An embodiment relates generally to an electronic system, and more particularly to a system for media scan.
Modern consumer and industrial electronic devices require storage of information, such as digital photographs, electronic mail, calendar, or contacts. These devices can be electronic systems, such as notebook computers, desktop computers, servers, televisions, and projectors, and are providing increasing levels of functionality to support modern life. Preserving the user data stored in the storage devices is of the utmost importance.
As recording technologies advance in hard disk drives, the Tracks-Per-Inch (TPI) has increased. This has become increasingly challenging to maintain the writer element over the center of the track as the tracks have become closer together. Manufacturing processes have recorded a per track position reference for the entire media. The per track position reference can be susceptible to transient media flaws caused by debris on the media surface. When the per track position reference is recorded in the presence of transient debris, the tracks can be susceptible to unreliable data read back due to mis-positioning of the per track position reference.
Storage systems can include storage devices, such as hard disk drives (HDD), solid state drives (SSD), hybrid drives, and optical storage devices. During the manufacturing processes, the foundation is laid for the performance and data reliability of the storage systems. The management of the media is a key piece the functional preparation of the end product. Debris or damage to the media should be detected and blocked from use in order to preserve data reliability and prevent subsequent damage to the head.
While the manufacturing scan activity has been extremely beneficial, it nevertheless has not yet been able to accommodate the transient nature of debris or media damage caused by head-disk interaction (HDI). HDDs have demonstrated that over 60% of failed drives are caused by head wear, as a result of excessive usage, damage from debris, and head-disk interaction caused by rapid changes in flying height due to damaged areas. As a result, the detection and avoidance of these areas of debris and media damage can extend the life and performance of the storage system.
A need still remains for an electronic system as various embodiments with media scan mechanism for providing reliable data while not prematurely wear-out the head or spreading debris across additional areas of the media. In view of the ever-increasing commercial competitive pressures, along with growing consumer expectations and the diminishing opportunities for meaningful product differentiation in the marketplace, it is increasingly critical that answers be found to these problems. Additionally, the need to reduce costs, improve efficiencies and performance, and meet competitive pressures adds an even greater urgency to the critical necessity for finding answers to these problems.
Solutions to these problems have been long sought but prior developments have not taught or suggested any solutions and, thus, solutions to these problems have long eluded those skilled in the art.
Certain embodiments have other steps or elements in addition to or in place of those mentioned above. The steps or elements will become apparent to those skilled in the art from a reading of the following detailed description when taken with reference to the accompanying drawings.
The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the various embodiments. It is to be understood that other embodiments would be evident based on the present disclosure, and that system, process, or mechanical changes can be made without departing from the scope of an embodiment.
In the following description, numerous specific details are given to provide a thorough understanding of the various embodiments. However, it will be apparent that the various embodiments can be practiced without these specific details. In order to avoid obscuring an embodiment, some well-known circuits, system configurations, and process steps are not disclosed in detail.
The drawings showing embodiments of the system are semi-diagrammatic, and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown exaggerated in the drawing figures. Similarly, although the views in the drawings for ease of description generally show similar orientations, this depiction in the figures is arbitrary for the most part. Generally, the various embodiments can be operated in any orientation.
Referring now to
The electronic system 100 including a head 102 actuated over a media 104. The head 102 can be mounted to a flex arm 118 attached to an actuator arm 122. The head 102 (
The media 104 is a structure for storing information on data tracks 124. For example, the media 104 can be made of an aluminum alloy, ceramic/glass, or a similar non-magnetic material. The top and bottom surfaces of the media 104 can be covered with magnetic material deposited on one or both sides of the media 104 to form a coating layer capable of magnetization. As an example, the media 104 can be a disk platter for one embodiment of the electronic system 100 as a rotating storage system, such as a hard disk drive (HDD). As a further example, the media 104 can be a linear magnetic strip for one embodiment of the electronic system 100 as a linear storage system, such as a tape drive.
The laser 106, as an example, can be a laser diode or other solid-state based lasers. In addition, embodiments can employ any suitable techniques for focusing the laser 106 on the media 104, such as a suitable waveguide, magnifying lens, or other suitable optics. The laser 106 is increased to a write power in order to heat the disk, thereby decreasing the coercivity of the media 104 so that the data is written more reliably on the data tracks 124.
The spindle motor 116 can rotate the media 104, about a center of the media 104, at constant or varying speed 107. For illustrative purposes, the spindle motor 116 is described as a motor for a rotation, although it is understood that the spindle motor 116 can be other actuating motors for a tape drive, as an example.
