The present disclosure is generally related to braking and/or safety systems and, more specifically, an electronic safety actuator for an elevator.
Some machines, such as an elevator system, include a safety system to stop the machine when it rotates at excessive speeds or the elevator cab travels at excessive speeds. Conventional safety systems may include machine single braking surface for slowing the over rotation or over speed condition. Machines that are large and/or operate at elevate speeds may require additional braking surfaces to handle the additional load and speed while operating reliably. However, when a second, or even further additional, braking surfaces are added, it becomes important to synchronize the braking surfacing to improve durability, braking performance and other overall performance factors within the system. There is therefore a need for a more robust safety system for safety systems in which more than one braking surface is employed.
In an embodiment described herein is a braking device for an elevator system including a car and a guide rail, including a safety brake disposed on the car and adapted to be wedged against the guide rail when moved from a non-braking state into a braking state and an engagement mechanism having an engaging position and a nonengaging position, the engagement mechanism operably coupled to the safety brake and configured to move the safety brake between the non-braking state and braking state when the engagement mechanism moves between the nonengaging position and the engaging position. The braking device also includes a first magnetic brake pad and a second magnetic brake pad, the first magnetic brake pad and the second magnetic brake pad disposed in opposing directions adjacent to the guide rail and configured to move between the non-engaging position and the engaging position, the first magnetic brake pad and the second magnetic brake pad operably coupled to the engagement mechanism, wherein the engagement mechanism is configured such that movement of the first magnetic brake pads into the engaging position causes movement of the second magnetic brake pad into the engaging position.
In addition to one or more of the features described above, or as an alternative, further embodiments may include a first electromagnetic actuator and a second electromagnetic actuator, wherein the first electromagnetic actuator is configured to electromagnetically move the first magnetic brake pad between the non-engaging position and engaging position and the second electromagnetic actuator configured to electromagnetically move the second magnetic brake pad between the non-engaging position and engaging position.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that at least one of the first electromagnetic actuator and the second electromagnetic actuator is in operable communication with a controller, the controller configured to control the electricity supplied to the at least one of the first electromagnetic actuator and the second electromagnetic actuator.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the at least one of the first electromagnetic actuator and the second electromagnetic actuator is configured to move the first magnetic brake pad and second magnetic brake pad into the engaging position upon at least one of a reduction, an elimination, and an application of the electricity supplied by the controller.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the at least one of the first electromagnetic actuator and the second electromagnetic actuator is configured to return the first magnetic brake pad and the second magnetic brake pad into the non-engaging position upon reversal of the electricity supplied by the controller.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the elevator car is moved to align the first magnetic brake pad and the second magnetic brake pad with the first electromagnetic actuator and second electromagnetic actuator respectively to reset the safety brake from the braking state to the non-braking state, wherein the engagement mechanism is moved between the engaging position to the non-engaging position.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the engagement mechanism is configured to synchronize the movement of the first magnetic brake pad and the second magnetic brake pad between the non-engaging position and the engaging position.
In addition to one or more of the features described above, or as an alternative, further embodiments may include the engagement mechanism is a four-bar linkage. Moreover, the four-bar linkage may be comprised of four substantially equally sized links operably connected by pivots, wherein two opposing pivots are each attached to at least one of the first magnetic brake pad and the second magnetic brake pad and at least one of a third pivot and fourth pivot pivots are horizontally constrained and operably attached to the safety brake, wherein movement of at least one of the first magnetic brake pad and the second magnetic brake pad from the non-engaging position to the engaging position, and thereby the attached two opposing pivots, operate at least one of the third pivot and the forth pivot to move to cause the safety brake to move from the non-braking state into the braking state.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the engagement mechanism is a plate. Moreover still, in addition, the plate may be comprised of three collinear pivots with two opposing pivots equidistant from a central pivot, wherein two opposing pivots operating in slots in the plate are each attached to one of the first magnetic brake pad and the second magnetic brake pads respectively, and a third pivot is are horizontally constrained and operably attached to the safety brake, wherein movement of at least one of the first magnetic brake pads and second magnetic brake pad from the non-engaging position to the engaging position, and thereby the attached two opposing pivots, causes plate to rotate and the third pivot to move to cause the safety brake to move from the non-braking state into the braking state.
