The present invention relates generally to an electronic plumbing fixture fitting, such as an electronic faucet.
Electronic plumbing fixture fittings, such as electronic faucets, are well known. Such electronic plumbing fixture fittings are used in residential and commercial applications, such as in kitchens, bathrooms, and various other locations. Many difficulties can be encountered in manufacturing, assembling, installing, and using typical electronic plumbing fixture fittings.
The present invention provides an electronic plumbing fixture fitting. In an exemplary embodiment, the electronic plumbing fixture fitting comprises a housing, a mounting shank, an electronic valve, a flow module, a wand hose, and a hose bracket. The housing is operable to mount above a mounting surface. The housing includes a spout and a wand. The wand is operable to pull away from the spout. The wand includes a discharge outlet operable to deliver water. The mounting shank is operable to extend downwardly from the housing. The mounting shank is operable to extend through and below the mounting surface. The mounting shank has a hollow interior. The mounting shank has an inlet. The electronic valve is operable to permit flow of water through the discharge outlet when the electronic valve is activated and to prevent flow of water through the discharge outlet when the electronic valve is deactivated. The flow module is operable to mount below the mounting surface. The electronic valve is located inside the flow module. The flow module includes a cold water inlet operable to receive cold water from a cold water supply, a cold water passage operable to fluidly connect the cold water inlet and the electronic valve, a hot water inlet operable to receive hot water from a hot water supply, a hot water passage operable to fluidly connect the hot water inlet and the electronic valve, a mixed water outlet operable to discharge mixed water to the discharge outlet, and a mixed water passage operable to fluidly connect the electronic valve and the mixed water outlet. The wand hose is operable to fluidly connect the mixed water outlet and the wand. The wand hose extends below the mounting surface and through the mounting shank and the spout. The hose bracket is operable to connect to the mounting shank and to the wand hose. The hose bracket is operable to position the wand hose between the mixed water outlet and the inlet of the mounting shank such that a portion of the wand hose extends in a loop between the hose bracket and the inlet of the mounting shank.
In another exemplary embodiment, the electronic plumbing fixture fitting comprises a housing, a mounting shank, an electronic valve, a sensor, a flow module, an electronics module, a wand hose, and a hose bracket. The housing is operable to mount above a mounting surface. The housing includes a spout and a wand. The wand is operable to pull away from the spout. The wand includes a discharge outlet operable to deliver water. The mounting shank is operable to extend downwardly from the housing. The mounting shank is operable to extend through and below the mounting surface. The mounting shank has a hollow interior. The mounting shank has an inlet. The electronic valve is operable to permit flow of water through the discharge outlet when the electronic valve is activated and to prevent flow of water through the discharge outlet when the electronic valve is deactivated. The sensor is operable to send a signal when the electronic valve is to be activated. The flow module is operable to mount below the mounting surface. The electronic valve is located inside the flow module. The flow module includes a cold water inlet operable to receive cold water from a cold water supply, a cold water passage operable to fluidly connect the cold water inlet and the electronic valve, a hot water inlet operable to receive hot water from a hot water supply, a hot water passage operable to fluidly connect the hot water inlet and the electronic valve, a mixed water outlet operable to discharge mixed water to the discharge outlet, and a mixed water passage operable to fluidly connect the electronic valve and the mixed water outlet. The electronics module is operable to receive the signal from the sensor when the electronic valve is to be activated and, in response, send a signal to the electronic valve to activate the electronic valve. The electronics module is operable to connect to the flow module. The wand hose is operable to fluidly connect the mixed water outlet and the wand. The wand hose extends below the mounting surface and through the mounting shank and the spout. The hose bracket is operable to connect to the mounting shank and to the wand hose. The hose bracket is operable to position the wand hose between the mixed water outlet and the inlet of the mounting shank such that a portion of the wand hose extends in a loop between the hose bracket and the inlet of the mounting shank.
In a further exemplary embodiment, the electronic plumbing fixture fitting comprises a housing, a mounting shank, a mechanical valve, an electronic valve, a flow module, a wand hose, and a hose bracket. The housing is operable to mount above a mounting surface. The housing includes a spout and a wand. The wand is operable to pull away from the spout. The wand includes a discharge outlet operable to deliver water. The mounting shank is operable to extend downwardly from the housing. The mounting shank is operable to extend through and below the mounting surface. The mounting shank has a hollow interior. The mounting shank has an inlet. The mechanical valve is operable to permit flow of water through the discharge outlet when the mechanical valve is opened and to prevent flow of water through the discharge outlet when the mechanical valve is closed. The electronic valve is operable to permit flow of water through the discharge outlet when the electronic valve is activated and to prevent flow of water through the discharge outlet when the electronic valve is deactivated. The flow module is operable to mount below the mounting surface. The mechanical valve is located outside the flow module. The electronic valve is located inside the flow module. The flow module includes a cold water inlet operable to receive cold water from a cold water supply, a cold water outlet operable to discharge cold water to the mechanical valve, a first cold water passage operable to fluidly connect the cold water inlet and the cold water outlet, a second cold water passage operable to fluidly connect the cold water inlet and the electronic valve, a hot water inlet operable to receive hot water from a hot water supply, a hot water outlet operable to discharge hot water to the mechanical valve, a first hot water passage operable to fluidly connect the hot water inlet and the hot water outlet, a second hot water passage operable to fluidly connect the hot water inlet and the electronic valve, a mixed water inlet operable to receive mixed water from the mechanical valve, a mixed water outlet operable to discharge mixed water to the discharge outlet, a first mixed water passage operable to fluidly connect the mixed water inlet and the mixed water outlet, and a second mixed water passage operable to fluidly connect the electronic valve and the mixed water outlet. The wand hose is operable to fluidly connect the mixed water outlet and the wand. The wand hose extends below the mounting surface and through the mounting shank and the spout. The hose bracket is operable to connect to the mounting shank and to the wand hose. The hose bracket is operable to position the wand hose between the mixed water outlet and the inlet of the mounting shank such that a portion of the wand hose extends in a loop between the hose bracket and the inlet of the mounting shank.
The present invention provides an electronic plumbing fixture fitting. In an exemplary embodiment, the electronic plumbing fixture fitting is an electronic faucet. However, one of ordinary skill in the art will appreciate that the electronic plumbing fixture fitting could be an electronic showerhead, an electronic handheld shower, an electronic body spray, or any other electronic plumbing fixture fitting.
An exemplary embodiment of an electronic plumbing fixture fitting 10, such as an electronic faucet 12, is illustrated in
In the illustrated embodiments, as best shown in
Additionally, in the illustrated embodiments, as best shown in
An upstream end of the common portion 36 of the hot water line 26 connects to a hot water supply 54, and an upstream end of the common portion 42 of the cold water line 28 connects to a cold water supply 56. A downstream end of the common portion 36 of the hot water line 26 connects to a hot water tee 58, and a downstream end of the common portion 42 of the cold water line 28 connects to a cold water tee 60.
An upstream end of the mechanical valve portion 38 of the hot water line 26 connects to the hot water tee 58, and an upstream end of the mechanical valve portion 44 of the cold water line 28 connects to the cold water tee 60. A downstream end of the mechanical valve portion 38 of the hot water line 26 connects to the mechanical valve 32, and a downstream end of the mechanical valve portion 44 of the cold water line 28 connects to the mechanical valve 32.
An upstream end of the electronic valve portion 40 of the hot water line 26 connects to the hot water tee 58, and an upstream end of the electronic valve portion 46 of the cold water line 28 connects to the cold water tee 60. A downstream end of the electronic valve portion 40 of the hot water line 26 connects to the electronic valve 34, and a downstream end of the electronic valve portion 46 of the cold water line 28 connects to the electronic valve 34.
