Electronic system with media scan mechanism and method of operation thereof

Information

  • Patent Grant
  • 9349401
  • Patent Number
    9,349,401
  • Date Filed
    Wednesday, October 29, 2014
    10 years ago
  • Date Issued
    Tuesday, May 24, 2016
    8 years ago
Abstract
An apparatus includes: a media; a head over the media; a read channel, coupled to the head, configured to extract data from the media; control circuitry, coupled to the read channel, configured to execute a read command; and wherein the read channel is further configured to: generate, based on extracting the data from the media, a data condition indicator, and provide, for use by the control circuitry, the data and the data condition indicator.
Description
TECHNICAL FIELD

An embodiment relates generally to an electronic system, and more particularly to a system for media scan.


BACKGROUND

Modern consumer and industrial electronic devices require storage of information, such as digital photographs, electronic mail, calendar, or contacts. These devices can be electronic systems, such as notebook computers, desktop computers, servers, televisions, and projectors, and are providing increasing levels of functionality to support modern life. Preserving the user data stored in the storage devices is of the utmost importance.


As recording technologies advance in hard disk drives, the Tracks-Per-Inch (TPI) has increased. This has become increasingly challenging to maintain the writer element over the center of the track as the tracks have become closer together. Manufacturing processes have recorded a per track position reference for the entire media. The per track position reference can be susceptible to transient media flaws caused by debris on the media surface. When the per track position reference is recorded in the presence of transient debris, the tracks can be susceptible to unreliable data read back due to mis-positioning of the per track position reference.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A, 1B, and 1C show an operational diagram of an electronic system with media scan according to one of the embodiments.



FIG. 2 shows a servo control system, of the electronic system 100, for generating a position error signal (PES), in accordance with an embodiment.



FIG. 3 is a functional block diagram of an HDI detection engine, for manufacturing media scan, in an embodiment.



FIG. 4 provides an exemplary PES waveform of one of the embodiments of a HDI detection engine.



FIG. 5 provides an exemplary HDI scan waveform of one of the embodiments of the HDI detection engine.



FIG. 6 shows a media map as recorded by the HDI detection engine in an embodiment.





DETAILED DESCRIPTION

Storage systems can include storage devices, such as hard disk drives (HDD), solid state drives (SSD), hybrid drives, and optical storage devices. During the manufacturing processes, the foundation is laid for the performance and data reliability of the storage systems. The management of the media is a key piece the functional preparation of the end product. Debris or damage to the media should be detected and blocked from use in order to preserve data reliability and prevent subsequent damage to the head.


While the manufacturing scan activity has been extremely beneficial, it nevertheless has not yet been able to accommodate the transient nature of debris or media damage caused by head-disk interaction (HDI). HDDs have demonstrated that over 60% of failed drives are caused by head wear, as a result of excessive usage, damage from debris, and head-disk interaction caused by rapid changes in flying height due to damaged areas. As a result, the detection and avoidance of these areas of debris and media damage can extend the life and performance of the storage system.


A need still remains for an electronic system as various embodiments with media scan mechanism for providing reliable data while not prematurely wear-out the head or spreading debris across additional areas of the media. In view of the ever-increasing commercial competitive pressures, along with growing consumer expectations and the diminishing opportunities for meaningful product differentiation in the marketplace, it is increasingly critical that answers be found to these problems. Additionally, the need to reduce costs, improve efficiencies and performance, and meet competitive pressures adds an even greater urgency to the critical necessity for finding answers to these problems.


Solutions to these problems have been long sought but prior developments have not taught or suggested any solutions and, thus, solutions to these problems have long eluded those skilled in the art.


Certain embodiments have other steps or elements in addition to or in place of those mentioned above. The steps or elements will become apparent to those skilled in the art from a reading of the following detailed description when taken with reference to the accompanying drawings.


The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the various embodiments. It is to be understood that other embodiments would be evident based on the present disclosure, and that system, process, or mechanical changes can be made without departing from the scope of an embodiment.


In the following description, numerous specific details are given to provide a thorough understanding of the various embodiments. However, it will be apparent that the various embodiments can be practiced without these specific details. In order to avoid obscuring an embodiment, some well-known circuits, system configurations, and process steps are not disclosed in detail.


The drawings showing embodiments of the system are semi-diagrammatic, and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown exaggerated in the drawing figures. Similarly, although the views in the drawings for ease of description generally show similar orientations, this depiction in the figures is arbitrary for the most part. Generally, the various embodiments can be operated in any orientation.


Referring now to FIGS. 1A, 1B, and 1C, therein are shown an operational diagram of an electronic system 100 according to an embodiment. The electronic system 100 can represent an apparatus for one of the various embodiments. Various embodiments can include the embodiment depicted in FIGS. 1A, 1B, and 1C which by way of an example is shown as a hard disk drive although it is understood that the electronic system 100 can be a tape drive, a solid-state hybrid disk drive, or other magnetic media-based storage device. Further for example, the electronic system 100 can represent a desktop computer, a notebook computer, a server, a tablet, a television, a household appliance, or other electronic systems utilizing magnetic media storage.


The electronic system 100 including a head 102 actuated over a media 104. The head 102 can be mounted to a flex arm 118 attached to an actuator arm 122. The head 102 (FIG. 1B) can optionally include a laser 106 for heating the media 104 during part of a write process (e.g., the head is part of an Energy-Assisted Magnetic Recording (EAMR) drive). A flying height 108 can be adjusted (e.g., by use of a heater element in the head not shown in FIG. 1B) while writing data to the media 104 or as an error recovery process during reading from the media 104. Also in an embodiment of FIG. 1B, the head 102 comprises a write element 110 (e.g., an inductive coil) and a read element 112 (e.g., a magnetoresistive read element).