In another embodiment, described herein is a braking device for an elevator system including a car and a guide rail. The braking device including a safety brake disposed on the car and adapted to be wedged against the guide rail when moved from a non-braking state into a braking state and a magnetic brake pad operably coupled an engagement mechanism and disposed adjacent to the guide rail, the magnetic brake pad configured to move between an non-engaging position and an engaging position, the magnetic brake pad, when in the engaging position, causing the engagement mechanism to move the safety brake from the non-braking state into the braking state.
In addition to one or more of the features described above, or as an alternative, further embodiments may include an electromagnetic actuator, wherein the electromagnetic actuator is configured to hold the magnetic brake pad in the non-engaging position.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the electromagnetic actuator is in operable communication with a controller, the controller configured to control the electricity supplied to the electromagnetic actuator.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the electromagnetic actuator is configured to move the magnetic brake pad into the engaging position upon at least one of the application of, the reduction of, and the elimination of electricity supplied by the controller.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the electromagnetic actuator is configured to return the magnetic brake pad into the non-engaging position upon reversal of the electricity supplied by the controller.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the elevator car is moved to align the magnetic brake pad with the electromagnetic actuator to reset the safety brake from the braking state to the non-braking state, wherein the engagement mechanism is moved between the engaging position to the non-engaging position.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the engagement mechanism is configured to ensure the movement of a second magnetic brake pad between a non-engaging position and an engaging position.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the engagement mechanism is a two-bar linkage.
In yet another embodiment described herein is an elevator system including a hoistway with a guide rail disposed in the hoistway and a car operably coupled to the guide rail by a car frame for upward and downward travel in the hoistway. The elevator system also includes a safety brake disposed on the car and adapted to be wedged against the guide rail when moved from a non-braking state into a braking state, an engagement mechanism operably coupled to the safety brake and configured to move the safety brake between the non-braking state and braking state, and a first magnetic brake pad and a second magnetic brake pad, the first magnetic brake pad and the second magnetic brake pad disposed in opposing directions adjacent to the guide rail and configured to move between the non-engaging position and the engaging position, the first magnetic brake pad and the second magnetic brake pad operably coupled to the engagement mechanism, wherein the engagement mechanism is configured such that movement of the first magnetic brake pads into the engaging position causes movement of the second magnetic brake pad into the engaging position.
The embodiments and other features, advantages and disclosures contained herein, and the manner of attaining them, will become apparent and the present disclosure will be better understood by reference to the following description of various exemplary embodiments of the present disclosure taken in conjunction with the accompanying drawings, wherein:
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
The following description is merely illustrative in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. As used herein, the term controller refers to processing circuitry that may include an application specific integrated circuit (ASIC), an electronic circuit, an electronic processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable interfaces and components that provide the described functionality.
Additionally, the term “exemplary” is used herein to mean “serving as an example, instance or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. The terms “at least one” and “one or more” are understood to include any integer number greater than or equal to one, i.e. one, two, three, four, etc. The terms “a plurality” are understood to include any integer number greater than or equal to two, i.e. two, three, four, five, etc. The term “connection” can include an indirect “connection” and a direct “connection”.
As shown and described herein, various features of the disclosure will be presented. Various embodiments may have the same or similar features and thus the same or similar features may be labeled with the same reference numeral, but preceded by a different first number indicating the figure to which the feature is shown. Thus, for example, element “a” that is shown in Figure X may be labeled “Xa” and a similar feature in Figure Z may be labeled “Za.” Although similar reference numbers may be used in a generic sense, various embodiments will be described and various features may include changes, alterations, modifications, etc. as will be appreciated by those of skill in the art, whether explicitly described or otherwise would be appreciated by those of skill in the art.