An upstream end of the mechanical valve portion 48 of the mixed water line 30 connects to the mechanical valve 32, and an upstream end of the electronic valve portion 50 of the mixed water line 30 connects to the electronic valve 34. A downstream end of the mechanical valve portion 48 of the mixed water line 30 connects to a mixed water tee 62, and a downstream end of the electronic valve portion 50 of the mixed water line 30 connects to the mixed water tee 62.
An upstream end of the common portion 52 of the mixed water line 30 connects to the mixed water tee 62. A downstream end of the common portion 52 of the mixed water line 30 connects to the discharge outlet 24.
In the illustrated embodiments, as best shown in
In the illustrated embodiments, each portion of the hot water line 26, the cold water line 28, and the mixed water line 30 includes one or more hoses. For example, the common portion 52 of the mixed water line 30 (also referred to as the wand hose 18) includes two hoses. However, one of ordinary skill in the art will appreciate that each portion of the hot water line 26, the cold water line 28, and the mixed water line 30 that includes one hose could include more than one hose, and each portion of the hot water line 26, the cold water line 28, and the mixed water line 30 that includes more than one hose could include one hose. In an exemplary embodiment, the hoses are flexible hoses. However, one of ordinary skill in the art will appreciate that other types of hoses could be used. If a portion of the hot water line 26, the cold water line 28, or the mixed water line 30 includes more than one hose, the hoses are connected via connectors. In an exemplary embodiment, the connectors are push-fit connectors. However, one of ordinary skill in the art will appreciate that other types of connectors could be used.
When reference is made to one component of the faucet 12 connecting to another component of the faucet 12, the connection may be direct or indirect. One of ordinary skill in the art will appreciate that additional components may be needed if the connection is indirect.
As described above, the mechanical valve 32 and the electronic valve 34 are in parallel. However, one of ordinary skill in the art will appreciate that, in certain embodiments, the mechanical valve 32 and the electronic valve 34 could be in series.
In an exemplary embodiment, the electronic valve 34 is a solenoid valve. However, one of ordinary skill in the art will appreciate that the electronic valve 34 could be any type of electronic valve, including, but not limited to, an electronic throttle or proportional valve and an electronic mixing valve.
As described above, the faucet 12 includes a mechanical valve 32 and an electronic valve 34. However, one of ordinary skill in the art will appreciate that the faucet 12 could include an electronic valve, without a mechanical valve. In an embodiment including an electronic valve without a mechanical valve, one of ordinary skill in the art will appreciate that the faucet 12 will not include other components related to the mechanical valve, such as a handle and water lines connected to the mechanical valve.
In the illustrated embodiments, as best shown in
Further, in the illustrated embodiments, as best shown in
In an exemplary embodiment, the toggle sensor 70 is a proximity sensor and, in particular, an infrared sensor. The toggle sensor 70 can also be referred to as a latching sensor or a sustained-flow sensor. In the illustrated embodiments, the toggle sensor 70 is mounted on an apex of the spout 16. The toggle sensor 70 defines a toggle zone 74, as best shown in
In an exemplary embodiment, the presence sensor 72 is a proximity sensor, and, in particular, an infrared sensor. The presence sensor 72 can also be referred to as a quick-strike sensor. In the illustrated embodiments, the presence sensor 72 is mounted on the upstream end of the spout 16. In an alternative embodiment, the presence sensor 72 is mounted beneath the apex of the spout 16. The presence sensor 72 defines a presence zone 76, as best shown in
In an exemplary embodiment, the toggle zone 74 and the presence zone 76 are designed to prevent unintentional activation of the electronic valve 34. The toggle zone 74 and the presence zone 76 correspond to the user's expectations of where an object should be in order to trigger the toggle sensor 70 and the presence sensor 72.
In an exemplary embodiment, if the user desires to deactivate the toggle sensor 70 and/or the presence sensor 72 (e.g., to clean the faucet 12), the user takes a predetermined action above the mounting surface of the faucet 12 to indicate whether the user desires to deactivate the toggle sensor 70, the presence sensor 72, or both sensors. In a further exemplary embodiment, if the user desires to deactivate the toggle sensor 70 and/or the presence sensor 72, the user selectively covers the presence sensor 72 and/or the toggle sensor 70 for a predetermined period of time. In a still further exemplary embodiment, if the user desires to deactivate both the toggle sensor 70 and the presence sensor 72, the user covers the toggle sensor 70 for at least five seconds. However, one of ordinary skill in the art will appreciate that other actions could be taken to deactivate the toggle sensor 70 and/or the presence sensor 72.
As described above, the toggle sensor 70 and the presence sensor 72 are proximity sensors and, in particular, infrared sensors. Proximity sensors are sensors that detect the presence of an object without any physical contact. However, one of ordinary skill in the art will appreciate that the sensors could be any type of electronic sensors that can be triggered, including, but not limited to, other proximity sensors, touch sensors, and image sensors. Exemplary electronic sensors include, but are not limited to, electromagnetic radiation sensors (such as optical sensors and radar sensors), capacitance sensors, inductance sensors, piezo-electric sensors, and multi-pixel optical sensors (such as camera sensors). Moreover, the toggle sensor 70 and the presence sensor 72 may not be the same type of sensor. As further described above, the toggle sensor 70 is mounted on the apex of the spout 16 and the presence sensor 72 is mounted on the upstream end of the spout 16 or, alternatively, is mounted beneath the apex of the spout 16. However, one of ordinary skill in the art will appreciate that the sensors could be mounted in any location on the faucet 12 or in a location remote from the faucet 12. Furthermore, the toggle sensor 70 and the presence sensor 72 may be located in close proximity to each other or fairly remote from each other.
Similarly, as described above, the sensors are a toggle sensor 70 and a presence sensor 72. However, one of ordinary skill in the art will appreciate that the sensors could be any type of sensors that provide information useful in determining whether to activate or deactivate the mechanical valve 32 and/or the electronic valve 34, including, but not limited to, flow sensors, pressure sensors, temperature sensors, and position sensors. Moreover, the toggle sensor 70 and the presence sensor 72 may be the same type of sensor.
The toggle sensor 70 has a control associated with it. Similarly, the presence sensor 72 has a control associated with it. The controls for the toggle sensor 70 and the presence sensor 72 receive signals from the sensors and send signals to other components of the faucet 12 in response to the signals received from the sensors. Each control includes a control program and control data. During operation, the control program receives the signals from the sensors and sends the signals to the electronic valve 34 or other electronic components of the faucet 12 to control operation of the components of the faucet 12. For example, the control program will receive a signal from the presence sensor 72 when an object enters the presence zone 76. In response to this signal, the control program will send a signal to activate the electronic valve 34. In an exemplary embodiment, the control data includes calibration constants.
The control program is not unique to each individual sensor. Generally, the same control program is used for all sensors of a specific embodiment that are manufactured at the same time. However, the control data is unique to each individual sensor. The controls for the sensors need to be calibrated. A first calibration occurs during manufacture and/or assembly and accounts for differences between components of individual sensors. A second calibration occurs after installation and accounts for differences in the environment of the sensors. Since the calibrations account for differences between individual sensors and their environments, the calibrations result in control data that is unique for each individual sensor.
In an exemplary embodiment, the control for the toggle sensor 70 is stored in more than one location. Similarly, the control for the presence sensor 72 is stored in more than one location.