The media 104 is a structure for storing information on data tracks 124. For example, the media 104 can be made of an aluminum alloy, ceramic/glass, or a similar non-magnetic material. The top and bottom surfaces of the media 104 can be covered with magnetic material deposited on one or both sides of the media 104 to form a coating layer capable of magnetization. As an example, the media 104 can be a disk platter for one embodiment of the electronic system 100 as a rotating storage system, such as a hard disk drive (HDD). As a further example, the media 104 can be a linear magnetic strip for one embodiment of the electronic system 100 as a linear storage system, such as a tape drive.


The laser 106, as an example, can be a laser diode or other solid-state based lasers. In addition, embodiments can employ any suitable techniques for focusing the laser 106 on the media 104, such as a suitable waveguide, magnifying lens, or other suitable optics. The laser 106 is increased to a write power in order to heat the disk, thereby decreasing the coercivity of the media 104 so that the data is written more reliably on the data tracks 124.


The spindle motor 116 can rotate the media 104, about a center of the media 104, at constant or varying speed 107. For illustrative purposes, the spindle motor 116 is described as a motor for a rotation, although it is understood that the spindle motor 116 can be other actuating motors for a tape drive, as an example.


As examples, a head actuation motor (HAM) 130 can be a voice coil motor assembly, a stepper motor assembly, or a combination thereof. The head actuation motor (HAM) 130 can generate a torque or force for positioning the head 102. The HAM 130 can operate in conjunction with a piezoelectric control on the head 102.


A tapered end of the flex arm 118 can support the head 102. The flex arm 118 can be mounted to the actuator arm 122, which is pivoted around a bearing assembly 126 by the torque generated by the head actuation motor 130. The head 102 can include a single instance of the write element 110 and a single instance of the read element 112 that is narrower than the write element 110. The head 102 can fly over the media 104 at a dynamically adjustable span of the flying height 108, which represents a vertical displacement between the head 102 and the media 104. The head 102 can be positioned by the flex arm 118 and the actuator arm 122 and can have the flying height 108 adjusted by control circuitry 138.


The head 102 can be positioned over the media 104 along an arc shaped path between an inner diameter of the media 104 and outer diameter of the media 104. For illustrative purposes, the actuator arm 122 and the head actuation motor 130 are configured for rotary movement of the head 102. The actuator arm 122 and the head actuation motor 130 can be configured to have a different movement. For example, the actuator arm 122 and the head actuation motor 130 could be configured to have a linear movement resulting in the head 102 traveling along a radius of the media 104.


The head 102 can be positioned over the media 104 to create magnetic transitions in the media 104 or detect magnetic transitions from the data tracks 124 recorded in the coating layer that can be used to represent written data or read data, respectively. The position of the head 102 and the speed 107 of the media 104 can be controlled by the control circuitry 138. Examples of the control circuitry 138 can include a processor, an application specific integrated circuit (ASIC) an embedded processor, a microprocessor, a hardware control logic, a hardware finite state machine (FSM), a digital signal processor (DSP), digital circuitry, analog circuitry, optical circuitry, or a combination thereof. The control circuitry 138 can also include memory devices, such as a volatile memory, a nonvolatile memory, or a combination thereof. For example, the nonvolatile storage can be non-volatile random access memory (NVRAM) or Flash memory and a volatile storage can be static random access memory (SRAM) or dynamic random access memory (DRAM).


A system interface 140 can couple the control circuitry 138 to a host electronics (not shown). The system interface 140 can transfer interface tasks 142 between the host electronics and the control circuitry 138. The interface tasks 142 can be encoded or decoded by the control circuitry 138 in preparation for transfer to or from the media 104.


The control circuitry 138 can be configured to control the spindle motor 116 for adjusting the speed 107 of the media 104. The control circuitry 138 can be configured to cause the head 102 to move relative to the media 104, or vice versa. The control circuitry 138 can be configured to control the speed 107 of the media 104 and the position of the head 102 by reading servo sectors 114 strategically placed on the media 104. The servo sectors 114 can be recorded on the media 104 during a manufacturing process. The control circuitry 138 can also be configured to scan the media 104 in order to detect the location of debris on the media 104 that can be caused by head-disk interaction.


In an embodiment, the electronic system 100 further comprises control circuitry 138 configured to execute the flow diagrams of FIG. 1C. As an example, actions 144 to 150 can represent the flow diagram where an embodiment is employing a data management mechanism for maintaining data integrity.


In an action 144, the head 102 is flown over the media 104 during execution by the electronic system 100, such as a manufacturing test fixture, a hard disk drive, a tape drive, or a hybrid drive.


In an action 146, the control circuitry can be configured to control a head actuation motor for positioning the head over the media. The control circuitry 138 can detect the actual position of the head relative to the intended position of the head by reading the servo sectors and monitoring a position error signal (PES).


In an action 148, the control circuitry can be configured to detect a head-disk interaction based at least in part on a position error signal (PES) of the head. It is understood that an instantaneous increase in the PES can indicate debris or media damage. The locations of the PES anomaly can be stored for further analysis.


In an action 150, the control circuitry can be configured to generate a media map of locations in the media having the PES based at least in part on the detected HDI. The media map can include the location and approximate size of the damaged area on the media. The media map can be used in the allocation of spare tracks and sectors and to establish keep-out areas reserved from use during normal user operations.


It has been discovered that an embodiment of the electronic system 100 can improve manufacturing yield. The electronic system 100 can provide a manufacturing mechanism that verifies the condition of the media 104 prior to recording the reference track location for user operation. Embodiments can allow the manufacturing process to identify and reserve damaged areas of the media 104 while generating the media map, which can be utilized in the normal operation of the electronic system 100 to avoid known media damage locations.