In the elevator system 10 shown in
Mechanical speed governor systems are being replaced in some elevators by electronic systems. Existing electronic safety actuators mainly employ primarily asymmetric safety brake configurations. These devices typically have a single sliding wedge forceably engaging the elevator guide rail 20 and are usually employed for low and mid speed applications. However, for high speed elevator systems, symmetric safety brakes may become necessary. To this end, as described herein is an electronic elevator safety actuation device 40 that is suitable for actuating and resetting symmetric safety brakes 24 that have two sliding wedges to engage the guide rail 20 of the elevator system 10.
Continuing with
Turning now to
Continuing with
In another embodiment, if operation of the safety brake is required, the controller is configured to reduce or eliminate the holding force between the magnetic brake pads 44a and 44b and the electromagnetic actuator 42a, 42b by reducing the amount of electrical energy supplied to the electromagnetic actuator 42a, 42b under selected conditions and/or applying electricity to create a repulsive force between each electromagnetic actuator 42a, 42b and the respective magnetic brake pads 44a and 44b. It will be appreciated that while the engagement and disengagement of the safety actuation device 40 is described with respect to employing electromagnetic actuators 42a and 42b, other forms of actuation are possible and envisioned. For example, a mechanical mechanism such as springs, latches, control arms, pneumatics and the like could be used to move the magnetic brake pads 44a, 44b between the nonengaging and engaging positions. In particular, for example a spring with a release mechanism could be used to propel the magnetic brake pads 44a, 44b from the nonengaging position, to an engaging position where they would adhere to the guide rail 20.
Continuing with
In operation, when the electromagnetic actuator(s) 42a, 42b are commanded to actuate the safety brake 24, the magnetic brake pads 44a and 44b move horizontally toward the guide rail 20 in the direction A-A′ as depicted, and in turn magnetically attach to the guide rail 20. As the magnetic brake pads 44a and 44b move, the pivot points 64a and 64b also move horizontally toward the guide rail 20. This motion is transferred through the linkages 62a-62d causing pivots 64c and 64d to move in opposite directions vertically in slot 52 with pivot 64c moving vertically upward relative to the pivots 64a and 64b, while the pivot 64d moving vertically downward relative to the pivots 64a and 64b. The attachment of the magnetic brake pads 44a and 44b to the guide rail 20 results in the slowing of the magnetic brake pads 44a and 44b on the guide rail 20 and through the linkages 62a-d and pivots 64a-d pulling the linkage 57 and rod 59 relative to motion of the elevator car 16 and thereby engaging the safety brake 24.
To reset the safety brake 24 and safety actuation device 40 after the safety brake 24 has been engaged, the elevator car 16 is moved upward to align the electromagnetic actuators 42a, 42b with the magnetic brake pads 44a and 44b. Once aligned, electrical current is applied to each electromagnetic actuator 42a, 42b in the opposite direction (opposite to that used to engage) to create an attractive force between the magnetic brake pads 44a and 44b and the respective electromagnetic actuator 42a, 42b overcoming the magnetic attraction of the magnetic brake pads 44a and 44b to the guide rail 20. Advantageously, it will be appreciated that if one electromagnetic actuator is inoperable, the engagement mechanism 60 employing the four linkages 62a-62d and pivots 64a-64d to facilitate both magnetic brake pads 44a and 44b being lifted off the guide rail 20. In particular, if, when the electromagnetic actuator 42b in this example, on the right, is commanded to reset, the magnetic brake pad 44b moves horizontally away from the guide rail 20 opposite direction A′. As the magnetic brake pad 44b moves, the pivot point 64b also moves horizontally away from the guide rail 20. This motion is transferred through the linkages 62a-62d causing pivots 64c and 64d to move toward each other vertically with pivot 64c moving vertically downward relative to the pivots 64a and 64b, while the pivot 64d is moving vertically upward relative to the pivots 64a and 64b. The vertical motion of pivots 64c and 64d through the linkages 62a and 62c will force the motion of pivot 64a to the left away from the guide rail 20. The detachment of the magnetic brake pads 44a and 44b from the guide rail 20 and reattachment to the respective electromagnetic actuator 42a, 42b results in the magnetic brake pads 44a and 44b being returned to the default position and once again ready for reengagement.