In an exemplary embodiment, the control program 78 for the toggle sensor 70 and the control program 80 for the presence sensor 72 are stored outside the portion of the faucet 12 that houses the sensors. In a further exemplary embodiment, the control program 78 for the toggle sensor 70 and the control program 80 for the presence sensor 72 are stored in the electronics module 66. In a still further exemplary embodiment, the control program 78 for the toggle sensor 70 and the control program 80 for the presence sensor 72 are stored in data storage (such as flash memory 82 in a processor 84 on a printed circuit board 86, as best shown in
In an exemplary embodiment, the control data 88 for the toggle sensor 70 and the control data 90 for the presence sensor 72 are stored inside the portion of the faucet 12 that houses the sensors. In a further exemplary embodiment, the control data 88 for the toggle sensor 70 and the control data 90 for the presence sensor 72 are stored inside the spout 16. In a still further exemplary embodiment, the control data 88 for the toggle sensor 70 and the control data 90 for the presence sensor 72 are stored inside the upstream end of the spout 16. In a still further exemplary embodiment, the control data 88 for the toggle sensor 70 and the control data 90 for the presence sensor 72 are stored in data storage (such as an EPROM 92 on a printed circuit board 94, as best shown in
As a result, the portions of the controls that are not unique to the sensors are stored separate from the portions of the controls that are unique to the sensors. In the exemplary embodiments, the portions of the controls that are not unique to the sensors are stored outside the portion of the faucet 12 that houses the sensors and, in particular, in the electronics module 66 and, further in particular, in the data storage in the electronics module 66. Additionally, the portions of the controls that are unique to the sensors are stored inside the portion of the faucet 12 that houses the sensors and, in particular, inside the spout 16 and, further in particular, in or near the presence sensor 72 inside the upstream end of the spout 16 and, further in particular, in the data storage in the presence sensor 72. Although the controls have been described in specific exemplary locations, one of ordinary skill in the art will appreciate that the controls could be in other locations so long as the portions of the controls that are not unique to the sensors are stored separate from the portions of the controls that are unique to the sensors.
Due to the separation of the controls for the toggle sensor 70 and the presence sensor 72, the operation of the toggle sensor 70 and the presence sensor 72 is not linked to the operation of the electronics module 66. As a result, these components can be separately manufactured, assembled, installed, and calibrated. Moreover, if any of these components fails, all of the components do not need to be replaced. The failed component can be replaced without affecting the operation of the remaining components.
Due to the separation of the controls for the toggle sensor 70 and the presence sensor 72, the size of the spout 16 can be significantly reduced. In an exemplary embodiment, the size of the spout 16 is no larger than the size of spouts for typical non-electronic faucets having similar designs. In a further exemplary embodiment, an inner diameter of the spout 16 is less than or equal to one inch. A reduction in the size of the spout 16 enables greater design options for the faucet 12.
In the illustrated embodiments, the toggle sensor 70 is electrically connected to the presence sensor 72. More specifically, a communications/power cable 96 connects the toggle sensor 70 to the presence sensor 72, as best shown in
In the illustrated embodiments, the presence sensor 72 is electrically connected to the electronics module 66. More specifically, a communications/power cable 102 connects the presence sensor 72 to the electronics module 66, as best shown in
As described above, the toggle sensor 70 is connected to the presence sensor 72 via the communications/power cable 96, and the presence sensor 72 is connected to the electronics module 66 via communications/power cable 102. However, one of ordinary skill in the art will appreciate that, in certain embodiments, one or more of these connections could be wireless.
In the illustrated embodiments, as best shown in
The insertion portion 112 is connected to the toggle sensor 70. In the illustrated embodiments, the insertion portion 112 includes gripping members 118 that enable the insertion portion 112 to connect to the toggle sensor 70. Once the gripping members 118 are connected to the toggle sensor 70, insertion of the cable protector 110 into the spout 16 results in insertion of the toggle sensor 70 into the spout 16.
The barrier portion 114 extends along a substantial portion of a length of the communications/power cable 96. In the illustrated embodiments, the barrier portion 114 includes a generally flat elongated member 120 that enables the barrier portion 114 to shield the communications/power cable 96 from other components in the spout 16, such as the wand hose 18. As the wand 20 is pulled away from the spout 16 and causes the wand hose 18 to move through the spout 16, the cable protector 110 prevents the wand hose 18 from contacting and, possibly, damaging the communications/power cable 96.
The alignment feature 116 positions the communications/power cable 96 along the barrier portion 114 of the cable protector 110. In the illustrated embodiments, the alignment feature 116 includes opposing tabs 122 projecting from the barrier portion 114 that enable the alignment feature 116 to maintain the communications/power cable 96 in position against the barrier portion 114.
Once the cable protector 110 is inserted into the spout 16, the communications/power cable 96 extends along a rear inner surface 124 of the spout 16. In an exemplary embodiment, the cable protector 110 is made of a semi-rigid material.
In the illustrated embodiments, as best shown in
In the illustrated embodiments, the wand hose 18 includes a marked portion 128 and an unmarked portion 130. The marked portion 128 can include any marking that enables the hose sensor 126 to distinguish the marked portion 128 from the unmarked portion 130. In an exemplary embodiment, the marked portion 128 is separately formed from the wand hose 18 and then connected to the wand hose 18. In an exemplary embodiment, the marked portion 128 is integrally formed with the wand hose 18. In an exemplary embodiment, the marked portion 128 has a different reflective property than the unmarked portion 130. The hose sensor 126 is operable to determine when the wand hose 18 is moved through the spout 16.
When the wand hose 18 has not been moved through the spout 16, the marked portion 128 is adjacent to (i.e., below) the hose sensor 126. In this position, the hose sensor 126 detects the marked portion 128 and determines that the wand hose 18 has not been moved through the spout 16. When the wand hose 18 has been moved through the spout 16, the marked portion 128 is no longer adjacent to (i.e., below) the hose sensor 126. In this position, the hose sensor 126 does not detect the marked portion 128 and determines that the wand hose 18 has been moved through the spout 16.
In the illustrated embodiments, the wand hose 18 includes a plurality of marked portions 128. Again, the marked portions 128 can include any marking that enables the hose sensor 126 to distinguish the marked portions 128 from the unmarked portion 130 and each marked portion 128 from the other marked portions 128. In an exemplary embodiment, the marked portions 128 are separately formed from the wand hose 18 and then connected to the wand hose 18. In an exemplary embodiment, the marked portions 128 are integrally formed with the wand hose 18. In an exemplary embodiment, each marked portion 128 has a different reflective property than the unmarked portion 130 and each marked portion 128 has a different reflective property than the other marked portions 128. The hose sensor 126 is operable to determine when the wand hose 18 is moved through the spout 16 and how far the wand hose 18 has been moved through the spout 16.
When the wand hose 18 has not been moved through the spout 16, a first marked portion 128A is adjacent to (i.e., below) the hose sensor 126. In this position, the hose sensor 126 detects the first marked portion 128A and determines that the wand hose 18 has not been moved through the spout 16. When the wand hose 18 has been moved through the spout 16, the first marked portion 128A is no longer adjacent to (i.e., below) the hose sensor 126 and a second marked portion 128B or a subsequent marked portion is adjacent to (i.e., below) the hose sensor 126. In this position, the hose sensor 126 does not detect the first marked portion 128A and determines that the wand hose 18 has been moved through the spout 16. Additionally, in this position, the hose sensor 126 detects the second marked portion 128B or the subsequent marked portion and determines how far the wand hose 18 has been moved through the spout 16 based on which marked portion 128 the hose sensor 126 detects.