As examples, a head actuation motor (HAM) 130 can be a voice coil motor assembly, a stepper motor assembly, or a combination thereof. The head actuation motor (HAM) 130 can generate a torque or force for positioning the head 102. The HAM 130 can operate in conjunction with a piezoelectric control on the head 102.
A tapered end of the flex arm 118 can support the head 102. The flex arm 118 can be mounted to the actuator arm 122, which is pivoted around a bearing assembly 126 by the torque generated by the head actuation motor 130. The head 102 can include a single instance of the write element 110 and a single instance of the read element 112 that is narrower than the write element 110. The head 102 can fly over the media 104 at a dynamically adjustable span of the flying height 108, which represents a vertical displacement between the head 102 and the media 104. The head 102 can be positioned by the flex arm 118 and the actuator arm 122 and can have the flying height 108 adjusted by control circuitry 138.
The head 102 can be positioned over the media 104 along an arc shaped path between an inner diameter of the media 104 and outer diameter of the media 104. For illustrative purposes, the actuator arm 122 and the head actuation motor 130 are configured for rotary movement of the head 102. The actuator arm 122 and the head actuation motor 130 can be configured to have a different movement. For example, the actuator arm 122 and the head actuation motor 130 could be configured to have a linear movement resulting in the head 102 traveling along a radius of the media 104.
The head 102 can be positioned over the media 104 to create magnetic transitions in the media 104 or detect magnetic transitions from the data tracks 124 recorded in the coating layer that can be used to represent written data or read data, respectively. The position of the head 102 and the speed 107 of the media 104 can be controlled by the control circuitry 138. Examples of the control circuitry 138 can include a processor, an application specific integrated circuit (ASIC) an embedded processor, a microprocessor, a hardware control logic, a hardware finite state machine (FSM), a digital signal processor (DSP), digital circuitry, analog circuitry, optical circuitry, or a combination thereof. The control circuitry 138 can also include memory devices, such as a volatile memory, a nonvolatile memory, or a combination thereof. For example, the nonvolatile storage can be non-volatile random access memory (NVRAM) or Flash memory and a volatile storage can be static random access memory (SRAM) or dynamic random access memory (DRAM).
A system interface 140 can couple the control circuitry 138 to a host electronics (not shown). The system interface 140 can transfer interface tasks 142 between the host electronics and the control circuitry 138. The interface tasks 142 can be encoded or decoded by the control circuitry 138 in preparation for transfer to or from the media 104.
The control circuitry 138 can be configured to control the spindle motor 116 for adjusting the speed 107 of the media 104. The control circuitry 138 can be configured to cause the head 102 to move relative to the media 104, or vice versa. The control circuitry 138 can be configured to control the speed 107 of the media 104 and the position of the head 102 by reading servo sectors 114 strategically placed on the media 104. The servo sectors 114 can be recorded on the media 104 during a manufacturing process. The control circuitry 138 can also be configured to scan the media 104 in order to detect the location of debris on the media 104 that can be caused by head-disk interaction.
In an embodiment, the electronic system 100 further comprises control circuitry 138 configured to execute the flow diagrams of
In an action 144, the head 102 is flown over the media 104 during execution by the electronic system 100, such as a manufacturing test fixture, a hard disk drive, a tape drive, or a hybrid drive.
In an action 146, the control circuitry can be configured to control a head actuation motor for positioning the head over the media. The control circuitry 138 can detect the actual position of the head relative to the intended position of the head by reading the servo sectors and monitoring a position error signal (PES).
In an action 148, the control circuitry can be configured to detect a head-disk interaction based at least in part on a position error signal (PES) of the head. It is understood that an instantaneous increase in the PES can indicate debris or media damage. The locations of the PES anomaly can be stored for further analysis.
In an action 150, the control circuitry can be configured to generate a media map of locations in the media having the PES based at least in part on the detected HDI. The media map can include the location and approximate size of the damaged area on the media. The media map can be used in the allocation of spare tracks and sectors and to establish keep-out areas reserved from use during normal user operations.
It has been discovered that an embodiment of the electronic system 100 can improve manufacturing yield. The electronic system 100 can provide a manufacturing mechanism that verifies the condition of the media 104 prior to recording the reference track location for user operation. Embodiments can allow the manufacturing process to identify and reserve damaged areas of the media 104 while generating the media map, which can be utilized in the normal operation of the electronic system 100 to avoid known media damage locations.
Referring now to
A magnitude of the PES 210 can be monitored by the control circuitry 138 for generating the HAM control signal 120 to prevent large tracking errors normally observed when debris is present on the media 104. The control circuitry 138 can also record the location of severe occurrences of the PES 210 based on thresholds established for the detection of the head-disk interaction.