In another embodiment, the motion of the elevator car 16 relative to the magnetic brake pads 44a and 44b and safety brake 24 may be small. In this embodiment, to reset the safety brake 24 and safety actuation device 40 after the safety brake 24 has been engaged. Minimal alignment is needed between the electromagnetic actuators 42a, 42b and the magnetic brake pads 44a and 44b. Therefore in this embodiment, an electrical current is applied to each electromagnetic actuator 42a, 42b in the opposite direction (opposite to that used to engage) to create an attractive force between the magnetic brake pads 44a and 44b and the respective electromagnetic actuator 42a, 42b overcoming the magnetic attraction of the magnetic brake pads 44a and 44b to the guide rail 20. Advantageously, as with earlier embodiments, it will be appreciated that if one electromagnetic actuator is inoperable, the engagement mechanism 60 employing the four linkages 62a-62d and pivots 64a-64d to facilitate both magnetic brake pads 44a and 44b being lifted off the guide rail 20.
Advantageously with this embodiment and the engagement mechanism comprised of four linkages 62a-62d and four pivots 64a-64d permits both the synchronization of engagement of the magnetic brakes 44a and 44b and the reset or disengagement with either electromagnetic actuator 42a, 42b. That is, an input from either electromagnetic actuator will set in motion both magnetic brake pads 44a and 44b. In addition, any differences, commonly referred to as synchronization errors, between the commands to the electromagnetic actuator 42 or the response of the electromagnetic actuator 42a, 42b will be minimized because the 4-bar configuration of linkages 62a-62d and the connections to the two magnetic brake pads 44a and 44b. For example synchronization errors might include any difference between the electromagnetic actuators 42a, 42b electrical characteristics or response times, differences in the current commands, delay, magnetic differences between the magnetic brake pads 44a and 44b, friction, fabrication tolerances, and the like. In addition, advantageously, this configuration also ensures that both magnetic brake pads 44a and 44b are forced to attach to the guide rail 20 on engagement and detach from the guide rail 20 on disengagement, even if one electromagnetic actuator 42a, 42b becomes inoperative. It should be appreciated that the described embodiment is best suited to placement of the housing 50 and more particularly the placement of the electromagnetic actuators 42a, 42b such that they are be aligned horizontally. That is, so that the magnetic brake pads 44a and 44b and the pivots 64a and 64b align horizontally and likewise the pivots 64c and 64d align vertically and substantially parallel with the guide rail 20. However, other configurations are possible. A configuration employing electromagnetic actuators and magnetic brake pads 44a and 44b not horizontally aligned is addressed in another embodiment herein.
Turning now to
In operation, as described above, when an electromagnetic actuator 42a, 42b is commanded to actuate the safety brake 24, the magnetic brake pads 44a and 44b move horizontally toward the guide rail 20, and in turn magnetically attach to the guide rail 20. As the magnetic brake pads 44a and 44b move, the pivot points 164a and 164b also move horizontally toward the guide rail 20 as described above. This motion is transferred through the linkages 162c and 162d causing pivot 164d to move vertically in slot 52. The attachment of the magnetic brake pads 44a and 44b to the guide rail 20 results in the slowing of the magnetic brake pads 44a and 44b on the guide rail 20 and through the linkages 162c,d and pivots 164d pulling the linkage 57 relative to motion of the elevator car 16 and thereby engaging the safety brake 24. Advantageously, in this embodiment, the mechanism is simpler with only two linkages 162c and 162d and three pivots. This embodiment would permit variations in the dimensions and geometry of the linkages 162c and 162d.