Since the hose sensor 126 determines when and how far the wand hose 18 has been moved through the spout 16 (i.e., extended out of the spout 16 or refracted into the spout 16), the hose sensor 126 can be used to control operation of other components of the faucet 12. For example, when the hose sensor 126 determines that the wand hose 18 has been moved through the spout 16, a signal can be sent to activate or deactivate the electronic valve 34. Additionally, when the hose sensor 126 determines that the wand hose 18 has been moved through the spout 16, a signal can be sent to activate or deactivate the toggle sensor 70 and/or the position sensor. Further, when the hose sensor 126 determines that the wand hose 18 has been moved through the spout 16, a signal can be sent to change a hierarchy that governs operation of the toggle sensor 70 and the presence sensor 72.
In the illustrated embodiments, as best shown in
In the illustrated embodiments, as best shown in
1. a cold water inlet 138 operable to receive cold water from the cold water supply 56—as illustrated, the cold water inlet 138 fluidly connects to the common portion 42 of the cold water line 28,
2. a hot water inlet 140 operable to receive hot water from the hot water supply 54—as illustrated, the hot water inlet 140 fluidly connects to the common portion 36 of the hot water line 26, and
3. a mixed water inlet 142 operable to receive mixed water from the mechanical valve 32—as illustrated, the mixed water inlet 142 fluidly connects to the mechanical valve portion 48 of the mixed water line 30.
In the illustrated embodiments, as best shown in
1. a cold water outlet 144 operable to discharge cold water to the mechanical valve 32—as illustrated, the cold water outlet 144 fluidly connects to the mechanical valve portion 44 of the cold water line 28,
2. a hot water outlet 146 operable to discharge hot water to the mechanical valve 32—as illustrated, the hot water outlet 146 fluidly connects to the mechanical valve portion 38 of the hot water line 26, and
3. a mixed water outlet 148 operable to discharge mixed water from the mechanical valve 32 or the electronic valve 34 to the discharge outlet 24—as illustrated, the mixed water outlet 148 fluidly connects to the common portion 52 of the mixed water line 30 (also referred to as the wand hose 18).
In the illustrated embodiments, the cold water inlet 138, the hot water inlet 140, and the mixed water outlet 148 are in the first side 132 of the flow module 64. Additionally, the cold water outlet 144, the hot water outlet 146, and the mixed water inlet 142 are in the second side 134 of the flow module 64.
In the illustrated embodiments, as best shown in
1. a first cold water passage 150 operable to fluidly connect the cold water inlet 138 and the cold water outlet 144—as illustrated, the first cold water passage 150 includes a portion of the common portion 42 of the cold water line 28, the cold water tee 60, and a portion of the mechanical valve portion 44 of the cold water line 28,
2. a second cold water passage 152 operable to fluidly connect the cold water inlet 138 and the electronic valve 34—as illustrated, the second cold water passage 152 includes a portion of the common portion 42 of the cold water line 28, the cold water tee 60, and the electronic valve portion 46 of the cold water line 28—as illustrated, a portion of the first cold water passage 150 is common with a portion of the second cold water passage 152,
3. a first hot water passage 154 operable to fluidly connect the hot water inlet 140 and the hot water outlet 146—as illustrated, the first hot water passage 154 includes a portion of the common portion 36 of the hot water line 26, the hot water tee 58, and a portion of the mechanical valve portion 38 of the hot water line 26,
4. a second hot water passage 156 operable to fluidly connect the hot water inlet 140 and the electronic valve 34—as illustrated, the second hot water passage 156 includes a portion of the common portion 36 of the hot water line 26, the hot water tee 58, and the electronic valve portion 40 of the hot water line 26—as illustrated, a portion of the first hot water passage 154 is common with a portion of the second hot water passage 156,
5. a first mixed water passage 158 operable to fluidly connect the mixed water inlet 142 and the mixed water outlet 148—as illustrated, the first mixed water passage 158 includes a portion of the mechanical valve portion 48 of the mixed water line 30, the mixed water tee 62, and a portion of the electronic valve portion 50 of the mixed water line 30, and
6. a second mixed water passage 160 operable to fluidly connect the electronic valve 34 and the mixed water outlet 148—as illustrated, the second mixed water passage 160 includes the electronic valve portion 50 of the mixed water line 30, the mixed water tee 62, and a portion of the common portion 52 of the mixed water line 30—as illustrated, a portion of the first mixed water passage 158 is common with a portion of the second mixed water passage 160.
In the illustrated embodiments, the first mixed water passage 158 includes a flow sensor 162. The flow sensor 162 detects whether the mechanical valve 32 is activated. In an exemplary embodiment, the flow sensor 162 is a turbine sensor. The use of a turbine sensor enables the hydraulics module to be mounted horizontally or vertically. However, one of ordinary skill in the art will appreciate that, in certain embodiments, other types of sensors could be used to determine whether the mechanical valve 32 is activated, including, but not limited to, pressure sensors and position sensors.
In the illustrated embodiments, as best shown in
In the illustrated embodiments, as best shown in
The hose bracket 174 positions the wand hose 18 between the mixed water outlet 148 and the inlet of the mounting shank 164 such that a portion of the wand hose 18 extends in a loop 184 between the hose bracket 174 and the inlet of the mounting shank 164. As a result, the hose bracket 174 ensures that the wand hose 18 is properly aligned relative to the hub 14 and the spout 16 through which the wand hose 18 extends and moves. When the wand hose 18 is properly aligned relative to the hub 14 and the spout 16, the wand 20 can be easily pulled away from and returned to the spout 16.
Due to the use of the flow module 64 in conjunction with the hose bracket 174, the flow module 64 can be mounted in multiple locations beneath the mounting surface without affecting the operation of the wand 20. As shown in
To install the hose bracket 174 in the faucet 12, the hose bracket 174 is connected to the wand hose 18 that delivers water from the flow module 64 to the wand 20 (also referred to as the common portion 52 of the mixed water line 30). More specifically, the guide portion 178 of the hose bracket 174 is clamped onto the wand hose 18. Additionally, the hose bracket 174 is connected to the mounting shank 164. More specifically, the mounting portion 176 of the hose bracket 174 is threaded onto the mounting shank 164.
As used herein, “activate a valve” means to move the valve to or maintain the valve in an open position, regardless of the volume or temperature of the flowing water, “deactivate a valve” means to move the valve to a completely closed position, and “trigger a sensor” means the sensor detects a stimulus (e.g., the presence of an object) and sends a signal to activate or deactivate a valve in response to that detection.
During operation of the mechanical valve 32, the user activates and deactivates the mechanical valve 32 using the handle 22. When the user manually moves the handle 22 to an open position, the mechanical valve 32 is activated. While the mechanical valve 32 is activated, the faucet 12 operates as a standard faucet. As with standard faucets, the user can control the volume and temperature of the flowing water by further manually moving the handle 22 in the open position. Additionally, while the mechanical valve 32 is activated, the electronic valve 34 cannot be activated by the user. This can be accomplished by preventing the electronic valve 34 from opening or preventing the toggle sensor 70 and the presence sensor 72 from triggering. When the user manually moves the handle 22 to a closed position, the mechanical valve 32 is deactivated. While the mechanical valve 32 is deactivated, the electronic valve 34 can be activated and deactivated and the toggle sensor 70 and the presence sensor 72 can be triggered by the user.
During operation of the electronic valve 34, the user activates and deactivates the electronic valve 34 using the toggle sensor 70 and/or the presence sensor 72.
When the user triggers the toggle sensor 70 (i.e., when an object enters the toggle zone 74), the electronic valve 34 is activated. In an exemplary embodiment, the user cannot electronically control the volume and temperature of the flowing water. When the user again triggers the toggle sensor 70 (i.e., when the object exits and reenters the toggle zone 74), the electronic valve 34 is deactivated. Successive triggering of the toggle sensor 70 alternately activates and deactivates the electronic valve 34.
