose 88′ of the piston 78′. Additionally, although the hot/cold water electronic valve 34/36 has been described as including a sealing member 82, such as an O-ring, in the sealing member groove 92′ on the piston 78′, one of ordinary skill in the art will appreciate that the sealing member 82 could be integrally formed with the piston 78′ (or the seat 80′ if the sealing member 82 is on the seat 80′). Further, one of ordinary skill in the art will appreciate that the piston 78′ (or the seat 80′ if the sealing member 82 is on the seat 80′) does not need to include a sealing member groove 92′.
Although the electronic plumbing fixture fitting 10 has been described as including an electronic mixing valve 32 and the electronic mixing valve 32 has been described as including a hot water electronic valve 34 and a cold water electronic valve 36, one of ordinary skill in the art will appreciate that the electronic valve could be used as a shutoff valve in addition to or in place of the mixing valve. Additionally, when the electronic valve is used as a shutoff valve, the seat 80/80′ could be integrated into the valve housing.
As stated above, the electronic control 56 receives information (such as signals) from the toggle sensor 44 and the presence sensor 46 to activate and deactivate the hot water electronic valve 34 and the cold water electronic valve 36. Moreover, the electronic control 56 receives information (such as signals) from the parameter sensor 48 to set parameters (such as the temperature and the volume) of water flowing through the hot water electronic valve 34 and the cold water electronic valve 36. In an exemplary embodiment, the electronic control 56 activates and deactivates the hot/cold water electronic valve 34/36 and sets parameters of water flowing through the hot/cold water electronic valve 34/36 by actuating the motor 72 of the hot/cold water electronic valve 34/36.
During operation of the electronic faucet 12, the handle 22 is moved to indicate a desired change to at least one parameter of water flowing through the hot water electronic valve 34 and/or the cold water electronic valve 36 and eventually discharged from the faucet 12. In an exemplary embodiment, the handle 22 is moved to indicate a desired change to a temperature and/or a volume of water flowing through the hot water electronic valve 34 and/or the cold water electronic valve 36 and eventually discharged from the faucet 12.
When a desired change to the water requires opening and/or closing of only one of the hot water electronic valve 34 and the cold water electronic valve 36, the appropriate hot/cold water electronic valve 34/36 is activated to accomplish the desired change. An exemplary desired change to the water that would require opening and/or closing of only one of the hot water electronic valve 34 and the cold water electronic valve 36 is a change in a volume of the water when a temperature of the water is all hot or all cold.
When a desired change to the water requires opening and/or closing of both the hot water electronic valve 34 and the cold water electronic valve 36, both the hot water electronic valve 34 and the cold water electronic valve 36 need to be activated to accomplish the desired change. Exemplary desired changes to the water that would require opening and/or closing of both the hot water electronic valve 34 and the cold water electronic valve 36 are a change in a volume of the water when a temperature of the water is mixed and constant and a change in a temperature of the water when a volume of the water is constant. A temperature of the water is mixed when the water is not all hot and not all cold.
When both the hot water electronic valve 34 and the cold water electronic valve 36 need to be activated to accomplish the desired change, both the hot water electronic valve 34 and the cold water electronic valve 36 are not activated at the same time. Rather, the hot water electronic valve 34 and the cold water electronic valve 36 are alternately activated until desired positions of both the hot water electronic valve 34 and the cold water electronic valve 36 are reached and the desired change is accomplished.
In an exemplary embodiment, when activation of the hot water electronic valve 34 and the cold water electronic valve 36 will result in an increasing volume through one of the hot water electronic valve 34 and the cold water electronic valve 36 and a decreasing volume through the other of the hot water electronic valve 34 and the cold water electronic valve 36, whichever of the hot/cold water electronic valve 34/36 has the increasing volume is activated first and whichever of the hot/cold water electronic valve 34/36 has the decreasing volume is activated second.
In an exemplary embodiment, when the handle 22 is moved quickly, each of the hot water electronic valve 34 and the cold water electronic valve 36 is alternately activated a single time to desired positions of both the hot water electronic valve 34 and the cold water electronic valve 36. In an exemplary embodiment, when the handle 22 is moved slowly, the hot water electronic valve 34 and the cold water electronic valve 36 are alternately activated multiple times until desired positions of both the hot water electronic valve 34 and the cold water electronic valve 36 are reached.
In an exemplary embodiment, when a speed of rotation of the handle 22 is more than fifty degrees per second (50°/s), the handle 22 is considered to be moved quickly. In an exemplary embodiment, when a speed of rotation of the handle 22 is more than seventy-five degrees per second (75°/s), the handle 22 is considered to be moved quickly. In an exemplary embodiment, when a speed of rotation of the handle 22 is more than one-hundred degrees per second (100°/s), the handle 22 is considered to be moved quickly. In an exemplary embodiment, when a speed of rotation of the handle 22 is more than one-hundred twenty-five degrees per second (125°/s), the handle 22 is considered to be moved quickly.
Conversely, in an exemplary embodiment, when a speed of rotation of the handle 22 is less than or equal to fifty degrees per second (50°/s), the handle 22 is considered to be moved slowly. In an exemplary embodiment, when a speed of rotation of the handle 22 is less than or equal to seventy-five degrees per second (75°/s), the handle 22 is considered to be moved slowly. In an exemplary embodiment, when a speed of rotation of the handle 22 is less than or equal to one-hundred degrees per second (100°/s), the handle 22 is considered to be moved slowly. In an exemplary embodiment, when a speed of rotation of the handle 22 is less than or equal to one-hundred twenty-five degrees per second (125°/s), the handle 22 is considered to be moved slowly.
When the power module 54 includes a battery, steps should be taken to extend a life of the battery. Simultaneously activating the hot water electronic valve 34 and the cold water electronic valve 36 creates a higher peak current draw on the battery than alternately activating the hot water electronic valve 34 and the cold water electronic valve 36. Since a higher peak current draw on the battery reduces the life of the battery, alternately activating the hot water electronic valve 34 and the cold water electronic valve 36 extends the life of the battery.
One of ordinary skill in the art will now appreciate that the present invention provides an electronic plumbing fixture fitting with an electronic valves having sequential operation, such as an electronic faucet with an electronic valves having sequential operation. Although the present invention has been shown and described with reference to particular embodiments, equivalent alterations and modifications will occur to those skilled in the art upon reading and understanding this specification. The present invention includes all such equivalent alterations and modifications and is limited only by the scope of the following claims in light of their full scope of equivalents.
This application claims the benefit of U.S. Provisional Application No. 62/105,170, filed Jan. 19, 2015, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62105170 | Jan 2015 | US |