To reset the safety 24 and safety actuation device 40 when employing the engagement mechanism 160 of this embodiment after the safety brake 24 had been engaged operation is similar to above, with some distinctions. Once again, the elevator car 16 is moved upward to align the electromagnetic actuator(s) 42 with the magnetic brake pads 44a and 44b. Once aligned, electricity is applied to each electromagnetic actuator 42a, 42b to overcome the magnetic attraction of the magnetic brake pads 44a and 44b to the guide rail 20 for them to reattach to the respective electromagnetic actuator 42a, 42b. Advantageously, it will be appreciated that in this embodiment each of the actuators 42a, 42b is completely independent and the magnetic brake pads 44a and 44b operate independent of one another. The detachment of the magnetic brake pads 44a and 44b from the guide rail 20 and reattachment to the respective electromagnetic actuator 42a, 42b results in the magnetic brake pads 44a and 44b being returned to the default position and once again ready for reengagement.
In another embodiment, the motion of the elevator car 16 relative to the magnetic brake pads 44a and 44b and safety brake 24 may be small. In this embodiment, to reset the safety brake 24 and safety actuation device 40 after the safety brake 24 has been engaged. Minimal alignment is needed between the electromagnetic actuators 42a, 42b and the magnetic brake pads 44a and 44b. Therefore in this embodiment, an electrical current is applied to each electromagnetic actuator 42a, 42b in the opposite direction (opposite to that used to engage) to create an attractive force between the magnetic brake pads 44a and 44b and the respective electromagnetic actuator 42a, 42b overcoming the magnetic attraction of the magnetic brake pads 44a and 44b to the guide rail 20.
Turning now to
In the previous embodiments, the configuration of the safety actuators 42a, 42b was substantially aligned in the horizontal plane, i.e., in the same horizontal plane and opposing directions. In this embodiment a different scheme is employed where the electromagnetic actuators 42a, 42b are not aligned horizontally. That is, as depicted in the figure the electromagnetic actuator 42a on the left is horizontally above the electromagnetic actuator 42b on the right. Furthermore, more particularly, the pivot 264a is above the pivot 264d and the pivot 264b is below the pivot 264d, therefore, the magnetic brake pads 44a and 44b are also not aligned horizontally with magnetic brake pad 44a being above magnetic brake pad 44b. It will be appreciated that the opposite configuration is equally possible.
Once again, in an embodiment, in operation, when an electromagnetic actuator 42 is commanded to actuate the safety brake 24, the magnetic brake pads 44a and 44b move horizontally toward the guide rail 20 as described in detail earlier, and in turn magnetically attach to the guide rail 20. As the magnetic brake pads 44a and 44b move, the pivot points 264a and 264b also move horizontally toward the guide rail 20. This motion is translated by the plate 265 rotating about the pivot 264d. As with the earlier embodiment, the attachment of the magnetic brake pads 44a and 44b to the guide rail 20 results in the slowing of the magnetic brake pads 44a and 44b on the guide rail 20 and through the pivot 264d pulling the linkage 57 relative to motion of the elevator car 16 and thereby engaging the safety brake 24. It will be appreciated that while the engagement mechanism 260 in this embodiment is described as a plate, it is only for the convenience of description. Any configuration is possible provided it includes the central pivot 264d and two slots 266 configured to permit the horizontal motion of the magnetic brake pads 44a and 44b and can couple force of the magnetic brake pads 44a and 44b when attached to the guide rail 20 to the linkage 57 to pull in the safety brake 24. For example, while the plate 265 is depicted as circular it could be any shape including a simple rectangle. The only requirement is that the slots and center pivot be collinear and that the slots be long enough to permit the motion of the magnetic brake pads 44a and 44b to move to the guide rail 20. A disk is depicted for ease of manufacturing. It will be apparent, that the plate 265, and slots 266 needs to be sized as a function of the displacement between the electromagnetic actuators 42a, 42b. Advantageously, in this embodiment, the use of the plate 265 with the central pivot 264d permits synchronization between the inputs of the two electromagnetic actuators 42a, 42b. That is, an input from either electromagnetic actuator 42 will set in motion both magnetic brake pads 44a and 44b as described above. The synchronization errors between the commands to the respective electromagnetic actuator(s) 42a, 42b or their response will be minimized because the linkage of the plate between the two magnetic brake pads 44a and 44b. In addition, advantageously, this configuration also ensures that both magnetic brake pads 44a and 44b are forced to attach to the guide rail 20 on engagement even if one electromagnetic actuator 42a, 42b becomes inoperative.