Additionally, when the user triggers the presence sensor 72 (i.e., when an object enters the presence zone 76), the electronic valve 34 is activated. In an exemplary embodiment, the user cannot electronically control the volume and temperature of the flowing water. When the user no longer triggers the presence sensor 72 (i.e., when the object exits the presence zone 76), the electronic valve 34 is deactivated.
When reference is made to activating or deactivating a valve “when a sensor is triggered,” the valve may be activated or deactivated immediately upon the sensor triggering or a predetermined period of time after the sensor has triggered. Similarly, when reference is made to activating or deactivating a valve “when an object enters a zone” or “when an object exits a zone,” the valve may be activated or deactivated immediately upon the object entering or exiting the zone or a predetermined period of time after the object has entered or exited the zone.
In an exemplary embodiment, while the electronic valve 34 is activated, the user cannot electronically control the volume and temperature of the flowing water. Instead, the volume and/or temperature of the flowing water are mechanically controlled by mechanical apparatus in the electronic valve portion 40 of the hot water line 26, the electronic valve portion 46 of the cold water line 28, and/or the electronic valve portion 50 of the mixed water line 30. In the illustrated embodiments, the mechanical apparatus includes a mechanical mixing valve 186 in the electronic valve portion 40 of the hot water line 26 and the electronic valve portion 46 of the cold water line 28. In another exemplary embodiment, the mechanical apparatus includes a throttle or choke valve in the electronic valve portion 40 of the hot water line 26 and the electronic valve portion 46 of the cold water line 28. However, one of ordinary skill in the art will appreciate that, in certain embodiments, the faucet 12 could include a mixing and volume controlling electronic valve 34 together with additional sensors and/or a user interface that would enable the user to electronically control the volume and/or temperature of the flowing water.
Due to the use of the electronic valve 34 in conjunction with the mechanical apparatus to mechanically control the volume and/or temperature of the flowing water while the electronic valve 34 is activated, the electronic valve 34 can be in parallel with the mechanical valve 32 while still providing volume and/or temperature control for the electronic valve 34.
One of ordinary skill in the art will now appreciate that the present invention provides an electronic plumbing fixture fitting. Although the present invention has been shown and described with reference to a particular embodiment, equivalent alterations and modifications will occur to those skilled in the art upon reading and understanding this specification. The present invention includes all such equivalent alterations and modifications and is limited only by the scope of the following claims in light of their full scope of equivalents.
This application claims the benefit of U.S. Provisional Application No. 61/607,860, filed Mar. 7, 2012, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3415278 | Yamamoto et al. | Dec 1968 | A |
3450159 | Wilkin | Jun 1969 | A |
3505692 | Forbes | Apr 1970 | A |
3576277 | Blackmon | Apr 1971 | A |
3585652 | Forbes et al. | Jun 1971 | A |
3585653 | Forbes et al. | Jun 1971 | A |
3670167 | Forbes | Jun 1972 | A |
4029121 | Buzzi | Jun 1977 | A |
4141091 | Pulvari | Feb 1979 | A |
4189792 | Veach | Feb 1980 | A |
4237562 | DuPont | Dec 1980 | A |
4258444 | Orszullok | Mar 1981 | A |
4309781 | Lissau | Jan 1982 | A |
4359186 | Kiendl | Nov 1982 | A |
4402095 | Pepper | Sep 1983 | A |
4404697 | Hatcher | Sep 1983 | A |
4420811 | Tarnay et al. | Dec 1983 | A |
4429422 | Wareham | Feb 1984 | A |
4487333 | Pounder et al. | Dec 1984 | A |
4558817 | Kiendl | Dec 1985 | A |
4606085 | Davies | Aug 1986 | A |
4618091 | Buzzi | Oct 1986 | A |
4682626 | Bergmann | Jul 1987 | A |
4682728 | Oudenhoven et al. | Jul 1987 | A |
4688273 | Lyng | Aug 1987 | A |
4688277 | Kakinoki et al. | Aug 1987 | A |
4696428 | Shakalis | Sep 1987 | A |
4697614 | Powers et al. | Oct 1987 | A |
4716605 | Shepherd et al. | Jan 1988 | A |
4735357 | Gregory et al. | Apr 1988 | A |
4742583 | Yoshida et al. | May 1988 | A |
4753265 | Barrett et al. | Jun 1988 | A |
4756030 | Juliver | Jul 1988 | A |
4762273 | Gregory et al. | Aug 1988 | A |
4784303 | Ahad et al. | Nov 1988 | A |
4823414 | Piersimoni et al. | Apr 1989 | A |
4839039 | Parsons et al. | Jun 1989 | A |
4884725 | Ahad et al. | Dec 1989 | A |
4894874 | Wilson | Jan 1990 | A |
4896658 | Yonekubo et al. | Jan 1990 | A |
4909435 | Kidouchi et al. | Mar 1990 | A |
4915347 | Iqbal et al. | Apr 1990 | A |
4921211 | Novak et al. | May 1990 | A |
4945943 | Cogger | Aug 1990 | A |
4955535 | Tsutsui et al. | Sep 1990 | A |
4965894 | Baus | Oct 1990 | A |
4967794 | Tsutsui et al. | Nov 1990 | A |
4968152 | Bergmann | Nov 1990 | A |
4971106 | Tsutsui et al. | Nov 1990 | A |
4974636 | Cogger | Dec 1990 | A |
4981158 | Brondolino et al. | Jan 1991 | A |
4985944 | Shaw | Jan 1991 | A |
4998673 | Pilolla | Mar 1991 | A |
5025516 | Wilson | Jun 1991 | A |
5033508 | Laverty, Jr. | Jul 1991 | A |
5058804 | Yonekubo et al. | Oct 1991 | A |
5060323 | Shaw | Oct 1991 | A |
5085399 | Tsutsui et al. | Feb 1992 | A |
5092560 | Chen | Mar 1992 | A |
5095945 | Jensen | Mar 1992 | A |