Referring now to FIG. 2, therein is shown a servo control system 201, of the electronic system 100, for generating a position error signal (PES) 210, in accordance with an embodiment. The servo control system 201 controls the head actuation motor 130 in order to position the head assembly 102 radially over the media 104. A read/write channel 202 demodulates the read signal 128 from the servo sectors 114 into an estimated position 204 for the head assembly 102 relative to the data track 124 of FIG. 1A on the media 104. The estimated position 204 is applied to a first adder 206 for subtracting a reference position 208 in order to generate the PES 210.


A magnitude of the PES 210 can be monitored by the control circuitry 138 for generating the HAM control signal 120 to prevent large tracking errors normally observed when debris is present on the media 104. The control circuitry 138 can also record the location of severe occurrences of the PES 210 based on thresholds established for the detection of the head-disk interaction.


It has been discovered that the debris caused by the head-disk interaction (HDI) can modify the reference position 208 during the manufacturing process. If the modification of the reference position 208 is not addressed during the manufacturing process, long term data reliability problems can occur. Embodiments of the electronic system 100 of FIG. 1A can allow detection of the debris caused by the head-disk interaction (HDI) in order to allow the manufacturing process the criteria to disqualify the damaged data tracks 124.


Referring now to FIG. 3, therein is shown a functional block diagram of an HDI detection engine 301, for manufacturing media scan, in an embodiment. The functional block diagram of the HDI detection engine 301 may be implemented in the control circuitry 138. In an embodiment, the HDI detection engine 301 can include a number of components/modules as shown. Those skilled in the art will recognize that some components/modules may be combined into fewer components/modules or implemented as more components/modules while achieving the same results. As shown, the HDI detection engine 301 can include a PES input 302 to a band-pass filter 304, such as an 8th order infinite impulse response (IIR) filter. The PES input 302 may be generated by controlling the head actuation motor for positioning the head over the media and processing read signals from the head as it flies over parts of the media. The band-pass filter 304 can receive the PES 210 in a raw state and pass only an HDI band 306, which can contains a particular frequency range which is determined by the HDI sensitive suspension mode of the flex arm 118 of FIG. 1A. By way of an example, the HDI band 306 can be in the range 17.5 to 21.5 kHz. It is understood that other frequency ranges are possible and that adjustments of the parameters of the band-pass filter 304 can change to a different frequency range.


The HDI band 306 can be an input to an amplitude detector 308, such as a first order low-pass filter, for performing a full-wave rectification of the HDI band 306. The amplitude detector 308 can produce the PES amplitude 310. A peak detector 312 can monitor the PES amplitude 310 for detecting a PES peak 313.


A wedge counter 314 can be coupled to the peak detector 312 for monitoring the wedge number of the servo sectors 114 of FIG. 1A. The peak detector 312 can also be coupled to an HDI threshold checker 316. The HDI threshold checker 316 can perform a hard threshold check 318 to determine if the PES peak 313 exceeds a hard HDI threshold 318, a soft HDI threshold 320, or a combination thereof.


The activation of the hard HDI threshold 318 or the soft HDI threshold 320 can cause the current sector number output of the wedge counter 314 to be written to a memory log 322 for further processing as a potential problem location or transient error. The hard HDI threshold 318 and the soft HDI threshold 320 can be adjusted by the control circuitry 138 of FIG. 1A. The hard HDI threshold 318 can be a level at which the detection of the PES peak 313 indicates that a solid repeatedly detectable error has been found that can be caused by an HDI media damage. The soft HDI threshold 320 can be a level at which the detection of the PES peak 313 indicates that a transient and possibly moveable error exists on the media 104 of FIG. 1A, which could be caused by debris in the data tracks 124. The presence of the debris in the data tracks 124 can indicate the presence of the HDI damage in a nearby one of the data tracks 124. The detection of the PES peak 313 over the soft HDI threshold 320 but not over the hard HDI threshold 318 can indicate a transient or temporary error in the data tracks 124. In some cases any debris that can cause the soft HDI threshold 320 to be activated might be swept from the media 104 in subsequent scan attempts. The memory log 322 can be stored in a volatile or non-volatile memory device, a communications port for manufacturing interface, a reserved area of the media 104, or a combination thereof.


The output of the hard HDI threshold 318 can activate a retry counter module 324. The retry counter module 324 can be coupled to a scan window generator 326. The scan window generator 326 can limit the samples of the PES 210 to a fixed number of the servo sectors 114. The effect of the HDI is localized to the area around the point of contact between the head 102 of FIG. 1B and the media 104 of FIG. 1B. By limiting the analysis to a given number of the servo sectors 114, a detailed location of the HDI can be identified.


The retry counter module 324 can hold the scan window generator 326 from altering the sampling window of the PES input 302. The retry counter module 324 can be configured to halt the progression of the scan window generator 326 until a terminal retry count is reached or the hard HDI threshold 318 is not detected on one of the retries. If the retry counter module 324 is initiated by the detection of the hard HDI threshold 318, but it is not asserted on a subsequent retry, the content of the wedge counter 314 remains in the memory log 322 as a transient error. If the hard HDI threshold 318 is asserted on each of the scans until the terminal count is detected, the wedge location output of the wedge counter 314 is written to a map-out memory 328. The map-out memory 328 can be a volatile or non-volatile memory device, a communications port for manufacturing interface, a reserved area of the media, or a combination thereof. The contents of the map-out memory 328 can be collected throughout the manufacturing process and the associated data tracks 124 of FIG. 1A are deallocated from the user capacity. The deallocation of the data tracks 124 can help prevent the spread of the debris and additional media damage caused by the head-disk interaction.