To reset the safety brake 24 and safety actuation device 40 after the safety brake 24 has been engaged, the elevator car 16 is moved upward to align the respective electromagnetic actuator 42 with the magnetic brake pads 44a and 44b as described earlier. Once aligned, electrical current is applied to each electromagnetic actuator 42a, 42b in the opposite direction (opposite to that used to engage) to create an attractive force between the magnetic brake pads 44a and 44b and the respective electromagnetic actuator 42a, 42b overcoming the magnetic attraction of the magnetic brake pads 44a and 44b to the guide rail 20. Advantageously, it will be appreciated that if one electromagnetic actuator is inoperable, the engagement mechanism 260 employing plate 265 and pivots 264a, 264b, and 264d to cause the both magnetic brakes 44a and 44b to be lifted off the guide rail 20. In particular, if, when the electromagnetic actuator 42a, 42b in this example on the right is commanded to reset, the magnetic brake 44b moves horizontally away from the guide rail 20 opposite direction A′. As the magnetic brake 44b moves, the pivot point 264b also moves horizontally away from the guide rail 20. This motion is transferred through the rotation of the plate 265 about pivot 264d causing pivot 264a to move to the left away from the guide rail 20. The detachment of the magnetic brakes 44a and 44b from the guide rail 20 and reattachment to the respective electromagnetic actuator 42a, 42b results in the magnetic brakes 44a and 44b being returned to the default position and once again ready for reengagement.
In another embodiment, the motion of the elevator car 16 relative to the magnetic brake pads 44a and 44b and safety brake 24 may be small. In this embodiment, to reset the safety brake 24 and safety actuation device 40 after the safety brake 24 has been engaged. Minimal alignment is needed between the electromagnetic actuators 42a, 42b and the magnetic brake pads 44a and 44b. Therefore in this embodiment, an electrical current is applied to each electromagnetic actuator 42a, 42b in the opposite direction (opposite to that used to engage) to create an attractive force between the magnetic brake pads 44a and 44b and the respective electromagnetic actuator 42a, 42b overcoming the magnetic attraction of the magnetic brake pads 44a and 44b to the guide rail 20. Advantageously, as with earlier embodiments, it will be appreciated that if one electromagnetic actuator is inoperable, the engagement mechanism 260 employing the plate 265 with slots 266 and pivots 264a, 264b, and 264d facilitate both magnetic brake pads 44a and 44b being lifted off the guide rail 20.
Advantageously with this embodiment and the engagement mechanism comprised of a simple plate 265 with two slots 266 and the three pivots 264a, 264b, and 264d permits both the synchronization of engagement of the magnetic brakes 44a and 44b and the reset or disengagement with either electromagnetic actuator 42a, 42b. This configuration requires that the housing 50 and more particularly the placement of the electromagnetic actuators 42a, 42b be displaced in different horizontal plane. That is, so that the magnetic brakes 44a and 44b and the pivots 264a and 264b are not aligned horizontally.
Once again, it will be appreciated that while the engagement and disengagement of the safety actuation device 40 is described with respect to employing electromagnetic actuators 42a and 42b, other forms of actuation are possible and envisioned. For example, a mechanical mechanism such as springs, latches, control arms, pneumatics and the like could be used to move the magnetic brake pads 44a, 44b between the nonengaging and engaging positions. In particular, for example a spring with a release mechanism could be used to propel the magnetic brake pads 44a, 44b from the nonengaging position, to an engaging position where they would adhere to the guide rail 20.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.