Electronic smoking article and improved heater element

Information

  • Patent Grant
  • 10383371
  • Patent Number
    10,383,371
  • Date Filed
    Monday, January 29, 2018
    6 years ago
  • Date Issued
    Tuesday, August 20, 2019
    4 years ago
Abstract
An electronic cigarette includes a liquid supply including liquid material, a heater operable to heat the liquid material to a temperature sufficient to vaporize the liquid material and form an aerosol, and a wick in communication with the liquid material and in communication with the heater such that the wick delivers the liquid material to the heater. The heater is formed of a mesh material.
Description
SUMMARY OF SELECTED FEATURES

An electronic cigarette includes a heater comprising a ribbon of electrically resistive mesh material wound about a wick. The wick is in communication with a liquid supply containing liquid material. The heater is operative to vaporize liquid material to produce an aerosol.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of an electronic cigarette according to a first embodiment wherein the mouth-end insert includes diverging outlets.



FIG. 2 is a perspective view of a mouth-end insert for use with the electronic cigarette of FIG. 1.



FIG. 3 is a cross-sectional view along line B-B of the mouth-end insert of FIG. 2.



FIG. 4 is a cross-sectional view of an electronic cigarette according to the first embodiment and further including a sleeve assembly.



FIG. 5 is a top view of an electronic cigarette including an aroma strip on an outer surface thereof.



FIG. 6 is a cross-sectional view of a second embodiment of a mouth-end insert for use with the electronic cigarettes of FIGS. 1 and 4.



FIG. 7 is an exploded view of the mouth-end insert of FIG. 6.



FIG. 8 is an enlarged view of a heater for use in the electronic cigarette of FIGS. 1 and 4, wherein the heater is formed of a mesh material.



FIG. 9 is an enlarged view of a heater, wherein the heater includes a brazed connection region.



FIG. 10 is an enlarged view of an embodiment of the mesh heater and wick assembly as positioned within the electronic cigarette and including a brazed connection region.



FIG. 11 is an enlarged view of another embodiment of the mesh heater and wick assembly as positioned within the electronic cigarette and including a brazed connection region.



FIG. 12 is an abbreviated, cross-sectional view of an electronic cigarette including a longitudinally extending heater.





DETAILED DESCRIPTION

An electronic cigarette (smoking article) includes a mesh heater element and in a preferred embodiment, a heater formed of a ribbon of electrically resistive mesh material wrapped around a wick that is in fluid communication with a liquid supply. The use of a planar metal ribbon such as a mesh material as the heater provides many advantages. The wrapped ribbon provides increased surface to surface contact between the heater and the wick so as to provide more efficient and uniform transfer of heat between the heater and the wick. The arrangement provides a greater volume of aerosol for the same amount of electrical energy, than a wire heater (a single wire coil). In addition, dimensions of the ribbon heater may be adjusted to achieve a higher or lower electrical resistivity to meet design requirements of a particular electronic cigarette. Being a ribbon of material, the resistivity of the ribbon heater can be more consistently controlled from one heater to the next. Likewise, because of the size of the ribbon heater, the wrapping of the ribbon heater about the wick may be more consistently controlled.


Preferably, the ribbon heater is wrapped uniformly about the wick so that there is uniform spacing between windings of the ribbon heater about the wick. The size and surface to surface contact between the ribbon heater and the wick ensures retention of the uniform spacing which in turn ensures uniform heating of the wick.


As shown in FIGS. 1 and 4, an electronic cigarette 60 comprises a replaceable cartridge (or first section) 70 and a reusable fixture (or second section) 72, which are coupled together at a threaded connection 205 or by other convenience such as a snug-fit, detent, snap-fit, clamp and/or clasp. The first section 70 includes an outer tube 6 (or casing) extending in a longitudinal direction and an inner tube 62 coaxially positioned within the outer tube 6. The electronic cigarette 60 also includes a central air passage 20 in an upstream seal 15. The central air passage 20 opens to the inner tube 62. Moreover, the electronic cigarette 60 includes a liquid supply 22. The liquid supply 22 comprises a liquid material and optionally a liquid storage medium 210 (shown in FIG. 1) operable to store the liquid material therein. Preferably, the liquid supply 22 is contained in an outer annulus between the outer tube 6 and the inner tube 62. The annulus is sealed at an upstream end by seal 15 and liquid stopper 10 at a downstream end so as to prevent leakage of the liquid material from the liquid supply 22. Thus, the liquid supply 22 at least partially surrounds the central air passage 20. In other embodiments, the liquid supply 22 could be a self-contained bottle or other vessel capable of containing liquid. A heater 14 extends transversely across the central channel 21.


In the preferred embodiment, the heater 14 is also contained in the inner tube 62 downstream of and in spaced apart relation to the central air passage 20. A wick 28 is in communication with the liquid material in the liquid supply 22 and in communication with the heater 14 such that the wick 28 disposes liquid material in proximate relation to the heater 14. The wick 28 preferably comprises filaments having a capacity to draw a liquid, more preferably a bundle of glass (or ceramic) filaments and most preferably a bundle comprising a group of windings of glass filaments, preferably three of such windings, all which arrangements are capable of drawing liquid via capillary action via interstitial spacings between the filaments. Preferably, the wick 28 is flexible and includes three strands, each strand including a plurality of filaments. Moreover, it is noted that the end portions 29 and 31 of the wick 28 are flexible and foldable into the confines of the liquid supply region 22. The wick 28 can include filaments having a cross-section which is generally cross-shaped, clover-shaped, Y-shaped or in any other suitable shape.


Preferably, the wick 28 includes any suitable material or combination of materials. Examples of suitable materials are ceramic- or graphite-based materials. Moreover, the wick 28 may have any suitable capillarity and porosity to accommodate aerosol generating liquids having different liquid physical properties such as density, viscosity, surface tension and vapor pressure. The capillary properties of the wick 28, combined with the properties of the liquid, ensure that the wick 28 is always wet in the area of the heater 14 to avoid overheating of the heater 14.


A power supply 1 in the fixture 72 is operable to apply voltage across the heater 14. The electronic cigarette 60 also includes at least one air inlet 44 operable to deliver air to the central air passage 20 and/or other portions of the inner tube 62.


The electronic cigarette 60 further includes a mouth-end insert 8 having at least two off-axis, preferably diverging outlets 24 (e.g., 3, 4, 5 or more, preferably 2 to 10 outlets or more, more preferably 6 to 8 outlets, even more preferably 2 to 6 outlets or 4 outlets). The mouth-end insert 8 is in fluid communication with the central air passage 20 via the interior of inner tube 62 and a central passage 63, which extends through the stopper 10.