A track counter module 330 can keep a tally of the number of the data tracks 124 of FIG. 1A that have been scanned on the media 104. The track counter module 330 can be conditioned to halt the scan window generator 326 when a terminal track count is achieved. The track counter module 330 can also initialize the scan window generator 326 when a new track scan is initiated.


It has been discovered that the control circuitry 138 can configure the HDI detection engine 301 to adjust the levels of the hard HDI threshold 318, the soft HDI threshold 320, the retry counter module 324, and the parameters of the band-pass filter 304. The control circuitry 138 can also assign the location and attributes of the memory log 322 and the map-out memory 328. The adjustments allow the embodiments to be adapted for different mechanical structures of the head 102 and the flex arm 118. The control circuitry 138 can adjust the configuration in order to adapt to changes in the flying height 108 of FIG. 1B that might be required in different embodiments.


Referring now to FIG. 4, therein is shown an exemplary PES waveform 401 of one of the embodiments of a HDI detection engine in an embodiment. The exemplary PES waveform 401 depicts wedge numbers 402 along the horizontal axis and the PES input 302 along the vertical axis. An example of an HDI scan window 404 is shown sampling between wedge number 20 and wedge number 45 as an area of suspected HDI.


The PES input 302 can have a positive or negative sign indicating the direction of the position error relative to the center of the data track 124 of FIG. 1A. If the head 102 of FIG. 1A is positioned on a data track 124 with debris or damage to the media 104 of FIG. 1A, the magnitude of the PES input 302 can exceed the hard HDI threshold 318 of FIG. 3 or the soft HDI threshold 320 of FIG. 3.


The width of the HDI scan window 404 can be adjusted by the control circuitry 138 of FIG. 1A in order to verify the detection of the debris of media damage. As the scan window generator 326 increments across the wedge numbers 402, the width of the HDI scan window 404 can be adjusted in order to refine the identification of the location of the damage to the media 104. The HDI scan window 404 is shown between wedges 20 and 45 as an example only and the width of the HDI scan window 404 can differ. It is understood that the configuration of the HDI scan window 404 can be supported by an analysis algorithm that can dynamically adjust the width of the HDI scan window 404.


The HDI scan window 404 can incrementally move across the wedge numbers 402 of the data track 124 under analysis. If none of the PES input 302 exceeds the hard HDI threshold 318 or the soft HDI threshold 320, the HDI scan window 404 will reset to the beginning of the wedge numbers 402 as the track counter module 330 of FIG. 3 increments to the beginning of the next instance of the data track 124.


It has been discovered that the HDI scan window 404 can be adjusted dynamically to further identify the location of any debris or damage to the media 104. Each of the wedge numbers 402 that is identified as having exceeded the hard HDI threshold 318 or the soft HDI threshold 320 can be saved in the memory log 322 of FIG. 3 or the map-out memory 328 of FIG. 3 for later configuration of the available instances of the data tracks 124 on the media 104.


Referring now to FIG. 5, therein is shown an exemplary HDI scan waveform 501 of one of the embodiments of the HDI detection engine 301 in an embodiment. The HDI scan waveform 501 depicts the wedge numbers 402 on the horizontal axis and the PES amplitude 310 on the vertical axis.


An HDI location 502 can be identified when the PES amplitude 310 exceeds the hard HDI threshold 318. The verification of the HDI location 502 can include multiple retries of the sampling of the HDI scan window 404 of FIG. 4. When all of the retries identify the wedge numbers 402 included in the HDI scan window 404 exceed the hard HDI threshold 318, the range of the wedge numbers included in the HDI scan window can be listed in the map-out memory 328 of FIG. 3. Any of the data tracks 124 of FIG. 1A having the HDI location 502 can be avoided in the final configuration of the user capacity in order to prevent the spread of the debris or creating additional damage to the media 104.


It is understood that the values indicated for the hard HDI threshold 318 or the soft HDI threshold 320 is an example only and other values can be used as appropriate to the electronic system 100 of FIG. 1A. Any instance of the PES amplitude 310 exceeding only the soft HDI threshold 320 can be listed to the memory log 322 of FIG. 3 as a suspected HDI location (not shown), which might not be included in the user capacity provided by the manufacturing process. In contrast any instance of the PES amplitude 310 exceeding only the hard HDI threshold 318 is detected as a permanent area of damage that can be removed from the user capacity provided by the manufacturing process.


Referring now to FIG. 6, therein is shown a media map 601 as recorded by the HDI detection engine 301 in an embodiment. The media map 601 depicts a media extent 602 indicating the outer range of the media 104 of FIG. 1A. The media extent 602 can represent the data track 124 of FIG. 1A that is closest to the outer diameter of the media 104.


The HDI location 502 can be a single occurrence of the debris or damage to one of the data tracks 124 on the media 104 or it can be an HDI cluster 604 of such occurrences that can span multiple of the data tracks 124. The occurrence of the HDI cluster 604 can present a risk to long term reliability if the damaged area of the data tracks 124, within the HDI cluster 604, are accessed. The debris that can be generated by the HDI cluster 604 can be spread by attempted use of the damaged area of the data tracks 124. An embodiment of the HDI detection engine 301 of FIG. 3 can provide the necessary information to avoid the HDI cluster 604 during user operations and thereby extend the usable life of the electronic system 100 of FIG. 1A.


A suspected HDI 606 can be identified when the PES amplitude 310 of FIG. 3 exceeds the soft HDI threshold 320 of FIG. 3 but does not exceed the hard HDI threshold 318 of FIG. 3. The identification of the soft HDI 606 can be useful in avoiding potentially damaged areas of the media 104 and preventing long term data reliability risk.