It has been discovered that the debris caused by the head-disk interaction (HDI) can modify the reference position 208 during the manufacturing process. If the modification of the reference position 208 is not addressed during the manufacturing process, long term data reliability problems can occur. Embodiments of the electronic system 100 of
Referring now to
The HDI band 306 can be an input to an amplitude detector 308, such as a first order low-pass filter, for performing a full-wave rectification of the HDI band 306. The amplitude detector 308 can produce the PES amplitude 310. A peak detector 312 can monitor the PES amplitude 310 for detecting a PES peak 313.
A wedge counter 314 can be coupled to the peak detector 312 for monitoring the wedge number of the servo sectors 114 of
The activation of the hard HDI threshold 318 or the soft HDI threshold 320 can cause the current sector number output of the wedge counter 314 to be written to a memory log 322 for further processing as a potential problem location or transient error. The hard HDI threshold 318 and the soft HDI threshold 320 can be adjusted by the control circuitry 138 of
The output of the hard HDI threshold 318 can activate a retry counter module 324. The retry counter module 324 can be coupled to a scan window generator 326. The scan window generator 326 can limit the samples of the PES 210 to a fixed number of the servo sectors 114. The effect of the HDI is localized to the area around the point of contact between the head 102 of
The retry counter module 324 can hold the scan window generator 326 from altering the sampling window of the PES input 302. The retry counter module 324 can be configured to halt the progression of the scan window generator 326 until a terminal retry count is reached or the hard HDI threshold 318 is not detected on one of the retries. If the retry counter module 324 is initiated by the detection of the hard HDI threshold 318, but it is not asserted on a subsequent retry, the content of the wedge counter 314 remains in the memory log 322 as a transient error. If the hard HDI threshold 318 is asserted on each of the scans until the terminal count is detected, the wedge location output of the wedge counter 314 is written to a map-out memory 328. The map-out memory 328 can be a volatile or non-volatile memory device, a communications port for manufacturing interface, a reserved area of the media, or a combination thereof. The contents of the map-out memory 328 can be collected throughout the manufacturing process and the associated data tracks 124 of
A track counter module 330 can keep a tally of the number of the data tracks 124 of
It has been discovered that the control circuitry 138 can configure the HDI detection engine 301 to adjust the levels of the hard HDI threshold 318, the soft HDI threshold 320, the retry counter module 324, and the parameters of the band-pass filter 304. The control circuitry 138 can also assign the location and attributes of the memory log 322 and the map-out memory 328. The adjustments allow the embodiments to be adapted for different mechanical structures of the head 102 and the flex arm 118. The control circuitry 138 can adjust the configuration in order to adapt to changes in the flying height 108 of
Referring now to
The PES input 302 can have a positive or negative sign indicating the direction of the position error relative to the center of the data track 124 of
The width of the HDI scan window 404 can be adjusted by the control circuitry 138 of
The HDI scan window 404 can incrementally move across the wedge numbers 402 of the data track 124 under analysis. If none of the PES input 302 exceeds the hard HDI threshold 318 or the soft HDI threshold 320, the HDI scan window 404 will reset to the beginning of the wedge numbers 402 as the track counter module 330 of
It has been discovered that the HDI scan window 404 can be adjusted dynamically to further identify the location of any debris or damage to the media 104. Each of the wedge numbers 402 that is identified as having exceeded the hard HDI threshold 318 or the soft HDI threshold 320 can be saved in the memory log 322 of
Referring now to
An HDI location 502 can be identified when the PES amplitude 310 exceeds the hard HDI threshold 318. The verification of the HDI location 502 can include multiple retries of the sampling of the HDI scan window 404 of
It is understood that the values indicated for the hard HDI threshold 318 or the soft HDI threshold 320 is an example only and other values can be used as appropriate to the electronic system 100 of
Referring now to
The HDI location 502 can be a single occurrence of the debris or damage to one of the data tracks 124 on the media 104 or it can be an HDI cluster 604 of such occurrences that can span multiple of the data tracks 124. The occurrence of the HDI cluster 604 can present a risk to long term reliability if the damaged area of the data tracks 124, within the HDI cluster 604, are accessed. The debris that can be generated by the HDI cluster 604 can be spread by attempted use of the damaged area of the data tracks 124. An embodiment of the HDI detection engine 301 of
A suspected HDI 606 can be identified when the PES amplitude 310 of
It is understood that the embodiment of the media map 601 can be different. It could be captured in an associated list, table, or other graphical form. The media map 601 can be maintained in the manufacturing process, stored in a reserved area of the media 104, or a combination thereof. The media map 601 can form the basis of a spare track and sector strategy operable by the user in the execution of normal field operation.
Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC. In addition, any of the above described modules and components may be implemented in firmware, software, hardware, or any combination thereof.
In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.
The resulting method, process, apparatus, device, product, and/or system is straightforward, cost-effective, uncomplicated, highly versatile, accurate, sensitive, and effective, and can be implemented by adapting known components for ready, efficient, and economical manufacturing, application, and utilization. Another important aspect of various embodiments is that they valuably supports and services the historical trend of reducing costs, simplifying systems, and increasing performance.
These and other valuable aspects of the various embodiments consequently further the state of the technology to at least the next level.
While the various embodiments have been described in conjunction with a specific best mode, it is to be understood that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the aforegoing description. Accordingly, the embodiments are intended to embrace all such alternatives, modifications, and variations that fall within the scope of the included claims. All matters set forth herein or shown in the accompanying drawings are to be interpreted in an illustrative and non-limiting sense.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/028,761 filed Jul. 24, 2014, and the subject matter thereof is incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
6014283 | Codilian et al. | Jan 2000 | A |
6052076 | Patton, III et al. | Apr 2000 | A |
6052250 | Golowka et al. | Apr 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6078453 | Dziallo et al. | Jun 2000 | A |
6091564 | Codilian et al. | Jul 2000 | A |
6094020 | Goretzki et al. | Jul 2000 | A |
6097559 | Ottesen | Aug 2000 | A |
6101065 | Alfred et al. | Aug 2000 | A |
6104153 | Codilian et al. | Aug 2000 | A |
6105432 | Taniguchi et al. | Aug 2000 | A |
6122133 | Nazarian et al. | Sep 2000 | A |
6122135 | Stich | Sep 2000 | A |
6141175 | Nazarian et al. | Oct 2000 | A |
6160368 | Plutowski | Dec 2000 | A |
6181502 | Hussein et al. | Jan 2001 | B1 |
6195222 | Heminger et al. | Feb 2001 | B1 |
6196062 | Wright et al. | Mar 2001 | B1 |
6198584 | Codilian et al. | Mar 2001 | B1 |
6198590 | Codilian et al. | Mar 2001 | B1 |
6204988 | Codilian et al. | Mar 2001 | B1 |
6243223 | Elliott et al. | Jun 2001 | B1 |
6281652 | Ryan et al. | Aug 2001 | B1 |
6285521 | Hussein | Sep 2001 | B1 |
6292320 | Mason et al. | Sep 2001 | B1 |
6310742 | Nazarian et al. | Oct 2001 | B1 |
6320718 | Bouwkamp et al. | Nov 2001 | B1 |
6342984 | Hussein et al. | Jan 2002 | B1 |
6347018 | Kadlec et al. | Feb 2002 | B1 |
6369972 | Codilian et al. | Apr 2002 | B1 |
6369974 | Asgari et al. | Apr 2002 | B1 |
6462896 | Codilian et al. | Oct 2002 | B1 |
6476996 | Ryan | Nov 2002 | B1 |
6484577 | Bennett | Nov 2002 | B1 |
6493169 | Ferris et al. | Dec 2002 | B1 |
6496324 | Golowka et al. | Dec 2002 | B1 |
6498698 | Golowka et al. | Dec 2002 | B1 |
6507450 | Elliott | Jan 2003 | B1 |