Moreover, as shown in FIGS. 1, 4, 10 and 11, the heater 14 extends in a direction transverse to the longitudinal direction and heats the liquid material to a temperature sufficient to vaporize the liquid material and form an aerosol. In other embodiments, other orientations of the heater 14 are contemplated, such as shown in FIG. 12, the heater 14 is arranged longitudinally within the inner tube 62. By arranging the heater 14 longitudinally, the surface of the heater 14 is within the inner tube and delivers a larger volume of aerosol than heaters extending transverse to the longitudinal direction and into the outer annulus. Also preferably, as shown, the heater 14 is arranged centrally within the inner tube 62. However, in other embodiments the heater 14 can be arranged adjacent an inner surface of the inner tube 62.


Referring now to FIG. 1, the wick 28, liquid supply 22 and mouth-end insert 8 are contained in the first section 70 and the power supply 1 is contained in a second section 72. In one embodiment, the first section (the cartridge) 70 is disposable and the second section (the fixture) 72 is reusable. The sections 70, 72 can be attached by a threaded connection 205 whereby the downstream section 70 can be replaced when the liquid supply 22 is used up. Having a separate first section 70 and second section 72 provides a number of advantages. First, if the first section 70 contains the at least one heater 14, the liquid supply 22 and the wick 28, all elements which are potentially in contact with the liquid are disposed of when the first section 70 is replaced. Thus, there will be no cross-contamination between different first sections 70, for example, when using different liquid materials. Also, if the first section 70 is replaced at suitable intervals, there is little chance of the heater becoming clogged with liquid. Moreover, the amount of liquid in the liquid supply 22 can be chosen such that the liquid supply 22 is depleted once a full battery charge is also depleted. Thus, the first section 70 could be replaced with every battery charge. Optionally, the first section 70 and the second section 72 are arranged to releasably lock together when engaged.


In the preferred embodiment, the at least one air inlet 44 includes one or two air inlets. Alternatively, there may be three, four, five or more air inlets. Preferably, if there is more than one air inlet, the air inlets are located at different locations along the electronic cigarette 60. For example, as shown in FIGS. 4 and 5, an air inlet 44a can be positioned at the upstream end of the cigarette adjacent puff sensor 16 such that the puff sensor supplies power to the heater upon sensing a puff by the smoker. Air inlet 44a should communicate with the mouth-end insert 8 so that a draw upon the electronic cigarette activates the puff sensor. The air from air inlet 44a can then flow along the battery and to the central air passage 20 in the seal 15 and/or to other portions of the inner tube 62 and/or outer tube 6. At least one additional air inlet 44 can be located adjacent and upstream of the seal 15 or at any other desirable location. Altering the size and number of air inlets 44 can also aid in establishing the resistance to draw of the electronic cigarette 60.


In a preferred embodiment, the heater 14 is arranged to communicate with the wick 28 and to heat the liquid material contained in the wick 28 to a temperature sufficient to vaporize the liquid material and form an aerosol.


Preferably, the heater 14 is preferably a ribbon of wire mesh wound about a wick 28. Examples of suitable electrically resistive materials include titanium, zirconium, tantalum and metals from the platinum group. Examples of suitable metal alloys include stainless steel, nickel-, cobalt-, chromium-, aluminium-titanium-zirconium-, hafnium-, niobium-, molybdenum-, tantalum-, tungsten-, tin-, gallium-, manganese- and iron-containing alloys, and super-alloys based on nickel, iron, cobalt, stainless steel. For example, the heater can be formed of nickel aluminides, a material with a layer of alumina on the surface, iron aluminides and other composite materials, the electrically resistive material may optionally be embedded in, encapsulated or coated with an insulating material or vice-versa, depending on the kinetics of energy transfer and the external physicochemical properties required. Preferably, the heater 14 comprises at least one material selected from the group consisting of stainless steel, copper, copper alloys, nickel-chromium alloys, superalloys and combinations thereof. In a preferred embodiment, the heater 14 is formed of nickel-chromium alloys or iron-chromium alloys.


In another embodiment, the heater 14 may be constructed of an iron-aluminide (e.g., FeAl or Fe3Al), such as those described in commonly owned U.S. Pat. No. 5,595,706 to Sikka et al. filed Dec. 29, 1994, or nickel aluminides (e.g., Ni3Al). Use of iron-aluminides is particularly advantageous in that they exhibit high resistivity. FeAl exhibits a resistivity of approximately 180 micro-ohms, whereas stainless steel exhibits approximately 50 to 91 micro-ohms. The higher resistivity lowers current draw or load on the power source (battery) 1.


In a preferred embodiment, the mesh material heater 14 is formed of a thermally and/or electrically conductive material. Suitable materials for forming the mesh material are selected from the group consisting of stainless steel, copper, copper alloys, Inconel® available from Special Metals Corporation, which is a nickel-chromium alloy, Nichrome®, which is also a nickel-chromium alloy, and combinations thereof. Moreover, in a preferred embodiment, the mesh material heater 14 is formed of an iron-free nickel-chromium alloy.


In a preferred embodiment, the heater 14 comprises a ribbon of wire mesh which at least partially surrounds the wick 28. In that embodiment, preferably the heater may extend along the entire length of the wick 28 or only along a portion of the length of the wick 28.


In another embodiment, as shown in FIGS. 8-11, the heater 14 is formed of a planar metal ribbon such as a conductive mesh material wrapped around the wick 28. Preferably, the mesh material is wrapped completely around a portion of the wick 28 at least one turn, but preferably about a predetermined number of turns (e.g., two to ten turns or two to six turns). In the preferred embodiment, the mesh heater 14 is wrapped bout the wick 28 about four turns. Preferably, the mesh material is originally an elongate planar ribbon that is wrapped around the wick 28 to increase surface area contact between the heater 14 and the wick 28.