It is understood that the embodiment of the media map 601 can be different. It could be captured in an associated list, table, or other graphical form. The media map 601 can be maintained in the manufacturing process, stored in a reserved area of the media 104, or a combination thereof. The media map 601 can form the basis of a spare track and sector strategy operable by the user in the execution of normal field operation.


Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC. In addition, any of the above described modules and components may be implemented in firmware, software, hardware, or any combination thereof.


In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.


The resulting method, process, apparatus, device, product, and/or system is straightforward, cost-effective, uncomplicated, highly versatile, accurate, sensitive, and effective, and can be implemented by adapting known components for ready, efficient, and economical manufacturing, application, and utilization. Another important aspect of various embodiments is that they valuably supports and services the historical trend of reducing costs, simplifying systems, and increasing performance.


These and other valuable aspects of the various embodiments consequently further the state of the technology to at least the next level.


While the various embodiments have been described in conjunction with a specific best mode, it is to be understood that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the aforegoing description. Accordingly, the embodiments are intended to embrace all such alternatives, modifications, and variations that fall within the scope of the included claims. All matters set forth herein or shown in the accompanying drawings are to be interpreted in an illustrative and non-limiting sense.

Claims
  • 1. An apparatus comprising: a media;a head over the media;a head actuation motor coupled to the head;control circuitry, coupled to the head actuation motor, configured to position the head; anda read channel, coupled to the control circuitry, configured to generate a position error signal (PES) of the head;
  • 2. The apparatus as claimed in claim 1 wherein the control circuitry is further configured to identify a sector location of the detected HDI.
  • 3. The apparatus as claimed in claim 1 wherein the control circuitry is further configured to generate a filtered PES by applying a band pass filter to the PES.
  • 4. The apparatus as claimed in claim 3 wherein the control circuitry is further configured to generate an off-track amplitude from the filtered PES and detect the HDI based on the filtered PES.
  • 5. The apparatus as claimed in claim 1 wherein the control circuitry is further configured to detect the HDI based on a peak amplitude of the PES.
  • 6. The apparatus as claimed in claim 1 wherein the control circuitry is further configured to analyze a data track by monitoring the PES between servo sectors.
  • 7. The apparatus as claimed in claim 1 wherein the media map identifies a sector location, on the media, of the detected HDI when the PES exceeds a threshold.
  • 8. The apparatus as claimed in claim 1 wherein the control circuitry is further configured to apply a threshold to determine a severity of the detected HDI.
  • 9. The apparatus as claimed in claim 1 wherein the control circuitry is further configured to detect the HDI using a plurality of thresholds of different magnitudes of the PES.
  • 10. The apparatus as claimed in claim 1 wherein the control circuitry is further configured to detect the HDI by applying a moving window to detect a localized signature of the PES indicative of the HDI.
  • 11. A method of operating an apparatus, the method comprising: flying a head over a media;controlling a head actuation motor for positioning the head over the media;detecting a head disk interaction (HDI) based at least in part on a position error signal (PES) of the head;monitoring a retry count for deallocating a data track or logging a transient error; andgenerating a media map of locations in the media having the PES based at least in part on the detected HDI.
  • 12. The method as claimed in claim 11 wherein identifying the location of the detected HDI includes identifying a sector location on a data track.
  • 13. The method as claimed in claim 11 wherein analyzing the PES includes generating a filtered PES.
  • 14. The method as claimed in claim 13 wherein analyzing the PES includes generating an off-track amplitude from the filtered PES and detecting the HDI based on the filtered PES.
  • 15. The method as claimed in claim 11 wherein analyzing the PES includes detecting the HDI based on a peak amplitude of the PES.
  • 16. The method as claimed in claim 11 wherein analyzing the PES includes analyzing a data track including monitoring the PES between servo sectors.
  • 17. The method as claimed in claim 11 wherein identifying a location of the detected HDI includes generating a media map for identifying a sector location, on the media, when the PES exceeds a threshold.
  • 18. The method as claimed in claim 11 further comprising applying a threshold to the PES for determining a severity of the detected HDI.
  • 19. The method as claimed in claim 11 further comprising applying a plurality of threshold of different magnitudes to the PES for detecting the HDI.
  • 20. The method as claimed in claim 11 wherein detecting the HDI includes applying a moving window for detecting a localized signature of the PES indicative of the HDI.
  • 21. An apparatus comprising: a media;a head over the media;a head actuation motor coupled to the head;control circuitry, coupled to the head actuation motor, configured to position the head; andread channel, coupled to the control circuitry, configured to generate a position error signal (PES) of the head;
  • 22. A method of operating an apparatus, the method comprising: flying a head over a media;controlling a head actuation motor for positioning the head over the media;analyzing the PES includes analyzing a data track including monitoring a position error signal (PES) between servo sectors;detecting a head disk interaction (HDI) base at least in part on the PES of the head; andgenerating a media map of locations in the media having the PES based at least in part on the detected HDI.
  • 23. An apparatus comprising: a media;a head over the media;a head actuation motor coupled to the head;control circuitry, coupled to the head actuation motor, configured to position the head; anda read channel, coupled to the control circuitry, configured to generate a position error signal (PES) of the head;
  • 24. An apparatus comprising: a media;a head over the media;a head actuation motor coupled to the head;control circuitry, coupled to the head actuation motor, configured to position the head; anda read channel, coupled to the control circuitry, configured to generate a position error signal (PES) of the head;
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/028,761 filed Jul. 24, 2014, and the subject matter thereof is incorporated herein by reference thereto.