6534936 | Messenger et al. | Mar 2003 | B2 |
6538839 | Ryan | Mar 2003 | B1 |
6545835 | Codilian et al. | Apr 2003 | B1 |
6549359 | Bennett et al. | Apr 2003 | B1 |
6549361 | Bennett et al. | Apr 2003 | B1 |
6560056 | Ryan | May 2003 | B1 |
6567229 | Mallary | May 2003 | B1 |
6568268 | Bennett | May 2003 | B1 |
6574062 | Bennett et al. | Jun 2003 | B1 |
6577465 | Bennett et al. | Jun 2003 | B1 |
6600622 | Smith | Jul 2003 | B1 |
6614615 | Ju et al. | Sep 2003 | B1 |
6614618 | Sheh et al. | Sep 2003 | B1 |
6636377 | Yu et al. | Oct 2003 | B1 |
6683737 | Gong | Jan 2004 | B2 |
6690536 | Ryan | Feb 2004 | B1 |
6693764 | Sheh et al. | Feb 2004 | B1 |
6707635 | Codilian et al. | Mar 2004 | B1 |
6710953 | Vallis et al. | Mar 2004 | B1 |
6710966 | Codilian et al. | Mar 2004 | B1 |
6714371 | Codilian | Mar 2004 | B1 |
6714372 | Codilian et al. | Mar 2004 | B1 |
6724564 | Codilian et al. | Apr 2004 | B1 |
6731450 | Codilian et al. | May 2004 | B1 |
6735041 | Codilian et al. | May 2004 | B1 |
6738220 | Codilian | May 2004 | B1 |
6747837 | Bennett | Jun 2004 | B1 |
6760186 | Codilian et al. | Jul 2004 | B1 |
6788483 | Ferris et al. | Sep 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6795268 | Ryan | Sep 2004 | B1 |
6819518 | Melkote et al. | Nov 2004 | B1 |
6826006 | Melkote et al. | Nov 2004 | B1 |
6826007 | Patton, III | Nov 2004 | B1 |
6847502 | Codilian | Jan 2005 | B1 |
6850383 | Bennett | Feb 2005 | B1 |
6850384 | Bennett | Feb 2005 | B1 |
6867944 | Ryan | Mar 2005 | B1 |
6876508 | Patton, III et al. | Apr 2005 | B1 |
6882496 | Codilian et al. | Apr 2005 | B1 |
6885514 | Codilian et al. | Apr 2005 | B1 |
6900958 | Yi et al. | May 2005 | B1 |
6900959 | Gardner et al. | May 2005 | B1 |
6903897 | Wang et al. | Jun 2005 | B1 |
6914740 | Tu et al. | Jul 2005 | B1 |
6914743 | Narayana et al. | Jul 2005 | B1 |
6920004 | Codilian et al. | Jul 2005 | B1 |
6924959 | Melkote et al. | Aug 2005 | B1 |
6924960 | Melkote et al. | Aug 2005 | B1 |
6924961 | Melkote et al. | Aug 2005 | B1 |
6927929 | Gong | Aug 2005 | B2 |
6934114 | Codilian et al. | Aug 2005 | B1 |
6934135 | Ryan | Aug 2005 | B1 |
6937420 | McNab et al. | Aug 2005 | B1 |
6937423 | Ngo et al. | Aug 2005 | B1 |
6952322 | Codilian et al. | Oct 2005 | B1 |
6954324 | Tu et al. | Oct 2005 | B1 |
6958881 | Codilian et al. | Oct 2005 | B1 |
6963465 | Melkote et al. | Nov 2005 | B1 |
6965488 | Bennett | Nov 2005 | B1 |
6967458 | Bennett et al. | Nov 2005 | B1 |
6967811 | Codilian et al. | Nov 2005 | B1 |
6970319 | Bennett et al. | Nov 2005 | B1 |
6972539 | Codilian et al. | Dec 2005 | B1 |
6972540 | Wang et al. | Dec 2005 | B1 |
6972922 | Subrahmanyam et al. | Dec 2005 | B1 |
6975480 | Codilian et al. | Dec 2005 | B1 |
6977789 | Cloke | Dec 2005 | B1 |
6980389 | Kupferman | Dec 2005 | B1 |
6987636 | Chue et al. | Jan 2006 | B1 |
6987639 | Yu | Jan 2006 | B1 |
6989954 | Lee et al. | Jan 2006 | B1 |
6992848 | Agarwal et al. | Jan 2006 | B1 |
6992851 | Cloke | Jan 2006 | B1 |
6992852 | Ying et al. | Jan 2006 | B1 |
6995941 | Miyamura et al. | Feb 2006 | B1 |
6999263 | Melkote et al. | Feb 2006 | B1 |
6999267 | Melkote et al. | Feb 2006 | B1 |