In an embodiment, as shown in FIGS. 8, 9, 10 and 11, a post or brazed, conductive connection region 99 is formed of a low-resistance material brazed across each end portion of the heater 14. By brazing a post 99 or forming a brazed connection region 99 at each end of the mesh heater 14, the electrical current conducts uniformly across the length and width of the mesh heater 14 so as to avoid hot spots. For example, the posts or brazed connection regions 99 can be formed of gold-plated wire. The posts or brazed connection regions 99 can be contained entirely in the outer annulus as shown in FIG. 10, such that the mesh heater 14 extends into the outer annulus. Alternatively, as shown in FIG. 11, the mesh heater 14 can be contained entirely within the inner tube 62 and the posts or brazed connection regions 99 can be contained within the inner tube, such that the electrical connection is formed within the inner tube 62. Electrical leads 26 are attached to each post or brazed connection regions 99, such that a heated zone is formed between the electrical leads 26 when voltage is applied by the power supply, so as to heat the liquid material in contact with the mesh material to a temperature sufficient to at least partially vaporize the liquid. Alternatively, the electrical leads 26 can be attached directly to the mesh heater 14.


A closure ring can slide over an outer surface of the inner tube so as to substantially close off a remainder of open space provided between the heater-wick element and the slot, as described in U.S. patent application Ser. No. 13/741,254 filed Jan. 14, 2013, the entire content of which is incorporated herein by reference thereto. Moreover, the mesh heater 14 preferably has a straight and uniformly spaced wrapping of the wick 28 so as to avoid hot spots.


In a preferred embodiment, the ribbon heater 14 is constructed from a wire mesh filament having a width in the range of about 0.5 mm to about 2 mm, preferably about 1 mm, and a length in the range of about 20 mm to about 40 mm. When wrapped about the wick 28, the ribbon heater 14 establishes a heater-wick element which extends in the range of about 10 mm to about 15 mm, preferably about 12 mm or less, and a width in the range of about 0.5 mm to about 2.0 mm, preferably about 1.5 mm or less. At about 1.5 mm width, the heater-wick element is preferably oriented longitudinally within the electronic cigarette whereas heater-wick elements having a smaller width may be placed in a transverse direction within the electronic cigarette.


In the preferred embodiment, the ribbon of mesh material can range in size from about 200 mesh to about 600 mesh. In the preferred embodiment, the mesh material is about 400 mesh and includes small voids/interstices 13 between the wires that form the mesh material. Preferably, the mesh material is formed with 0.001 inch or greater diameter wire, such as wire available from Smallparts, Inc. of Logansport, Ind. Also preferably, the wire comprising the mesh is a solid wire of about 0.0014 inch to about 0.0016 inch diameter.


In the preferred embodiment, the mesh material of the ribbon heater element 14 has a criss-cross, checkerboard type pattern with interstices 13 therein. Preferably, the ribbon mesh material is a single, elongate, flat layer of mesh material. Also preferably, the mesh material achieves an electrical resistance ranging from about 0.3 Ohm to about 10 Ohms, more preferably about 0.8 Ohm to about 5.0 Ohms, more preferably about 4.0 Ohms or less.


As noted above, because the mesh material heater 14 has a larger surface area, the heater 14 contacts a larger portion of the wick 28 so as to have a capacity to provide a larger amount of aerosol. In addition, the liquid can be drawn into the interstices 13 of the mesh material from the wick 28 during a power cycle of the electronic cigarette.


Advantageously, mesh material provides a workable range of resistivity for applications such as in electronic cigarettes. In addition, the use of a mesh material heater 14 allows release of aerosol through the heater itself. In addition, the mesh material heater 14 can enhance aerosolization of liquid from the wick 28.


In the preferred embodiment, the wick 28 comprises one or more filaments. As noted above, the wick 28 is at least partially surrounded by the heater 14. Moreover, in the preferred embodiment, the wick 28 extends through opposed openings in the inner tube 62 such that each end portion 29, 31 of the wick 28 is in contact with the liquid supply 22.


It has been observed that during a power cycle, aerosol is released from portions of the wick 28 disposed between windings of the ribbon heater 14 and through the ribbon heater 14 itself.


In the preferred embodiment, the wick 28 is fibrous. For example, the wick 28 may include a plurality of fibers or threads. The fibers or threads may be generally aligned in a direction perpendicular to the longitudinal direction of the electronic cigarette. In the preferred embodiment, the wick 28 comprises filaments having a capacity to draw a liquid, more preferably a bundle of glass (or ceramic) filaments and most preferably a bundle comprising a group of windings of glass filaments, preferably three of such windings, all which arrangements are capable of drawing liquid via capillary action via interstitial spacings between the filaments. Preferably, the wick 28 is flexible and includes three strands, each strand including a plurality of filaments.


In the preferred embodiment, the power supply 1 includes a battery arranged in the electronic cigarette 60 such that the anode is downstream of the cathode. A battery anode connector 4 contacts the downstream end of the battery. The heater 14 is connected to the battery by two spaced apart electrical leads 26 (shown in FIGS. 1, 4, 8, 9, 10, 11 and 12).


Preferably, the electrical contacts or connection between the heater 14 and the electrical leads 26 are highly conductive and temperature resistant while the heater 14 is highly resistive so that heat generation occurs primarily along the heater 14 and not at the contacts.


The battery can be a Lithium-ion battery or one of its variants, for example a Lithium-ion polymer battery. Alternatively, the battery may be a Nickel-metal hydride battery, a Nickel cadmium battery, a Lithium-manganese battery, a Lithium-cobalt battery or a fuel cell. In that case, preferably, the electronic cigarette 60 is usable by a smoker until the energy in the power supply is depleted. Alternatively, the power supply 1 may be rechargeable and include circuitry allowing the battery to be chargeable by an external charging device. In that case, preferably the circuitry, when charged, provides power for a pre-determined number of puffs, after which the circuitry must be re-connected to an external charging device.


Preferably, the electronic cigarette 60 also includes control circuitry including a puff sensor 16. The control circuitry can include an application specific integrated circuit (ASIC). The puff sensor 16 is operable to sense an air pressure drop and initiate application of voltage from the power supply 1 to the heater 14. The control circuitry can also include a heater activation light 48 operable to glow when the heater 14 is activated. Preferably, the heater activation light 48 comprises an LED and is at an upstream end of the electronic cigarette 60 so that the heater activation light 48 takes on the appearance of a burning coal during a puff. Moreover, the heater activation light 48 can be arranged to be visible to the smoker. In addition, the heater activation light 48 can be utilized for cigarette system diagnostics. The light 48 can also be configured such that the smoker can activate and/or deactivate the light 48 for privacy, such that the light 48 would not activate during smoking if desired.


Preferably, the at least one air inlet 44a is located adjacent the puff sensor 16, such that the puff sensor 16 senses air flow indicative of a smoker taking a puff and activates the power supply 1 and the heater activation light 48 to indicate that the heater 14 is working.


A control circuit is integrated with the puff sensor 16 and supplies power to the heater 14 responsive to the puff sensor 16, preferably with a maximum, time-period limiter.