US Referenced Citations (349)
Number Name Date Kind
6014283 Codilian et al. Jan 2000 A
6052076 Patton, III et al. Apr 2000 A
6052250 Golowka et al. Apr 2000 A
6067206 Hull et al. May 2000 A
6078453 Dziallo et al. Jun 2000 A
6091564 Codilian et al. Jul 2000 A
6094020 Goretzki et al. Jul 2000 A
6097559 Ottesen Aug 2000 A
6101065 Alfred et al. Aug 2000 A
6104153 Codilian et al. Aug 2000 A
6105432 Taniguchi et al. Aug 2000 A
6122133 Nazarian et al. Sep 2000 A
6122135 Stich Sep 2000 A
6141175 Nazarian et al. Oct 2000 A
6160368 Plutowski Dec 2000 A
6181502 Hussein et al. Jan 2001 B1
6195222 Heminger et al. Feb 2001 B1
6196062 Wright et al. Mar 2001 B1
6198584 Codilian et al. Mar 2001 B1
6198590 Codilian et al. Mar 2001 B1
6204988 Codilian et al. Mar 2001 B1
6243223 Elliott et al. Jun 2001 B1
6281652 Ryan et al. Aug 2001 B1
6285521 Hussein Sep 2001 B1
6292320 Mason et al. Sep 2001 B1
6310742 Nazarian et al. Oct 2001 B1
6320718 Bouwkamp et al. Nov 2001 B1
6342984 Hussein et al. Jan 2002 B1
6347018 Kadlec et al. Feb 2002 B1
6369972 Codilian et al. Apr 2002 B1
6369974 Asgari et al. Apr 2002 B1
6462896 Codilian et al. Oct 2002 B1
6476996 Ryan Nov 2002 B1
6484577 Bennett Nov 2002 B1
6493169 Ferris et al. Dec 2002 B1
6496324 Golowka et al. Dec 2002 B1
6498698 Golowka et al. Dec 2002 B1
6507450 Elliott Jan 2003 B1
6534936 Messenger et al. Mar 2003 B2
6538839 Ryan Mar 2003 B1
6545835 Codilian et al. Apr 2003 B1
6549359 Bennett et al. Apr 2003 B1
6549361 Bennett et al. Apr 2003 B1
6560056 Ryan May 2003 B1
6567229 Mallary May 2003 B1
6568268 Bennett May 2003 B1
6574062 Bennett et al. Jun 2003 B1
6577465 Bennett et al. Jun 2003 B1
6600622 Smith Jul 2003 B1
6614615 Ju et al. Sep 2003 B1
6614618 Sheh et al. Sep 2003 B1
6636377 Yu et al. Oct 2003 B1
6683737 Gong Jan 2004 B2
6690536 Ryan Feb 2004 B1
6693764 Sheh et al. Feb 2004 B1
6707635 Codilian et al. Mar 2004 B1
6710953 Vallis et al. Mar 2004 B1
6710966 Codilian et al. Mar 2004 B1
6714371 Codilian Mar 2004 B1
6714372 Codilian et al. Mar 2004 B1
6724564 Codilian et al. Apr 2004 B1
6731450 Codilian et al. May 2004 B1
6735041 Codilian et al. May 2004 B1
6738220 Codilian May 2004 B1
6747837 Bennett Jun 2004 B1
6760186 Codilian et al. Jul 2004 B1
6788483 Ferris et al. Sep 2004 B1
6791785 Messenger et al. Sep 2004 B1
6795268 Ryan Sep 2004 B1
6819518 Melkote et al. Nov 2004 B1
6826006 Melkote et al. Nov 2004 B1
6826007 Patton, III Nov 2004 B1
6847502 Codilian Jan 2005 B1
6850383 Bennett Feb 2005 B1
6850384 Bennett Feb 2005 B1
6867944 Ryan Mar 2005 B1
6876508 Patton, III et al. Apr 2005 B1
6882496 Codilian et al. Apr 2005 B1
6885514 Codilian et al. Apr 2005 B1
6900958 Yi et al. May 2005 B1
6900959 Gardner et al. May 2005 B1
6903897 Wang et al. Jun 2005 B1
6914740 Tu et al. Jul 2005 B1
6914743 Narayana et al. Jul 2005 B1
6920004 Codilian et al. Jul 2005 B1
6924959 Melkote et al. Aug 2005 B1
6924960 Melkote et al. Aug 2005 B1
6924961 Melkote et al. Aug 2005 B1
6927929 Gong Aug 2005 B2
6934114 Codilian et al. Aug 2005 B1
6934135 Ryan Aug 2005 B1
6937420 McNab et al. Aug 2005 B1
6937423 Ngo et al. Aug 2005 B1
6952322 Codilian et al. Oct 2005 B1
6954324 Tu et al. Oct 2005 B1
6958881 Codilian et al. Oct 2005 B1
6963465 Melkote et al. Nov 2005 B1
6965488 Bennett Nov 2005 B1
6967458 Bennett et al. Nov 2005 B1
6967811 Codilian et al. Nov 2005 B1
6970319 Bennett et al. Nov 2005 B1
6972539 Codilian et al. Dec 2005 B1
6972540 Wang et al. Dec 2005 B1
6972922 Subrahmanyam et al. Dec 2005 B1
6975480 Codilian et al. Dec 2005 B1
6977789 Cloke Dec 2005 B1
6980389 Kupferman Dec 2005 B1
6987636 Chue et al. Jan 2006 B1
6987639 Yu Jan 2006 B1
6989954 Lee et al. Jan 2006 B1
6992848 Agarwal et al. Jan 2006 B1
6992851 Cloke Jan 2006 B1
6992852 Ying et al. Jan 2006 B1
6995941 Miyamura et al. Feb 2006 B1