7006320 | Bennett et al. | Feb 2006 | B1 |
7016134 | Agarwal et al. | Mar 2006 | B1 |
7023637 | Kupferman | Apr 2006 | B1 |
7023640 | Codilian et al. | Apr 2006 | B1 |
7027256 | Subrahmanyam et al. | Apr 2006 | B1 |
7027257 | Kupferman | Apr 2006 | B1 |
7035026 | Codilian et al. | Apr 2006 | B2 |
7046463 | Gay Sam et al. | May 2006 | B2 |
7046472 | Melkote et al. | May 2006 | B1 |
7050249 | Chue et al. | May 2006 | B1 |
7050254 | Yu et al. | May 2006 | B1 |
7050258 | Codilian | May 2006 | B1 |
7054098 | Yu et al. | May 2006 | B1 |
7061714 | Yu | Jun 2006 | B1 |
7064918 | Codilian et al. | Jun 2006 | B1 |
7068451 | Wang et al. | Jun 2006 | B1 |
7068459 | Cloke et al. | Jun 2006 | B1 |
7068461 | Chue et al. | Jun 2006 | B1 |
7068463 | Ji et al. | Jun 2006 | B1 |
7088547 | Wang et al. | Aug 2006 | B1 |
7095578 | Ma | Aug 2006 | B2 |
7095579 | Ryan et al. | Aug 2006 | B1 |
7110208 | Miyamura et al. | Sep 2006 | B1 |
7110214 | Tu et al. | Sep 2006 | B1 |
7113362 | Lee et al. | Sep 2006 | B1 |
7113365 | Ryan et al. | Sep 2006 | B1 |
7116505 | Kupferman | Oct 2006 | B1 |
7126781 | Bennett | Oct 2006 | B1 |
7158325 | Hu | Jan 2007 | B1 |
7158329 | Ryan | Jan 2007 | B1 |
7180703 | Subrahmanyam et al. | Feb 2007 | B1 |
7184230 | Chue et al. | Feb 2007 | B1 |
7196864 | Yi et al. | Mar 2007 | B1 |
7199966 | Tu et al. | Apr 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7206159 | White | Apr 2007 | B2 |
7209321 | Bennett | Apr 2007 | B1 |
7212364 | Lee | May 2007 | B1 |
7212374 | Wang et al. | May 2007 | B1 |
7215504 | Bennett | May 2007 | B1 |
7224546 | Orakcilar et al. | May 2007 | B1 |
7248426 | Weerasooriya et al. | Jul 2007 | B1 |
7251098 | Wang et al. | Jul 2007 | B1 |
7253582 | Ding et al. | Aug 2007 | B1 |
7253989 | Lau et al. | Aug 2007 | B1 |
7265933 | Phan et al. | Sep 2007 | B1 |
7289288 | Tu | Oct 2007 | B1 |
7298574 | Melkote et al. | Nov 2007 | B1 |
7301717 | Lee et al. | Nov 2007 | B1 |
7304819 | Melkote et al. | Dec 2007 | B1 |
7330019 | Bennett | Feb 2008 | B1 |
7330327 | Chue et al. | Feb 2008 | B1 |
7333280 | Lifchits et al. | Feb 2008 | B1 |
7333290 | Kupferman | Feb 2008 | B1 |
7339761 | Tu et al. | Mar 2008 | B1 |
7365932 | Bennett | Apr 2008 | B1 |
7388728 | Chen et al. | Jun 2008 | B1 |
7391583 | Sheh et al. | Jun 2008 | B1 |
7391584 | Sheh et al. | Jun 2008 | B1 |
7433143 | Ying et al. | Oct 2008 | B1 |
7440210 | Lee | Oct 2008 | B1 |
7440225 | Chen et al. | Oct 2008 | B1 |
7450334 | Wang et al. | Nov 2008 | B1 |
7450336 | Wang et al. | Nov 2008 | B1 |
7453661 | Jang et al. | Nov 2008 | B1 |
7457071 | Sheh | Nov 2008 | B1 |
7466509 | Chen et al. | Dec 2008 | B1 |
7468855 | Weerasooriya et al. | Dec 2008 | B1 |
7477471 | Nemshick et al. | Jan 2009 | B1 |
7480116 | Bennett | Jan 2009 | B1 |
7489464 | McNab et al. | Feb 2009 | B1 |
7492546 | Miyamura | Feb 2009 | B1 |
7495857 | Bennett | Feb 2009 | B1 |
7499236 | Lee et al. | Mar 2009 | B1 |
7502192 | Wang et al. | Mar 2009 | B1 |
7502195 | Wu et al. | Mar 2009 | B1 |
7502197 | Chue | Mar 2009 | B1 |
7505223 | McCornack | Mar 2009 | B1 |
7542225 | Ding et al. | Jun 2009 | B1 |