Alternatively, the control circuitry may include a manually operable switch for a smoker to initiate a puff. The time-period of the electric current supply to the heater may be pre-set depending on the amount of liquid desired to be vaporized. The control circuitry is preferably programmable for this purpose. Alternatively, the circuitry may supply power to the heater as long as the puff sensor detects a pressure drop.


Preferably, when activated, the heater 14 heats a portion of the wick 28 surrounded by the heater for less than about 10 seconds, more preferably less than about 7 seconds. Thus, the power cycle (or maximum puff length) can range in period from about 2 seconds to about 10 seconds (e.g., about 3 seconds to about 9 seconds, about 4 seconds to about 8 seconds or about 5 seconds to about 7 seconds).


In the preferred embodiment, the liquid supply 22 includes a liquid storage medium 210 containing liquid material. Alternatively, the liquid supply 22 comprises only liquid material. The liquid supply 22 is contained in an outer annulus between inner tube 62 and outer tube 6 and between stopper 10 and the seal 15. Thus, the liquid supply 22 at least partially surrounds the central air passage 20 and heater 14 and the heater 14 extends between portions of the liquid supply 22.


Preferably, the liquid storage medium 210 of the liquid supply 22, if included, is a fibrous material comprising cotton, polyethylene, polyester, rayon and combinations thereof. The liquid storage medium 210 may comprise a winding of cotton gauze or other fibrous material about the inner tube 62. Preferably, the fibers or filaments in the liquid storage medium 210 have a diameter ranging in size from about 6 microns to about 15 microns (e.g., about 8 microns to about 12 microns or about 9 microns to about 11 microns). The liquid storage medium 210 can be a sintered, porous or foamed material. Also preferably, the filaments are sized to be irrespirable and can have a cross-section which has a y shape, cross shape, clover shape or any other suitable shape. In the alternative, the liquid supply region 22 may comprise a filled tank lacking a liquid storage medium 210 and containing only liquid material. In one embodiment, the liquid storage medium 210 can be constructed from an alumina ceramic.


Also preferably, the liquid material has a boiling point suitable for use in the electronic cigarette 60. If the boiling point is too high, the heater 14 will not be able to vaporize liquid in the wick 28. However, if the boiling point is too low, the liquid may vaporize without the heater 14 being activated.


Preferably, the liquid material includes a tobacco-containing material including volatile tobacco flavor compounds which are released from the liquid upon heating. The liquid may also be a tobacco flavor containing material or a nicotine-containing material. Alternatively, or in addition, the liquid may include a non-tobacco material and/or be nicotine-free. For example, the liquid may include water, solvents, ethanol, plant extracts and natural or artificial flavors. Preferably, the liquid further includes an aerosol former. Examples of suitable aerosol formers are glycerine and propylene glycol.


In use, liquid material is transferred from the liquid supply 22 and/or liquid storage medium 21 in proximity of the 14 heater by capillary action of the wick 28. In one embodiment, the wick 28 has a first end 29 and a second end 31 as shown in FIG. 1. The first end 29 and the second end 31 extend into opposite sides of the liquid storage medium 21 for contact with liquid material contained therein. Also preferably, the heater 14 at least partially surrounds a central portion of the wick 28 such that when the heater is activated, the liquid in the central portion of the wick 28 is vaporized by the heater 14 to vaporize the liquid material and form an aerosol.


One advantage of this embodiment is that the liquid material in the liquid supply 22 is protected from oxygen (because oxygen cannot generally enter the liquid storage portion via the wick) and, in some embodiments light, so that the risk of degradation of the liquid material is significantly reduced. Thus, a high level of shelf-life and cleanliness can be maintained.


As shown in FIGS. 1-3, the mouth-end insert 8, includes at least two diverging outlets 24. (e.g, 3, 4, 5, or preferably 6 to 8 outlets or more). Preferably, the outlets 24 of the mouth-end insert 8 are located at ends of off-axis passages 80 (shown in FIG. 3) and are angled outwardly in relation to the longitudinal direction of the electronic cigarette 60 (i.e., divergently). As used herein, the term “off-axis” denotes at an angle to the longitudinal direction of the electronic cigarette. Also preferably, the mouth-end insert (or flow guide) 8 includes outlets uniformly distributed around the mouth-end insert 8 so as to substantially uniformly distribute aerosol in a smoker's mouth during use. Thus, as the aerosol passes into a smoker's mouth, the aerosol enters the mouth and moves in different directions so as to provide a full mouth feel as compared to electronic cigarettes having an on-axis single orifice which directs the aerosol to a single location in a smoker's mouth.


In addition, the outlets 24 and off-axis passages 80 are arranged such that droplets of unaerosolized liquid material carried in the aerosol impact interior surfaces 81 of the mouth-end insert 8 and/or interior surfaces of the off-axis passages such that the droplets are removed or broken apart. In the preferred embodiment, the outlets of the mouth-end insert are located at the ends of the off-axis passages and are angled at 5 to 60° with respect to the central axis of the outer tube 6 so as to more completely distribute aerosol throughout a mouth of a smoker during use and to remove droplets.


Preferably, each outlet has a diameter of about 0.015 inch to about 0.090 inch (e.g., about 0.020 inch to about 0.040 inch or about 0.028 inch to about 0.038 inch). In one embodiment, the size of the outlets 8 and off-axis passages 80 along with the number of outlets can be selected to adjust the resistance to draw (RTD) of the electronic cigarette 60, if desired.


As shown in FIG. 1, an interior surface 81 of the mouth-end insert 8 can comprise a generally domed surface. Alternatively, as shown in FIG. 3, the interior surface 81′ of the mouth-end insert 8 can be generally cylindrical or frustoconical, with a planar end surface. Preferably, the interior surface is substantially uniform over the surface thereof or symmetrical about the longitudinal axis of the mouth-end insert 8. However, in other embodiments, the interior surface can be irregular and/or have other shapes.


Preferably, the mouth-end insert 8 is integrally affixed within the outer tube 6 of the first section 70. Moreover, the mouth end insert 8 can be formed of a polymer selected from the group consisting of low density polyethylene, high density polyethylene, polypropylene, polyvinylchloride, polyetheretherketone (PEEK) and combinations thereof. The mouth end insert 8 may also be colored if desired.


In a preferred embodiment, the electronic cigarette 60 is about the same size as a conventional cigarette. In some embodiments, the electronic cigarette 60 can be about 80 mm to about 110 mm long, preferably about 80 mm to about 100 mm long and about 7 mm to about 8 mm in diameter. For example, in a preferred embodiment, the electronic cigarette is about 84 mm long and has a diameter of about 7.8 mm.