5135028 | Rickenbach et al. | Aug 1992 | A |
5139044 | Otten et al. | Aug 1992 | A |
5148735 | Veletovac | Sep 1992 | A |
5160197 | Klose | Nov 1992 | A |
5170361 | Reed | Dec 1992 | A |
5170514 | Weigert | Dec 1992 | A |
5170944 | Shirai | Dec 1992 | A |
5174495 | Eichholz et al. | Dec 1992 | A |
5184642 | Powell | Feb 1993 | A |
5199639 | Kobayashi et al. | Apr 1993 | A |
5199790 | Pawelzik et al. | Apr 1993 | A |
5217035 | Van Marcke | Jun 1993 | A |
5224509 | Tanaka et al. | Jul 1993 | A |
5226629 | Millman et al. | Jul 1993 | A |
5318070 | Surabian | Jun 1994 | A |
5322086 | Sullivan | Jun 1994 | A |
5341839 | Kobayashi et al. | Aug 1994 | A |
5351347 | Kunkel | Oct 1994 | A |
5362026 | Kobayashi et al. | Nov 1994 | A |
5458147 | Mauerhofer | Oct 1995 | A |
5458288 | Mullick et al. | Oct 1995 | A |
5462224 | Enoki et al. | Oct 1995 | A |
5482250 | Kodaira | Jan 1996 | A |
5494077 | Enoki et al. | Feb 1996 | A |
5508510 | Laverty, Jr. et al. | Apr 1996 | A |
5548854 | Bloemer et al. | Aug 1996 | A |
5549273 | Aharon | Aug 1996 | A |
5551630 | Enoki et al. | Sep 1996 | A |
5566702 | Philipp | Oct 1996 | A |
5570869 | Diaz et al. | Nov 1996 | A |
5586746 | Humpert et al. | Dec 1996 | A |
5588636 | Eichholz et al. | Dec 1996 | A |
5594238 | Endruschat et al. | Jan 1997 | A |
5618023 | Eichholz et al. | Apr 1997 | A |
5647530 | Lorch | Jul 1997 | A |
5651384 | Rudrich | Jul 1997 | A |
5694653 | Harald | Dec 1997 | A |
5730165 | Philipp | Mar 1998 | A |
5743511 | Eichholz et al. | Apr 1998 | A |
5758688 | Hamanaka et al. | Jun 1998 | A |
5781942 | Allen et al. | Jul 1998 | A |
5813655 | Pinchott et al. | Sep 1998 | A |
5819336 | Gilliam et al. | Oct 1998 | A |
5829072 | Hirsch et al. | Nov 1998 | A |
5855356 | Fait | Jan 1999 | A |
5862844 | Perrin | Jan 1999 | A |
5904291 | Knapp | May 1999 | A |
5911240 | Kolar et al. | Jun 1999 | A |
5915417 | Diaz et al. | Jun 1999 | A |
5918855 | Hamanaka et al. | Jul 1999 | A |
5921280 | Ericksen et al. | Jul 1999 | A |
5943712 | Van Marcke | Aug 1999 | A |
5961095 | Schrott | Oct 1999 | A |
5984262 | Parsons et al. | Nov 1999 | A |
6003170 | Humpert et al. | Dec 1999 | A |
6059192 | Zosimadis | May 2000 | A |
6067673 | Paese et al. | May 2000 | A |
6076550 | Hiraishi et al. | Jun 2000 | A |
6127671 | Parsons et al. | Oct 2000 | A |
6170799 | Nelson | Jan 2001 | B1 |
6189163 | Van Marcke | Feb 2001 | B1 |
6202980 | Vincent et al. | Mar 2001 | B1 |
6206340 | Paese et al. | Mar 2001 | B1 |
6212697 | Parsons et al. | Apr 2001 | B1 |
6215116 | Van Marcke | Apr 2001 | B1 |
6219859 | Derakhshan | Apr 2001 | B1 |
6250601 | Kolar et al. | Jun 2001 | B1 |
6273394 | Vincent et al. | Aug 2001 | B1 |
6279777 | Goodin et al. | Aug 2001 | B1 |
6283139 | Symonds et al. | Sep 2001 | B1 |
6286764 | Garvey et al. | Sep 2001 | B1 |
6305663 | Miller | Oct 2001 | B1 |
6321785 | Bergmann | Nov 2001 | B1 |
6340032 | Zosimadis | Jan 2002 | B1 |
6360380 | Swart et al. | Mar 2002 | B1 |
6363549 | Humpert et al. | Apr 2002 | B2 |
6381770 | Raisch | May 2002 | B1 |
6388609 | Paese et al. | May 2002 | B2 |
6390125 | Pawelzik et al. | May 2002 | B2 |
6418359 | Wolf et al. | Jul 2002 | B1 |
6431389 | Jerstroem et al. | Aug 2002 | B1 |
6438770 | Hed et al. | Aug 2002 | B1 |
6446875 | Brooks et al. | Sep 2002 | B1 |
RE37888 | Cretu-Petra | Oct 2002 | E |
D463845 | Spangler et al. | Oct 2002 | S |
D464111 | Spangler et al. | Oct 2002 | S |
D464112 | Spangler et al. | Oct 2002 | S |
D464396 | Spangler et al. | Oct 2002 | S |
D464397 | Spangler et al. | Oct 2002 | S |
D464398 | Spangler et al. | Oct 2002 | S |
D464709 | Spangler et al. | Oct 2002 | S |
D465007 | Spangler et al. | Oct 2002 | S |
6461323 | Fowler et al. | Oct 2002 | B2 |
D465264 | Spangler et al. | Nov 2002 | S |
D465554 | Spangler et al. | Nov 2002 | S |
6473917 | Mateina | Nov 2002 | B1 |
6478285 | Bergmann | Nov 2002 | B1 |
6481634 | Zosimadis | Nov 2002 | B1 |
6481983 | Miller | Nov 2002 | B1 |
6509652 | Yumita | Jan 2003 | B2 |
6513787 | Jeromson et al. | Feb 2003 | B1 |
D471962 | Spangler et al. | Mar 2003 | S |
6561481 | Filonczuk | May 2003 | B1 |
6568655 | Paese et al. | May 2003 | B2 |
6598245 | Nishioka | Jul 2003 | B2 |
6619320 | Parsons | Sep 2003 | B2 |
6639209 | Patterson et al. | Oct 2003 | B1 |
6641727 | Aldred et al. | Nov 2003 | B1 |
D484218 | Moore | Dec 2003 | S |
D485888 | Moore | Jan 2004 | S |
6671890 | Nishioka | Jan 2004 | B2 |
6676024 | McNerney et al. | Jan 2004 | B1 |
6688530 | Wack et al. | Feb 2004 | B2 |
6691340 | Honda et al. | Feb 2004 | B2 |
6695281 | Williams, Jr. | Feb 2004 | B2 |
6724873 | Senna Da Silva | Apr 2004 | B2 |
6731209 | Wadlow et al. | May 2004 | B2 |
6734685 | Rudrich | May 2004 | B2 |
6753554 | Gomes et al. | Jun 2004 | B1 |
6770869 | Patterson et al. | Aug 2004 | B2 |
6826455 | Iott et al. | Nov 2004 | B1 |
6854658 | Houghton et al. | Feb 2005 | B1 |
6862754 | DeMarco | Mar 2005 | B1 |
6874535 | Parsons et al. | Apr 2005 | B2 |
6876100 | Yumita | Apr 2005 | B2 |
6879863 | Mueller et al. | Apr 2005 | B2 |
6892952 | Chang et al. | May 2005 | B2 |
6894270 | Bailey | May 2005 | B2 |
6910501 | Marty et al. | Jun 2005 | B2 |
6913203 | DeLangis | Jul 2005 | B2 |
6925999 | Hugghins et al. | Aug 2005 | B2 |
6955333 | Patterson et al. | Oct 2005 | B2 |
6962168 | McDaniel et al. | Nov 2005 | B2 |
6964404 | Patterson et al. | Nov 2005 | B2 |
6968860 | Haenlein et al. | Nov 2005 | B1 |
6993415 | Bauer et al. | Jan 2006 | B2 |
6995670 | Wadlow et al. | Feb 2006 | B2 |
6996863 | Kaneko | Feb 2006 | B2 |
7007915 | Vincent et al. | Mar 2006 | B2 |