7548392 | Desai et al. | Jun 2009 | B1 |
7551390 | Wang et al. | Jun 2009 | B1 |
7558016 | Le et al. | Jul 2009 | B1 |
7573670 | Ryan et al. | Aug 2009 | B1 |
7576941 | Chen et al. | Aug 2009 | B1 |
7580212 | Li et al. | Aug 2009 | B1 |
7583470 | Chen et al. | Sep 2009 | B1 |
7595954 | Chen et al. | Sep 2009 | B1 |
7602575 | Lifchits et al. | Oct 2009 | B1 |
7616399 | Chen et al. | Nov 2009 | B1 |
7619844 | Bennett | Nov 2009 | B1 |
7626782 | Yu et al. | Dec 2009 | B1 |
7630162 | Zhao et al. | Dec 2009 | B2 |
7639447 | Yu et al. | Dec 2009 | B1 |
7656604 | Liang et al. | Feb 2010 | B1 |
7656607 | Bennett | Feb 2010 | B1 |
7660067 | Ji et al. | Feb 2010 | B1 |
7663835 | Yu et al. | Feb 2010 | B1 |
7675707 | Liu et al. | Mar 2010 | B1 |
7679854 | Narayana et al. | Mar 2010 | B1 |
7688534 | McCornack | Mar 2010 | B1 |
7688538 | Chen et al. | Mar 2010 | B1 |
7688539 | Bryant et al. | Mar 2010 | B1 |
7697233 | Bennett et al. | Apr 2010 | B1 |
7701661 | Bennett | Apr 2010 | B1 |
7710676 | Chue | May 2010 | B1 |
7715138 | Kupferman | May 2010 | B1 |
7729079 | Huber | Jun 2010 | B1 |
7733189 | Bennett | Jun 2010 | B1 |
7746592 | Liang et al. | Jun 2010 | B1 |
7746594 | Guo et al. | Jun 2010 | B1 |
7746595 | Guo et al. | Jun 2010 | B1 |
7760461 | Bennett | Jul 2010 | B1 |
7800853 | Guo et al. | Sep 2010 | B1 |
7800856 | Bennett et al. | Sep 2010 | B1 |
7800857 | Calaway et al. | Sep 2010 | B1 |
7839591 | Weerasooriya et al. | Nov 2010 | B1 |
7839595 | Chue et al. | Nov 2010 | B1 |
7839600 | Babinski et al. | Nov 2010 | B1 |
7843662 | Weerasooriya et al. | Nov 2010 | B1 |
7852588 | Ferris et al. | Dec 2010 | B1 |
7852592 | Liang et al. | Dec 2010 | B1 |
7864481 | Kon et al. | Jan 2011 | B1 |
7864482 | Babinski et al. | Jan 2011 | B1 |
7869155 | Wong | Jan 2011 | B1 |
7876522 | Calaway et al. | Jan 2011 | B1 |
7876523 | Panyavoravaj et al. | Jan 2011 | B1 |
7916415 | Chue | Mar 2011 | B1 |
7916416 | Guo et al. | Mar 2011 | B1 |
7916420 | McFadyen et al. | Mar 2011 | B1 |
7916422 | Guo et al. | Mar 2011 | B1 |
7929238 | Vasquez | Apr 2011 | B1 |
7961422 | Chen et al. | Jun 2011 | B1 |
7965459 | Narayanan | Jun 2011 | B2 |
7990641 | Tomita | Aug 2011 | B2 |
8000053 | Anderson | Aug 2011 | B1 |
8031423 | Tsai et al. | Oct 2011 | B1 |
8054022 | Ryan et al. | Nov 2011 | B1 |
8059357 | Knigge et al. | Nov 2011 | B1 |
8059360 | Melkote et al. | Nov 2011 | B1 |
8072703 | Calaway et al. | Dec 2011 | B1 |
8077428 | Chen et al. | Dec 2011 | B1 |
8078901 | Meyer et al. | Dec 2011 | B1 |
8081395 | Ferris | Dec 2011 | B1 |
8085020 | Bennett | Dec 2011 | B1 |
8116023 | Kupferman | Feb 2012 | B1 |
8145934 | Ferris et al. | Mar 2012 | B1 |
8179626 | Ryan et al. | May 2012 | B1 |
8189286 | Chen et al. | May 2012 | B1 |
8213106 | Guo et al. | Jul 2012 | B1 |
8254222 | Tang | Aug 2012 | B1 |
8300348 | Liu et al. | Oct 2012 | B1 |
8315005 | Zou et al. | Nov 2012 | B1 |
8320069 | Knigge et al. | Nov 2012 | B1 |
8351174 | Gardner et al. | Jan 2013 | B1 |
8358114 | Ferris et al. | Jan 2013 | B1 |
8358145 | Ferris et al. | Jan 2013 | B1 |
8390367 | Bennett | Mar 2013 | B1 |
8432031 | Agness et al. | Apr 2013 | B1 |