In one embodiment, the electronic cigarette 60 can also include a filter segment (not shown) upstream of the heater 14 and operable to restrict flow of air through the electronic cigarette 60. The addition of a filter segment can also aid in adjusting the resistance to draw.


The outer tube 6 and/or the inner tube 62 may be formed of any suitable material or combination of materials. Examples of suitable materials include metals, alloys, plastics or composite materials containing one or more of those materials, or thermoplastics that are suitable for food or pharmaceutical applications, for example polypropylene, polyetheretherketone (PEEK), ceramic, and polyethylene. Preferably, the material is light and non-brittle.


As shown in FIG. 4, the electronic cigarette 60 can also include a sleeve assembly 87 removably and/or rotatably positioned about a first section 70 of the electronic cigarette 60. Moreover, the sleeve assembly 87 insulates at least a portion of the first section 70 so as to maintain the temperature of the aerosol prior to delivery to the smoker. In the preferred embodiment, the sleeve assembly 87 is rotatable about the electronic cigarette 60 and includes spaced apart slots 88 arranged transversely about the sleeve assembly such that the slots 88 line up with the air inlets 44 in the first section 70 to allow air to pass into the electronic cigarette 60 when a smoker draws a puff. Before or during smoking, the smoker can rotate the sleeve assembly 87 such that the air inlets 44 are at least partially blocked by the sleeve assembly 87 so as to adjust the resistance to draw and/or ventilation of the electronic cigarette 60.


Preferably, the sleeve assembly 87 is made of silicone or other pliable material so as to provide a soft mouthfeel to the smoker. Moreover, the sleeve assembly 81 can prevent the outer tube 6 from warming a smoker's mouth if too much heat is generated. However, the sleeve assembly 87 can be formed in one or more pieces and can be formed of a variety of materials including plastics, metals and combinations thereof. In a preferred embodiment, the sleeve assembly 87 is a single piece formed of silicone. The sleeve assembly 87 can be removed and reused with other electronic cigarettes or can be discarded along with the first section 70. The sleeve assembly 87 can be any suitable color and/or can include graphics or other indicia.


As shown in FIG. 5, the electronic cigarette 60 can also include an aroma strip 89 located on an outer surface 91 of at least one of the first section 70 and the second section 72. Alternatively, the aroma strip 89 can be located on a portion of the sleeve assembly 87. Preferably, the aroma strip 89 is located between the battery of the device and the heater such that the aroma strip 89 is adjacent a smoker's nose during smoking. The aroma strip 89 can include a flavor aroma gel, film or solution including a fragrance material that is released before and/or during smoking. In one embodiment, the flavor aroma of the gel, fluid and/or solution can be released by the action of a puff which may open a vent over the aroma strip when positioned inside the first section 70 (not shown). Alternatively, heat generated by the heater 14 can cause the release of the aroma.


In one embodiment, the aroma strip 89 can include tobacco flavor extracts. Such an extract can be obtained by grinding tobacco material to small pieces and extracting with an organic solvent for a few hours by shaking the mixture. The extract can then be filtered, dried (for example with sodium sulfate) and concentrated at controlled temperature and pressure. Alternatively, the extracts can be obtained using techniques known in the field of flavor chemistry, such as the Solvent Assisted Flavor Extraction (SAFE) distillation technique (Engel et al. 1999), which allows separation of the volatile fraction from the non-volatile fraction. Additionally, pH fractionation and chromatographic methods can be used for further separation and/or isolation of specific compounds. The intensity of the extract can be adjusted by diluting with an organic solvent or water.


The aroma strip 89 can be a polymeric or paper strip to which the extract can be applied, for example, using a paintbrush or by impregnation. Alternatively, the extract can be encapsulated in a paper ring and/or strip and released manually by the smoker, for example by squeezing the aroma strip 89 during smoking so as to release the aroma.


As shown in FIGS. 6 and 7, in an alternative embodiment, the electronic cigarette of FIGS. 1, 4, 9 and 12 can includes a mouth-end insert 8 having a stationary piece 27 and a rotatable piece 25. Outlets 24, 24′ are located in each of the stationary piece 27 and the rotatable piece 25. The outlets 24, 24′ match up as shown to allow aerosol to enter a smoker's mouth. However, the rotatable piece 25 can be rotated within the mouth-end insert 8 so as to at least partially block one or more of the outlets 24 in the stationary piece 27 of the mouth-end insert 8. Thus, the consumer can adjust the amount of aerosol drawn with each puff. The outlets 24, 24′ can be formed in the mouth-end insert 8 such that the outlets 24, 24′ diverge to provide a fuller mouth feel during inhalation of the aerosol.


The above teachings provide examples of an electronic cigarette 60. Further details of the electronic cigarette can be found in commonly owned Non-Provisional patent application Ser. No. 13/756,127 filed Jan. 31, 2013, the entire content of which is incorporated herein by reference thereto.


Not wishing to be bound by theory, it is believed that the amount of voltage applied to the mesh heater can alter the particle size distribution of the aerosol.


The teachings herein are applicable to electronic cigars, and other smoking articles. References to an “electronic smoking article” are intended to be inclusive of electronic cigars, electronic cigarettes and the like.


When the word “about” is used in this specification in connection with a numerical value, it is intended that the associated numerical value include a tolerance of ±10% around the stated numerical value. Moreover, when reference is made to percentages in this specification, it is intended that those percentages are based on weight, i.e., weight percentages.


Moreover, when the words “generally” and “substantially” are used in connection with geometric shapes, it is intended that precision of the geometric shape is not required but that latitude for the shape is within the scope of the disclosure. When used with geometric terms, the words “generally” and “substantially” are intended to encompass not only features which meet the strict definitions but also features which fairly approximate the strict definitions.


It will now be apparent that a new, improved, and nonobvious electronic cigarette has been described in this specification with sufficient particularity as to be understood by one of ordinary skill in the art. Moreover, it will be apparent to those skilled in the art that numerous modifications, variations, substitutions, and equivalents exist for features of the electronic cigarette which do not materially depart from the spirit and scope of the invention. Accordingly, it is expressly intended that all such modifications, variations, substitutions, and equivalents which fall within the spirit and scope of the invention as defined by the appended claims shall be embraced by the appended claims.