7014166 | Wang | Mar 2006 | B1 |
7046163 | Macey | May 2006 | B2 |
7069941 | Parsons et al. | Jul 2006 | B2 |
7075768 | Kaneko | Jul 2006 | B2 |
7076814 | Ostrowski et al. | Jul 2006 | B2 |
7083156 | Jost et al. | Aug 2006 | B2 |
7090154 | Herring | Aug 2006 | B2 |
7104473 | Bosio | Sep 2006 | B2 |
7107631 | Lang et al. | Sep 2006 | B2 |
7150293 | Jonte | Dec 2006 | B2 |
D541907 | Qing | May 2007 | S |
7228874 | Bolderheij et al. | Jun 2007 | B2 |
7232111 | McDaniel et al. | Jun 2007 | B2 |
7240850 | Beck et al. | Jul 2007 | B2 |
7253536 | Fujimoto et al. | Aug 2007 | B2 |
7278624 | Iott et al. | Oct 2007 | B2 |
7308724 | Ho | Dec 2007 | B2 |
7325257 | Kolar et al. | Feb 2008 | B2 |
7325747 | Jonte | Feb 2008 | B2 |
D563908 | Kohler, Jr. et al. | Mar 2008 | S |
7343930 | Rosko | Mar 2008 | B2 |
7396000 | Parsons et al. | Jul 2008 | B2 |
7448553 | Schmitt | Nov 2008 | B2 |
7458520 | Belz et al. | Dec 2008 | B2 |
7464418 | Seggio et al. | Dec 2008 | B2 |
7472433 | Rodenbeck et al. | Jan 2009 | B2 |
7475827 | Schmitt | Jan 2009 | B2 |
7516939 | Bailey | Apr 2009 | B2 |
7537023 | Marty et al. | May 2009 | B2 |
7537195 | McDaniel et al. | May 2009 | B2 |
7558650 | Thornton et al. | Jul 2009 | B2 |
7584898 | Schmitt et al. | Sep 2009 | B2 |
7608936 | Shimizu et al. | Oct 2009 | B2 |
7614096 | Vincent | Nov 2009 | B2 |
7624757 | Schmitt | Dec 2009 | B2 |
7625667 | Marty et al. | Dec 2009 | B2 |
7627909 | Esche | Dec 2009 | B2 |
7631372 | Marty et al. | Dec 2009 | B2 |
7651068 | Bailey | Jan 2010 | B2 |
7669776 | Beck et al. | Mar 2010 | B2 |
7690395 | Jonte et al. | Apr 2010 | B2 |
7690623 | Parsons et al. | Apr 2010 | B2 |
7731154 | Parsons et al. | Jun 2010 | B2 |
7743782 | Jost | Jun 2010 | B2 |
7766026 | Boey | Aug 2010 | B2 |
7784481 | Kunkel | Aug 2010 | B2 |
7802733 | Schmitt | Sep 2010 | B2 |
7806141 | Marty et al. | Oct 2010 | B2 |
RE42005 | Jost et al. | Dec 2010 | E |
7851094 | Burke et al. | Dec 2010 | B2 |
7857234 | Daley et al. | Dec 2010 | B2 |
7871057 | Shimizu et al. | Jan 2011 | B2 |
7889187 | Freier et al. | Feb 2011 | B2 |
7919877 | Shimizu et al. | Apr 2011 | B2 |
7921480 | Parsons et al. | Apr 2011 | B2 |
7938339 | Robert et al. | May 2011 | B2 |
7946504 | Shapira et al. | May 2011 | B2 |
7952233 | Bayley et al. | May 2011 | B2 |
7956480 | Onodera et al. | Jun 2011 | B2 |
7979928 | Allen, Jr. et al. | Jul 2011 | B2 |
7997301 | Marty et al. | Aug 2011 | B2 |
8006712 | Boey | Aug 2011 | B2 |
8028355 | Reeder et al. | Oct 2011 | B2 |
8049155 | Weigen | Nov 2011 | B2 |
8089473 | Koottungal | Jan 2012 | B2 |
8104113 | Rodenbeck et al. | Jan 2012 | B2 |
8104741 | Weigen | Jan 2012 | B2 |
8113483 | Bayley et al. | Feb 2012 | B2 |
8118240 | Rodenbeck et al. | Feb 2012 | B2 |
8127782 | Jonte et al. | Mar 2012 | B2 |
8132778 | Connors | Mar 2012 | B2 |
8162236 | Rodenbeck et al. | Apr 2012 | B2 |
8171578 | Tsujita et al. | May 2012 | B2 |
8208255 | Enomoto et al. | Jun 2012 | B2 |
8212994 | Liu | Jul 2012 | B2 |
8243040 | Koottungal | Aug 2012 | B2 |
8250680 | Murata et al. | Aug 2012 | B2 |
8256039 | Morotomi et al. | Sep 2012 | B2 |
8272077 | Hashimoto et al. | Sep 2012 | B2 |
8274036 | Weigen | Sep 2012 | B2 |
8276878 | Parsons et al. | Oct 2012 | B2 |
8281422 | Chen et al. | Oct 2012 | B2 |
8296875 | Loberger et al. | Oct 2012 | B2 |
8317110 | Aoyagi et al. | Nov 2012 | B2 |
8333361 | McTargett | Dec 2012 | B2 |
8337033 | Kaneda et al. | Dec 2012 | B2 |
8355822 | Jonte et al. | Jan 2013 | B2 |
8364546 | Yenni et al. | Jan 2013 | B2 |
8365767 | Davidson et al. | Feb 2013 | B2 |
8376313 | Burke et al. | Feb 2013 | B2 |
8381329 | Bayley et al. | Feb 2013 | B2 |
8384032 | Chen et al. | Feb 2013 | B2 |
8387171 | Farber et al. | Mar 2013 | B2 |
8408517 | Jonte et al. | Apr 2013 | B2 |
8413952 | Lang et al. | Apr 2013 | B2 |
8418993 | Chen | Apr 2013 | B2 |
8421020 | Chen et al. | Apr 2013 | B2 |
8424569 | Marty et al. | Apr 2013 | B2 |
8430118 | Xiong | Apr 2013 | B2 |
8434172 | Nowak et al. | May 2013 | B2 |
8438672 | Reeder et al. | May 2013 | B2 |
8461705 | Kuroishi et al. | Jun 2013 | B2 |
8469056 | Marty et al. | Jun 2013 | B2 |
8479324 | Chen et al. | Jul 2013 | B2 |
8482409 | Sawaski | Jul 2013 | B2 |
8496025 | Parsons et al. | Jul 2013 | B2 |
8505126 | Morotomi et al. | Aug 2013 | B2 |
8516628 | Conroy | Aug 2013 | B2 |
8528579 | Jonte et al. | Sep 2013 | B2 |
8534318 | Kanemaru et al. | Sep 2013 | B2 |
8549677 | Weigen et al. | Oct 2013 | B2 |
8552384 | Zhang et al. | Oct 2013 | B2 |
8555427 | Stauber et al. | Oct 2013 | B2 |
8561225 | Wilson et al. | Oct 2013 | B2 |
8561626 | Sawaski et al. | Oct 2013 | B2 |
8567430 | Allen et al. | Oct 2013 | B2 |
8572772 | Wolf et al. | Nov 2013 | B2 |
8576384 | Liu | Nov 2013 | B2 |
8612057 | Murata et al. | Dec 2013 | B2 |
8613419 | Rodenbeck et al. | Dec 2013 | B2 |
8614414 | Davidson et al. | Dec 2013 | B2 |
8621676 | Morotomi et al. | Jan 2014 | B2 |
8625084 | Tang et al. | Jan 2014 | B2 |
8627844 | Allen et al. | Jan 2014 | B2 |
8635717 | Wilson et al. | Jan 2014 | B2 |
8646476 | Thomas et al. | Feb 2014 | B2 |
8683625 | Straub | Apr 2014 | B1 |
8686344 | Weigen | Apr 2014 | B2 |
8713721 | Zhang et al. | May 2014 | B2 |
8729477 | Tang et al. | May 2014 | B2 |
8766195 | Tang et al. | Jul 2014 | B2 |
8776817 | Sawaski et al. | Jul 2014 | B2 |
8820705 | Davidson et al. | Sep 2014 | B2 |
8827239 | Chen | Sep 2014 | B2 |
8827240 | Chen | Sep 2014 | B2 |
20020019709 | Segal | Feb 2002 | A1 |
20030146307 | Herring | Aug 2003 | A1 |
20040041033 | Kemp | Mar 2004 | A1 |
20040155116 | Wack et al. | Aug 2004 | A1 |