6999263 Melkote et al. Feb 2006 B1
6999267 Melkote et al. Feb 2006 B1
7006320 Bennett et al. Feb 2006 B1
7016134 Agarwal et al. Mar 2006 B1
7023637 Kupferman Apr 2006 B1
7023640 Codilian et al. Apr 2006 B1
7027256 Subrahmanyam et al. Apr 2006 B1
7027257 Kupferman Apr 2006 B1
7035026 Codilian et al. Apr 2006 B2
7046463 Gay Sam et al. May 2006 B2
7046472 Melkote et al. May 2006 B1
7050249 Chue et al. May 2006 B1
7050254 Yu et al. May 2006 B1
7050258 Codilian May 2006 B1
7054098 Yu et al. May 2006 B1
7061714 Yu Jun 2006 B1
7064918 Codilian et al. Jun 2006 B1
7068451 Wang et al. Jun 2006 B1
7068459 Cloke et al. Jun 2006 B1
7068461 Chue et al. Jun 2006 B1
7068463 Ji et al. Jun 2006 B1
7088547 Wang et al. Aug 2006 B1
7095578 Ma Aug 2006 B2
7095579 Ryan et al. Aug 2006 B1
7110208 Miyamura et al. Sep 2006 B1
7110214 Tu et al. Sep 2006 B1
7113362 Lee et al. Sep 2006 B1
7113365 Ryan et al. Sep 2006 B1
7116505 Kupferman Oct 2006 B1
7126781 Bennett Oct 2006 B1
7158325 Hu Jan 2007 B1
7158329 Ryan Jan 2007 B1
7180703 Subrahmanyam et al. Feb 2007 B1
7184230 Chue et al. Feb 2007 B1
7196864 Yi et al. Mar 2007 B1
7199966 Tu et al. Apr 2007 B1
7203021 Ryan et al. Apr 2007 B1
7206159 White Apr 2007 B2
7209321 Bennett Apr 2007 B1
7212364 Lee May 2007 B1
7212374 Wang et al. May 2007 B1
7215504 Bennett May 2007 B1
7224546 Orakcilar et al. May 2007 B1
7248426 Weerasooriya et al. Jul 2007 B1
7251098 Wang et al. Jul 2007 B1
7253582 Ding et al. Aug 2007 B1
7253989 Lau et al. Aug 2007 B1
7265933 Phan et al. Sep 2007 B1
7289288 Tu Oct 2007 B1
7298574 Melkote et al. Nov 2007 B1
7301717 Lee et al. Nov 2007 B1
7304819 Melkote et al. Dec 2007 B1
7330019 Bennett Feb 2008 B1
7330327 Chue et al. Feb 2008 B1
7333280 Lifchits et al. Feb 2008 B1
7333290 Kupferman Feb 2008 B1
7339761 Tu et al. Mar 2008 B1
7365932 Bennett Apr 2008 B1
7388728 Chen et al. Jun 2008 B1
7391583 Sheh et al. Jun 2008 B1
7391584 Sheh et al. Jun 2008 B1
7433143 Ying et al. Oct 2008 B1
7440210 Lee Oct 2008 B1
7440225 Chen et al. Oct 2008 B1
7450334 Wang et al. Nov 2008 B1
7450336 Wang et al. Nov 2008 B1
7453661 Jang et al. Nov 2008 B1
7457071 Sheh Nov 2008 B1
7466509 Chen et al. Dec 2008 B1
7468855 Weerasooriya et al. Dec 2008 B1
7477471 Nemshick et al. Jan 2009 B1
7480116 Bennett Jan 2009 B1
7489464 McNab et al. Feb 2009 B1
7492546 Miyamura Feb 2009 B1
7495857 Bennett Feb 2009 B1
7499236 Lee et al. Mar 2009 B1
7502192 Wang et al. Mar 2009 B1
7502195 Wu et al. Mar 2009 B1
7502197 Chue Mar 2009 B1
7505223 McCornack Mar 2009 B1
7542225 Ding et al. Jun 2009 B1
7548392 Desai et al. Jun 2009 B1
7551390 Wang et al. Jun 2009 B1
7558016 Le et al. Jul 2009 B1
7573670 Ryan et al. Aug 2009 B1
7576941 Chen et al. Aug 2009 B1
7580212 Li et al. Aug 2009 B1
7583470 Chen et al. Sep 2009 B1
7595954 Chen et al. Sep 2009 B1
7602575 Lifchits et al. Oct 2009 B1
7616399 Chen et al. Nov 2009 B1
7619844 Bennett Nov 2009 B1
7626782 Yu et al. Dec 2009 B1
7630162 Zhao et al. Dec 2009 B2
7639447 Yu et al. Dec 2009 B1
7656604 Liang et al. Feb 2010 B1
7656607 Bennett Feb 2010 B1
7660067 Ji et al. Feb 2010 B1
7663835 Yu et al. Feb 2010 B1
7675707 Liu et al. Mar 2010 B1
7679854 Narayana et al. Mar 2010 B1
7688534 McCornack Mar 2010 B1
7688538 Chen et al. Mar 2010 B1
7688539 Bryant et al. Mar 2010 B1
7697233 Bennett et al. Apr 2010 B1
7701661 Bennett Apr 2010 B1
7710676 Chue May 2010 B1
7715138 Kupferman May 2010 B1
7729079 Huber Jun 2010 B1
7733189 Bennett Jun 2010 B1
7746592 Liang et al. Jun 2010 B1
7746594 Guo et al. Jun 2010 B1
7746595 Guo et al. Jun 2010 B1
7760461 Bennett Jul 2010 B1
7800853 Guo et al. Sep 2010 B1
7800856 Bennett et al. Sep 2010 B1
7800857 Calaway et al. Sep 2010 B1
7839591 Weerasooriya et al. Nov 2010 B1
7839595 Chue et al. Nov 2010 B1
7839600 Babinski et al. Nov 2010 B1