Claims
  • 1. An electronic vaping device comprising: a heater including, a ribbon of electrically resistive mesh material wound about a wick, the wick in communication with a liquid supply including liquid material, the heater configured to vaporize liquid material,wherein the ribbon is configured as a helix.
  • 2. The electronic vaping device of claim 1, wherein the ribbon comprises at least one material selected from the group consisting of stainless steel, copper, copper alloys, ceramic materials coated with film resistive material, nickel-chromium alloys, and combinations thereof.
  • 3. The electronic vaping device of claim 1, wherein the ribbon is about 200 to about 600 mesh.
  • 4. The electronic vaping device of claim 1, wherein the ribbon is about 400 mesh.
  • 5. The electronic vaping device of claim 1, wherein the ribbon is formed with wire having a diameter of about 0.001 inch or greater.
  • 6. The electronic vaping device of claim 1, wherein the ribbon is wound about the wick 1 to 10 times.
  • 7. The electronic vaping device of claim 1, wherein the ribbon is elongate at at least one end portion thereof.
  • 8. The electronic vaping device of claim 1, wherein the heater has a length ranging from about 10 mm to about 15 mm.
  • 9. The electronic vaping device of claim 1, wherein the heater has a width ranging from about 0.5 mm to about 2.0 mm.
  • 10. The electronic vaping device of claim 1, wherein the ribbon has an electrical resistance ranging from about 0.3 Ohm to about 10 Ohms.
  • 11. The electronic vaping device of claim 1, wherein the ribbon includes a conductive connection region across a width of the ribbon.
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional application of U.S. application Ser. No. 15/040,763 filed on Feb. 10, 2016, which is a divisional application of U.S. application Ser. No. 13/774,609, filed on Feb. 22, 2013, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/601,889, filed on Feb. 22, 2012, the entire contents of each of which are incorporated herein by reference thereto.