8432629 | Rigney et al. | Apr 2013 | B1 |
8451697 | Rigney et al. | May 2013 | B1 |
8482873 | Chue et al. | Jul 2013 | B1 |
8498076 | Sheh et al. | Jul 2013 | B1 |
8498172 | Patton, III et al. | Jul 2013 | B1 |
8508881 | Babinski et al. | Aug 2013 | B1 |
8531798 | Xi et al. | Sep 2013 | B1 |
8537486 | Liang et al. | Sep 2013 | B2 |
8542455 | Huang et al. | Sep 2013 | B2 |
8553351 | Narayana et al. | Oct 2013 | B1 |
8564899 | Lou et al. | Oct 2013 | B2 |
8576506 | Wang et al. | Nov 2013 | B1 |
8605382 | Mallary et al. | Dec 2013 | B1 |
8605384 | Liu et al. | Dec 2013 | B1 |
8610391 | Yang et al. | Dec 2013 | B1 |
8611040 | Xi et al. | Dec 2013 | B1 |
8619385 | Guo et al. | Dec 2013 | B1 |
8630054 | Bennett et al. | Jan 2014 | B2 |
8630059 | Chen et al. | Jan 2014 | B1 |
8634154 | Rigney et al. | Jan 2014 | B1 |
8634283 | Rigney et al. | Jan 2014 | B1 |
8643976 | Wang et al. | Feb 2014 | B1 |
8649121 | Smith et al. | Feb 2014 | B1 |
8654466 | McFadyen | Feb 2014 | B1 |
8654467 | Wong et al. | Feb 2014 | B1 |
8665546 | Zhao et al. | Mar 2014 | B1 |
8665551 | Rigney et al. | Mar 2014 | B1 |
8670206 | Liang et al. | Mar 2014 | B1 |
8687312 | Liang | Apr 2014 | B1 |
8693123 | Guo et al. | Apr 2014 | B1 |
8693134 | Xi et al. | Apr 2014 | B1 |
8699173 | Kang et al. | Apr 2014 | B1 |
8711027 | Bennett | Apr 2014 | B1 |
8717696 | Ryan et al. | May 2014 | B1 |
8717699 | Ferris | May 2014 | B1 |
8717704 | Yu et al. | May 2014 | B1 |
8724245 | Smith et al. | May 2014 | B1 |
8724253 | Liang et al. | May 2014 | B1 |
8724524 | Urabe et al. | May 2014 | B2 |
8737008 | Watanabe et al. | May 2014 | B1 |
8737013 | Zhou et al. | May 2014 | B2 |
8743495 | Chen et al. | Jun 2014 | B1 |
8743503 | Tang et al. | Jun 2014 | B1 |
8743504 | Bryant et al. | Jun 2014 | B1 |
8749904 | Liang et al. | Jun 2014 | B1 |
8760796 | Lou et al. | Jun 2014 | B1 |
8767332 | Chahwan et al. | Jul 2014 | B1 |
8767343 | Helmick et al. | Jul 2014 | B1 |
8767354 | Ferris et al. | Jul 2014 | B1 |
8773787 | Beker | Jul 2014 | B1 |
8779574 | Agness et al. | Jul 2014 | B1 |
8780473 | Zhao et al. | Jul 2014 | B1 |
8780477 | Guo et al. | Jul 2014 | B1 |
8780479 | Helmick et al. | Jul 2014 | B1 |
8780489 | Gayaka et al. | Jul 2014 | B1 |
8792202 | Wan et al. | Jul 2014 | B1 |
8797664 | Guo et al. | Aug 2014 | B1 |
8804267 | Huang et al. | Aug 2014 | B2 |
8824081 | Guo et al. | Sep 2014 | B1 |
8824262 | Liu et al. | Sep 2014 | B1 |
20030002183 | Fioravanti | Jan 2003 | A1 |
20030011915 | Riddering | Jan 2003 | A1 |
20030193727 | Fioravanti et al. | Oct 2003 | A1 |
20050219725 | Ozanoglu | Oct 2005 | A1 |
20060193076 | Yori | Aug 2006 | A1 |
20080130159 | Dieron | Jun 2008 | A1 |
20080165446 | Partee | Jul 2008 | A1 |
20100035085 | Jung et al. | Feb 2010 | A1 |
20100134919 | Wilcox | Jun 2010 | A1 |
20100321812 | Tomita | Dec 2010 | A1 |
20110157736 | Contreras | Jun 2011 | A1 |
20120284493 | Lou et al. | Nov 2012 | A1 |
20130120870 | Zhou et al. | May 2013 | A1 |
20130148240 | Ferris et al. | Jun 2013 | A1 |
20130170070 | Das et al. | Jul 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
62028761 | Jul 2014 | US |