20050205818 | Bayley et al. | Sep 2005 | A1 |
20050236594 | Lilly et al. | Oct 2005 | A1 |
20050253102 | Boilen | Nov 2005 | A1 |
20060130907 | Marty et al. | Jun 2006 | A1 |
20060138246 | Stowe et al. | Jun 2006 | A1 |
20060145111 | Lang et al. | Jul 2006 | A1 |
20060186215 | Logan | Aug 2006 | A1 |
20060202142 | Marty et al. | Sep 2006 | A1 |
20060214016 | Erdely et al. | Sep 2006 | A1 |
20060231637 | Schmitt | Oct 2006 | A1 |
20060231782 | Iott et al. | Oct 2006 | A1 |
20060253973 | Brooks | Nov 2006 | A1 |
20070028974 | Herring et al. | Feb 2007 | A1 |
20070069168 | Jonte | Mar 2007 | A1 |
20070069169 | Lin | Mar 2007 | A1 |
20070138421 | Gibson et al. | Jun 2007 | A1 |
20070204925 | Bolderheij et al. | Sep 2007 | A1 |
20070246550 | Rodenbeck et al. | Oct 2007 | A1 |
20080045794 | Belson | Feb 2008 | A1 |
20080256494 | Greenfield | Oct 2008 | A1 |
20080283785 | Kunkel | Nov 2008 | A1 |
20090000024 | Louis et al. | Jan 2009 | A1 |
20090114036 | Dhulipudi et al. | May 2009 | A1 |
20090154524 | Girelli | Jun 2009 | A1 |
20090188995 | Onodera et al. | Jul 2009 | A1 |
20090241248 | Vollmar et al. | Oct 2009 | A1 |
20100012194 | Jonte et al. | Jan 2010 | A1 |
20100096017 | Jonte et al. | Apr 2010 | A1 |
20100108165 | Rodenbeck et al. | May 2010 | A1 |
20100123013 | Beck et al. | May 2010 | A1 |
20100125946 | Meisner et al. | May 2010 | A1 |
20100132112 | Bayley et al. | Jun 2010 | A1 |
20100200789 | Connors | Aug 2010 | A1 |
20110005619 | Kanemaru et al. | Jan 2011 | A1 |
20110139282 | Loeck et al. | Jun 2011 | A1 |
20110169786 | Freier et al. | Jul 2011 | A1 |
20110185493 | Chen | Aug 2011 | A1 |
20110186135 | Hanna et al. | Aug 2011 | A1 |
20110186136 | Hanna et al. | Aug 2011 | A1 |
20110186137 | Hanna et al. | Aug 2011 | A1 |
20110186138 | Hanna et al. | Aug 2011 | A1 |
20110186161 | Chen | Aug 2011 | A1 |
20110284111 | Marty et al. | Nov 2011 | A1 |
20110302708 | Parsons et al. | Dec 2011 | A1 |
20120055557 | Belz et al. | Mar 2012 | A1 |
20120097874 | Rodenbeck et al. | Apr 2012 | A1 |
20120131744 | Bayley et al. | May 2012 | A1 |
20120139479 | Yun | Jun 2012 | A1 |
20120145249 | Rodenbeck et al. | Jun 2012 | A1 |
20120160349 | Jonte et al. | Jun 2012 | A1 |
20120174306 | Chen et al. | Jul 2012 | A1 |
20120227849 | Rodenbeck et al. | Sep 2012 | A1 |
20120246815 | Lin et al. | Oct 2012 | A1 |
20120267493 | Meehan et al. | Oct 2012 | A1 |
20120318364 | Sawaski et al. | Dec 2012 | A1 |
20130062422 | Marty et al. | Mar 2013 | A1 |
20130062437 | Hanna et al. | Mar 2013 | A1 |
20130067658 | Loberger et al. | Mar 2013 | A1 |
20130075483 | Marty et al. | Mar 2013 | A1 |
20130098489 | Meehan et al. | Apr 2013 | A1 |
20130100033 | Yuan et al. | Apr 2013 | A1 |
20130124247 | Yenni et al. | May 2013 | A1 |
20130145535 | Parsons et al. | Jun 2013 | A1 |
20130146160 | Davidson et al. | Jun 2013 | A1 |
20130159640 | Lu et al. | Jun 2013 | A1 |
20130160202 | Murata et al. | Jun 2013 | A1 |
20130162969 | Liu | Jun 2013 | A1 |
20130167953 | Kuroishi et al. | Jul 2013 | A1 |
20130170839 | Yuan | Jul 2013 | A1 |
20130185860 | Miyake et al. | Jul 2013 | A1 |
20130185861 | Matsumoto et al. | Jul 2013 | A1 |
20130186196 | Veros et al. | Jul 2013 | A1 |
20130205487 | Yagi et al. | Aug 2013 | A1 |
20130219614 | Bayley et al. | Aug 2013 | A1 |
20130239321 | Reeder et al. | Sep 2013 | A1 |
20130248617 | Sawaski et al. | Sep 2013 | A1 |
20130265270 | Tempas et al. | Oct 2013 | A1 |
20130265562 | Tang et al. | Oct 2013 | A1 |
20130276911 | Meehan et al. | Oct 2013 | A1 |
20130291950 | Sawaski | Nov 2013 | A1 |
20130312856 | Huffington et al. | Nov 2013 | A1 |
20130340158 | Stauber et al. | Dec 2013 | A1 |
20140000733 | Jonte et al. | Jan 2014 | A1 |
20140020168 | Blake et al. | Jan 2014 | A1 |
20140026308 | Wilson et al. | Jan 2014 | A1 |
20140026980 | Esche et al. | Jan 2014 | A1 |
20140034834 | Jian et al. | Feb 2014 | A1 |
20140041109 | Stauber et al. | Feb 2014 | A1 |
20140047629 | Stauber et al. | Feb 2014 | A1 |
20140053906 | Esche et al. | Feb 2014 | A1 |
20140053925 | Esche et al. | Feb 2014 | A1 |
20140054478 | Esche | Feb 2014 | A1 |
20140069520 | Esche et al. | Mar 2014 | A1 |
20140090718 | Allen et al. | Apr 2014 | A1 |
20140101836 | Wilson et al. | Apr 2014 | A1 |
20140102555 | Allen et al. | Apr 2014 | A1 |
20140109984 | Rodenbeck et al. | Apr 2014 | A1 |
20140116529 | Thomas et al. | May 2014 | A1 |
20140117265 | Cochart et al. | May 2014 | A1 |
20140123378 | Luettgen et al. | May 2014 | A1 |
20140143948 | Cochart | May 2014 | A1 |
20140158920 | Belz et al. | Jun 2014 | A1 |
20140159749 | Belz et al. | Jun 2014 | A1 |
20140161321 | Belz | Jun 2014 | A1 |
20140183279 | Hanna et al. | Jul 2014 | A1 |
20140229023 | Bomholt et al. | Aug 2014 | A1 |
20140231450 | Rosko et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
10237943 | Feb 2004 | DE |
0763368 | Mar 1997 | EP |
58028076 | Feb 1983 | JP |
04102638 | Apr 1992 | JP |
06257198 | Sep 1994 | JP |
9117377 | Nov 1991 | WO |
2007059051 | May 2007 | WO |
2009095879 | Aug 2009 | WO |
Entry |
---|
International Search Report for International App. No. PCT/US2013/029650 dated May 13, 2013 (3 pages). |
Written Opinion of the International Searching Authority for International App. No. PCT/US2013/029650 dated May 13, 2013 (11 pages). |
Extended European Search Report issued by the European Patent Office for European App. No. 13 757 770.6 dated May 18, 2016 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20130248620 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61607860 | Mar 2012 | US |