US Referenced Citations (239)
Number Name Date Kind
1771366 Wyss et al. Jul 1930 A
1968509 Tiffany Jul 1934 A
2057353 Whittlemore, Jr. Oct 1936 A
2068518 Simpson Jan 1937 A
2104266 McCormick Jan 1938 A
2406275 Wejnarth Aug 1946 A
2442004 Hayward-Butt May 1948 A
2558127 Downs Jun 1951 A
2907686 Siegel Oct 1959 A
2971039 Western Feb 1961 A
2972557 Toulmin, Jr. Feb 1961 A
2974669 Ellis Mar 1961 A
3062218 Temkovits Nov 1962 A
3200819 Gilbert Aug 1965 A
3255760 Selker Jun 1966 A
3258015 Ellis et al. Jun 1966 A
3356094 Ellis et al. Dec 1967 A
3363633 Weber Jan 1968 A
3402723 Hu Sep 1968 A
3482580 Hollabaugh Dec 1969 A
3521643 Toth Jul 1970 A
3559300 Fox Feb 1971 A
3608560 Briskin et al. Sep 1971 A
3681018 Knauff Aug 1972 A
3738374 Bennett Jun 1973 A
3744496 McCarty et al. Jul 1973 A
3804100 Fariello Apr 1974 A
3875476 Crandall et al. Apr 1975 A
3878041 Leitnaker et al. Apr 1975 A
3889690 Guarnieri Jun 1975 A
3895219 Richerson et al. Jul 1975 A
3943941 Boyd et al. Mar 1976 A
4016061 Wasa et al. Apr 1977 A
4068672 Guerra Jan 1978 A
4077784 Vayrynen Mar 1978 A
4083372 Boden Apr 1978 A
4098725 Yamamoto et al. Jul 1978 A
4110260 Yamamoto et al. Aug 1978 A
4131119 Blasutti Dec 1978 A
4164230 Pearlman Aug 1979 A
4193411 Faris et al. Mar 1980 A
4215708 Bron Aug 1980 A
4219032 Tabatznik et al. Aug 1980 A
4246913 Ogden et al. Jan 1981 A
4256945 Carter Mar 1981 A
4259970 Green, Jr. Apr 1981 A
4331166 Hale May 1982 A
4419302 Nishino et al. Dec 1983 A
4457319 Lamb et al. Jul 1984 A
4493331 Porenski, Jr. Jan 1985 A
4517996 Vester May 1985 A
4649944 Houck, Jr. et al. Mar 1987 A
4687008 Houck, Jr. et al. Aug 1987 A
4735217 Gerth et al. Apr 1988 A
4765347 Sensabaugh, Jr. et al. Aug 1988 A
4804002 Herron Feb 1989 A
4941486 Dube et al. Jul 1990 A
4945929 Egilmex Aug 1990 A
4945931 Gori Aug 1990 A
4981522 Nichols et al. Jan 1991 A
4991606 Serrano et al. Feb 1991 A
4993436 Bloom, Jr. Feb 1991 A
5016656 McMurtrie May 1991 A
5040552 Schleich et al. Aug 1991 A
5042510 Curtiss et al. Aug 1991 A
5045237 Washburn Sep 1991 A
5060671 Counts et al. Oct 1991 A
5076296 Nystrom et al. Dec 1991 A
5085804 Washburn Feb 1992 A
5093894 Deevi et al. Mar 1992 A
5095921 Losee et al. Mar 1992 A
5116298 Bondanelli et al. May 1992 A
5137578 Chan Aug 1992 A
5139594 Rabin Aug 1992 A
5144962 Counts et al. Sep 1992 A
5144964 Demain Sep 1992 A
5157242 Hetherington et al. Oct 1992 A
5159940 Hayward et al. Nov 1992 A
5179966 Losee et al. Jan 1993 A
5224498 Deevi et al. Jul 1993 A
5228460 Sprinkel et al. Jul 1993 A
5235157 Blackburn Aug 1993 A
5249586 Morgan et al. Oct 1993 A
5269327 Counts et al. Dec 1993 A
5274214 Blackburn Dec 1993 A
5285050 Blackburn Feb 1994 A
5322075 Deevi et al. Jun 1994 A
5353813 Deevi et al. Oct 1994 A
5369723 Counts et al. Nov 1994 A
5388594 Counts et al. Feb 1995 A
5408574 Deevi et al. Apr 1995 A
5473251 Mori Dec 1995 A
5498855 Deevi et al. Mar 1996 A
5505214 Collins et al. Apr 1996 A
5591368 Fleischhauer et al. Jan 1997 A
5595706 Sikka et al. Jan 1997 A
5613504 Collins et al. Mar 1997 A
5665262 Hajaligol et al. Sep 1997 A
5724997 Smith et al. Mar 1998 A
5865185 Collins et al. Feb 1999 A
5878752 Adams et al. Mar 1999 A
5894841 Voges Apr 1999 A
5935975 Rose et al. Aug 1999 A
6155268 Takeuchi Dec 2000 A
6196218 Voges Mar 2001 B1
6598607 Adiga et al. Jul 2003 B2
6715487 Nichols et al. Apr 2004 B2
6772756 Shayan Aug 2004 B2
6810883 Felter et al. Nov 2004 B2
6854470 Pu Feb 2005 B1
7131599 Katase Nov 2006 B2
7167641 Tam et al. Jan 2007 B2
7458374 Hale et al. Dec 2008 B2
D590988 Hon Apr 2009 S
D590989 Hon Apr 2009 S
D590990 Hon Apr 2009 S
D590991 Hon Apr 2009 S
7527059 Iannuzzi May 2009 B2
7614402 Gomes Nov 2009 B2
7726320 Robinson et al. Jun 2010 B2
7789089 Dube et al. Sep 2010 B2
7810508 Wyss-Peters et al. Oct 2010 B2
7832410 Hon Nov 2010 B2
7845359 Montaser Dec 2010 B2
7878962 Karles et al. Feb 2011 B2
7913688 Cross et al. Mar 2011 B2
7997280 Rosenthal Aug 2011 B2
8079371 Robinson et al. Dec 2011 B2
D655036 Zhou Feb 2012 S
8113215 Rasouli et al. Feb 2012 B2
8118161 Guerrera et al. Feb 2012 B2
8127772 Montaser Mar 2012 B2
8156944 Han Apr 2012 B2
8157918 Becker et al. Apr 2012 B2
8205622 Pan Jun 2012 B2
8258192 Wu et al. Sep 2012 B2
8314591 Terry et al. Nov 2012 B2
8365742 Hon Feb 2013 B2
8371310 Brenneise Feb 2013 B2
8375957 Hon Feb 2013 B2
D684311 Liu Jun 2013 S
8459270 Coven et al. Jun 2013 B2
8499766 Newton Aug 2013 B1
8550069 Alelov Oct 2013 B2
9226525 Liu Jan 2016 B2
20010035409 Giberson et al. Nov 2001 A1
20020112723 Schuster Aug 2002 A1
20040020500 Wrenn et al. Feb 2004 A1
20040035409 Harwig Feb 2004 A1
20040050396 Squeo Mar 2004 A1
20050016550 Katase Jan 2005 A1
20060191546 Takano et al. Aug 2006 A1
20060196518 Hon Sep 2006 A1
20070102013 Adams et al. May 2007 A1
20070267032 Shan Nov 2007 A1
20080047571 Braunshteyn et al. Feb 2008 A1
20080230052 Montaser Sep 2008 A1
20090056729 Zawadzki et al. Mar 2009 A1
20090126745 Hon May 2009 A1
20090133704 Strickland et al. May 2009 A1
20090151717 Bowen et al. Jun 2009 A1
20090162294 Werner Jun 2009 A1
20090188490 Han Jul 2009 A1
20090230117 Fernando et al. Sep 2009 A1
20090272379 Thorens et al. Nov 2009 A1
20090283103 Nielsen et al. Nov 2009 A1
20100031968 Sheikh et al. Feb 2010 A1
20100083959 Siller Apr 2010 A1
20100126505 Rinker May 2010 A1
20100200008 Taieb Aug 2010 A1
20100206317 Albino et al. Aug 2010 A1
20100242975 Hearn Sep 2010 A1
20100307518 Wang Dec 2010 A1
20110011396 Fang Jan 2011 A1
20110036346 Cohen et al. Feb 2011 A1
20110036363 Urtsev et al. Feb 2011 A1
20110094523 Thorens et al. Apr 2011 A1
20110120455 Murphy May 2011 A1
20110120482 Brenneise May 2011 A1
20110147486 Greim et al. Jun 2011 A1
20110155153 Thorens et al. Jun 2011 A1
20110232654 Mass Sep 2011 A1
20110245493 Rabinowitz et al. Oct 2011 A1
20110253798 Tucker Oct 2011 A1
20110265806 Alarcon et al. Nov 2011 A1
20110277756 Terry et al. Nov 2011 A1
20110277757 Terry et al. Nov 2011 A1
20110277760 Terry et al. Nov 2011 A1
20110277761 Terry et al. Nov 2011 A1
20110277764 Terry et al. Nov 2011 A1
20110277780 Terry et al. Nov 2011 A1
20110290244 Schennum Dec 2011 A1
20110303231 Li Dec 2011 A1
20110309157 Yang Dec 2011 A1
20120006342 Rose et al. Jan 2012 A1
20120090629 Turner et al. Apr 2012 A1