7843662 Weerasooriya et al. Nov 2010 B1
7852588 Ferris et al. Dec 2010 B1
7852592 Liang et al. Dec 2010 B1
7864481 Kon et al. Jan 2011 B1
7864482 Babinski et al. Jan 2011 B1
7869155 Wong Jan 2011 B1
7876522 Calaway et al. Jan 2011 B1
7876523 Panyavoravaj et al. Jan 2011 B1
7916415 Chue Mar 2011 B1
7916416 Guo et al. Mar 2011 B1
7916420 McFadyen et al. Mar 2011 B1
7916422 Guo et al. Mar 2011 B1
7929238 Vasquez Apr 2011 B1
7961422 Chen et al. Jun 2011 B1
7965459 Narayanan Jun 2011 B2
7990641 Tomita Aug 2011 B2
8000053 Anderson Aug 2011 B1
8031423 Tsai et al. Oct 2011 B1
8054022 Ryan et al. Nov 2011 B1
8059357 Knigge et al. Nov 2011 B1
8059360 Melkote et al. Nov 2011 B1
8072703 Calaway et al. Dec 2011 B1
8077428 Chen et al. Dec 2011 B1
8078901 Meyer et al. Dec 2011 B1
8081395 Ferris Dec 2011 B1
8085020 Bennett Dec 2011 B1
8116023 Kupferman Feb 2012 B1
8145934 Ferris et al. Mar 2012 B1
8179626 Ryan et al. May 2012 B1
8189286 Chen et al. May 2012 B1
8213106 Guo et al. Jul 2012 B1
8254222 Tang Aug 2012 B1
8300348 Liu et al. Oct 2012 B1
8315005 Zou et al. Nov 2012 B1
8320069 Knigge et al. Nov 2012 B1
8351174 Gardner et al. Jan 2013 B1
8358114 Ferris et al. Jan 2013 B1
8358145 Ferris et al. Jan 2013 B1
8390367 Bennett Mar 2013 B1
8432031 Agness et al. Apr 2013 B1
8432629 Rigney et al. Apr 2013 B1
8451697 Rigney et al. May 2013 B1
8482873 Chue et al. Jul 2013 B1
8498076 Sheh et al. Jul 2013 B1
8498172 Patton, III et al. Jul 2013 B1
8508881 Babinski et al. Aug 2013 B1
8531798 Xi et al. Sep 2013 B1
8537486 Liang et al. Sep 2013 B2
8542455 Huang et al. Sep 2013 B2
8553351 Narayana et al. Oct 2013 B1
8564899 Lou et al. Oct 2013 B2
8576506 Wang et al. Nov 2013 B1
8605382 Mallary et al. Dec 2013 B1
8605384 Liu et al. Dec 2013 B1
8610391 Yang et al. Dec 2013 B1
8611040 Xi et al. Dec 2013 B1
8619385 Guo et al. Dec 2013 B1
8630054 Bennett et al. Jan 2014 B2
8630059 Chen et al. Jan 2014 B1
8634154 Rigney et al. Jan 2014 B1
8634283 Rigney et al. Jan 2014 B1
8643976 Wang et al. Feb 2014 B1
8649121 Smith et al. Feb 2014 B1
8654466 McFadyen Feb 2014 B1
8654467 Wong et al. Feb 2014 B1
8665546 Zhao et al. Mar 2014 B1
8665551 Rigney et al. Mar 2014 B1
8670206 Liang et al. Mar 2014 B1
8687312 Liang Apr 2014 B1
8693123 Guo et al. Apr 2014 B1
8693134 Xi et al. Apr 2014 B1
8699173 Kang et al. Apr 2014 B1
8711027 Bennett Apr 2014 B1
8717696 Ryan et al. May 2014 B1
8717699 Ferris May 2014 B1
8717704 Yu et al. May 2014 B1
8724245 Smith et al. May 2014 B1
8724253 Liang et al. May 2014 B1
8724524 Urabe et al. May 2014 B2
8737008 Watanabe et al. May 2014 B1
8737013 Zhou et al. May 2014 B2
8743495 Chen et al. Jun 2014 B1
8743503 Tang et al. Jun 2014 B1
8743504 Bryant et al. Jun 2014 B1
8749904 Liang et al. Jun 2014 B1
8760796 Lou et al. Jun 2014 B1
8767332 Chahwan et al. Jul 2014 B1
8767343 Helmick et al. Jul 2014 B1
8767354 Ferris et al. Jul 2014 B1
8773787 Beker Jul 2014 B1
8779574 Agness et al. Jul 2014 B1
8780473 Zhao et al. Jul 2014 B1
8780477 Guo et al. Jul 2014 B1
8780479 Helmick et al. Jul 2014 B1
8780489 Gayaka et al. Jul 2014 B1
8792202 Wan et al. Jul 2014 B1
8797664 Guo et al. Aug 2014 B1
8804267 Huang et al. Aug 2014 B2
8824081 Guo et al. Sep 2014 B1
8824262 Liu et al. Sep 2014 B1
20030002183 Fioravanti Jan 2003 A1
20030011915 Riddering Jan 2003 A1
20030193727 Fioravanti et al. Oct 2003 A1
20050219725 Ozanoglu Oct 2005 A1
20060193076 Yori Aug 2006 A1
20080130159 Dieron Jun 2008 A1
20080165446 Partee Jul 2008 A1
20100035085 Jung et al. Feb 2010 A1
20100134919 Wilcox Jun 2010 A1
20100321812 Tomita Dec 2010 A1
20110157736 Contreras Jun 2011 A1
20120284493 Lou et al. Nov 2012 A1
20130120870 Zhou et al. May 2013 A1
20130148240 Ferris et al. Jun 2013 A1
20130170070 Das et al. Jul 2013 A1
Provisional Applications (1)
Number Date Country
62028761 Jul 2014 US