20120111347 Hon May 2012 A1
20120118301 Montaser May 2012 A1
20120145169 Wu Jun 2012 A1
20120167906 Gysland Jul 2012 A1
20120174914 Pirshafiey et al. Jul 2012 A1
20120186594 Liu Jul 2012 A1
20120199146 Marangos Aug 2012 A1
20120199663 Qiu Aug 2012 A1
20120211015 Li et al. Aug 2012 A1
20120230659 Goodman et al. Sep 2012 A1
20120260927 Liu Oct 2012 A1
20120285475 Liu Nov 2012 A1
20120312313 Frija Dec 2012 A1
20120318882 Abehasera Dec 2012 A1
20130014772 Liu Jan 2013 A1
20130019887 Liu Jan 2013 A1
20130025609 Liu Jan 2013 A1
20130180533 Kim Jul 2013 A1
20130192615 Tucker et al. Aug 2013 A1
20130192616 Tucker et al. Aug 2013 A1
20130192618 Li Aug 2013 A1
20130192619 Tucker et al. Aug 2013 A1
20130192620 Tucker et al. Aug 2013 A1
20130192621 Li et al. Aug 2013 A1
20130192622 Tucker et al. Aug 2013 A1
20130192623 Tucker et al. Aug 2013 A1
20130213418 Tucker et al. Aug 2013 A1
20140109905 Yamada Apr 2014 A1
20140238423 Tucker Aug 2014 A1
20140360517 Taggart Dec 2014 A1
20150090280 Chen Apr 2015 A1
20150101606 White Apr 2015 A1
20150230522 Horn Aug 2015 A1
20150245669 Cadieux Sep 2015 A1
20160021934 Cadieux Jan 2016 A1
20160120221 Mironov May 2016 A1
20160331034 Cameron Nov 2016 A1
20160331037 Cameron Nov 2016 A1
20160353801 Zinovik Dec 2016 A1
20160361452 Blackley Dec 2016 A1
20170020195 Cameron Jan 2017 A1
20170079330 Mironov Mar 2017 A1
20170095624 Davidson Apr 2017 A1
Foreign Referenced Citations (77)
Number Date Country
421623 Jun 1937 BE
1202378 Mar 1986 CA
87104459 Feb 1988 CN
1205849 Jan 1999 CN
2777995 May 2006 CN
101322579 Dec 2008 CN
201709398 Jan 2011 CN
102014677 Apr 2011 CN
201789924 Apr 2011 CN
201797997 Apr 2011 CN
102106611 Jun 2011 CN
201860753 Jun 2011 CN
102166044 Aug 2011 CN
202014571 Oct 2011 CN
202014572 Oct 2011 CN
202026804 Nov 2011 CN
202233005 May 2012 CN
202233007 May 2012 CN
102665459 Sep 2012 CN
3640917 Aug 1988 DE
3735704 May 1989 DE
19854009 May 2000 DE
69824982 Oct 2004 DE
0893071 Jul 1908 EP
0277519 Aug 1988 EP
0295122 Dec 1988 EP
0358002 Mar 1990 EP
0358114 Mar 1990 EP
0488488 Jun 1992 EP
0503767 Sep 1992 EP
0845220 Jun 1998 EP
0857431 Aug 1998 EP
1989946 Nov 2008 EP
2110033 Oct 2009 EP
2113178 Nov 2009 EP
2148079 May 1985 GB
61068061 Apr 1986 JP
3164992 May 2001 JP
2003092175 Mar 2003 JP
2006320286 Nov 2006 JP
2009-537119 Oct 2009 JP
2011-518567 Jun 2011 JP
2011-165527 Aug 2011 JP
100636287 Oct 2006 KR
8201585 Nov 1982 NL
WO-8602528 May 1986 WO
WO-9003224 Apr 1990 WO
WO-9502970 Feb 1995 WO
WO-0028843 May 2000 WO
WO-03034847 May 2003 WO
WO-03037412 May 2003 WO
WO-2004080216 Sep 2004 WO
WO-2004095955 Nov 2004 WO
WO-2005099494 Oct 2005 WO
WO-2005120614 Dec 2005 WO
WO-2007024130 Mar 2007 WO
WO-2007066374 Jun 2007 WO
WO-2007078273 Jul 2007 WO
WO-2007098337 Aug 2007 WO
WO-2007131449 Nov 2007 WO
WO-2007131450 Nov 2007 WO
WO-2007141668 Dec 2007 WO
WO-2008055423 May 2008 WO
WO-2010091593 Aug 2010 WO
WO-2010145468 Dec 2010 WO
WO-2011045672 Apr 2011 WO
WO-2011063970 Jun 2011 WO
WO-2011079932 Jul 2011 WO
WO-2011121326 Oct 2011 WO
WO-2011124033 Oct 2011 WO
WO-2011125058 Oct 2011 WO
WO-2011146372 Nov 2011 WO
WO-2012088675 Jul 2012 WO
WO-2012109371 Aug 2012 WO
WO-2012129787 Oct 2012 WO
WO-2012129812 Oct 2012 WO
WO-2012142293 Oct 2012 WO
Non-Patent Literature Citations (26)
Entry
ECF ‘Modeling Forum’ (“All my mods parti” Discussion in Modding forum started by Raidy, Oct. 26, 2010 on www.e-cigarette-forum.com)—Accessed Jun. 26, 2015.
International Preliminary Report dated Nov. 27, 2014.
International Search Report and Written Opinion for PCT/US13/24228 dated Apr. 9, 2013.
International Search Report and Written Opinion for PCT/US13/24211 dated Apr. 19, 2013.
International Search Report and Written Opinion for PCT/US13/24219 dated Apr. 22, 2013.
International Search Report and Written Opinion for PCT/US13/24229 dated Apr. 22, 2013.
International Search Report and Written Opinion for PCT/US13/24215 dated Apr. 22, 2013.
International Search Report and Written Opinion for PCT/US13/24222 dated Apr. 24, 2013.
International Search Report and Written Opinion for PCT/US 13/27424 dated Apr. 25, 2013.
International Search Report and Written Opinion for PCT/US 13/27 432 dated May 2, 2013.
International Search Report and Written Opinion for PCT/US13/24224 dated May 13, 2013.
U.S. Appl. No. 13/843,028, filed Mar. 15, 2013, to Fath et al.
U.S. Appl. No. 13/843,449, filed Mar. 15, 2013, to Fath et al.
European Search Report dated Dec. 11, 2015.
Japanese Office Action dated Nov. 29, 2016 issued in corresponding Japanese Application No. 2014-558894 (with translation).
Chinese Office Action dated Dec. 21, 2016 issued in corresponding Chinese Application No. 201380010642.3 (with translation).
European Office Action dated Jan. 30, 2017 issued in corresponding European Application No. 13751097.0-1666.
Russian Office Action dated Mar. 3, 2017 issued in corresponding Russian Application No. 2014138085.
Chinese Office Action dated Jun. 23, 2017 issued in corresponding Chinese Application No. 201380010642.3 (with translation).
ECF “Modding Forum” (“All my mods part1” Discussion in Modding Forum started by Raidy, Oct. 26, 2010 on www.e-cigarette-forum.com).
Zakecig (“ViviTank Stainless U Wick and Stainless wire”, Youtube.com video published on Jul. 30, 2012; www.youtube.com/watch?v-0azcHg8rbis).
Zakecig (VifiTank Stainless U Wick and Stainless wire, Youtube.com video published on Jul. 30, 2012; www.youtube.com/watch?v-0azcH8rbis screencapture from 0:11/0.23.
Examination Report for corresponding Malaysian Application No. PI 2014002422 dated Feb. 28, 2018.
Japanese Office Action dated Oct. 23, 2018 issued in corresponding Japanese Application No. 2017-221387 (with translation).
European Office Action dated Mar. 21, 2019 issued in corresponding European Application No. 18210978.5.
Examination Report for corresponding Indian Application No. 6268/CHENP/2014 dated Apr. 29, 2019 and English translation thereof.
Related Publications (1)
Number Date Country
20180160740 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
61601889 Feb 2012 US
Divisions (2)
Number Date Country
Parent 15040763 Feb 2016 US
Child 15882310 US
Parent 13774609 Feb 2013 US
Child 15040763 US