An embodiment relates generally to an electronic system, and more particularly to a system for servo data management.
Modern consumer and industrial electronic devices require storage of information, such as digital photographs, electronic mail, calendar, or contacts. These devices can be electronic systems, such as notebook computers, desktop computers, servers, televisions, and projectors, and are providing increasing levels of functionality to support modern life. Preserving the user data stored in the storage devices is of the utmost importance.
As recording technologies advance in hard disk drives, the performance and capacity has increased while the size has decreased. The pressure to produce smaller storage devices has led to the combining of integrated functions that can reside in a compatible technology. Many functions of the storage devices require analog control and sensitivity that cannot be provided by digital logic processes. The control interface between the digital functions and the analog control mechanisms continues to grow based on features and performance of the storage devices. The number of control bits in the control interface can increase the size of the packages and increase cost of the storage device.
Storage systems can include storage devices, such as hard disk drives (HDD) and hybrid drives utilizing magnetic recording heads in combination with non-volatile memory devices, that must manage analog control functions through pulse-width modulation (PWM). In order to control the media motor and position the heads correctly a number of analog controls must be subject to the manipulation by the controller. The response to the control of an analog circuit can be significantly longer than the response to digital logic because the analog circuitry is used to drive the movement of mechanical structures, such as the media motor and the and the head actuation motor (HAM), which can respond slowly.
Some embodiments can group sets of analog controls, that when activated can work together in a coordinated switching process. The control of the media motor can be grouped as pairs of transistors are managed in order to drive, sink, and sense the location of the media motor as it windings are manipulated to control the media speed.
It is understood that the control of the media motor can include passing current through three sets of coils used to create torque around the central hub of the media motor. By grouping the controls, the control of the media motor is simplified and can operate in a smoother and more tightly controlled process. During operation of the storage system, both the HAM and the media motor must be controlled in real-time.
A need still remains for an electronic system as an embodiment with servo management mechanism for managing the real-time controls of the media motor and the HAM during the operation of the data storage and retrieval tasks. In view of the ever-increasing commercial competitive pressures, along with growing consumer expectations and the diminishing opportunities for meaningful product differentiation in the marketplace, it is increasingly critical that answers be found to these problems. Additionally, the need to reduce costs, improve efficiencies and performance, and meet competitive pressures adds an even greater urgency to the critical necessity for finding answers to these problems.
Solutions to these problems have been long sought but prior developments have not taught or suggested any solutions and, thus, solutions to these problems have long eluded those skilled in the art.
Certain embodiments have other steps or elements in addition to or in place of those mentioned above. The steps or elements will become apparent to those skilled in the art from a reading of the following detailed description when taken with reference to the accompanying drawings.
The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the various embodiments. It is to be understood that other embodiments would be evident based on the present disclosure, and that system, process, or mechanical changes may be made without departing from the scope of an embodiment.
In the following description, numerous specific details are given to provide a thorough understanding of the various embodiments. However, it will be apparent that the various embodiments can be practiced without these specific details. In order to avoid obscuring an embodiment, some well-known circuits, system configurations, and process steps are not disclosed in detail.
The drawings showing embodiments of the system are semi-diagrammatic, and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown exaggerated in the drawing figures. Similarly, although the views in the drawings for ease of description generally show similar orientations, this depiction in the figures is arbitrary for the most part. Generally, the various embodiments can be operated in any orientation. The various embodiments have been numbered first embodiment, second embodiment, etc. as a matter of descriptive convenience and are not intended to have any other significance or provide limitations for an embodiment.
Referring now to
The electronic system 100 including a head 102 actuated over a media 104. The head 102 can be mounted to a flex arm 118 attached to an actuator arm 122. The head 102 (
The media 104 is a structure for storing information on data tracks 124. For example, the media 104 can be made of an aluminum alloy, ceramic/glass, or a similar non-magnetic material. The top and bottom surfaces of the media 104 can be covered with magnetic material deposited on one or both sides of the media 104 to form a coating layer capable of magnetization. As an example, the media 104 can be a disk platter for one embodiment of the electronic system 100 as a rotating storage system, such as a hard disk drive (HDD). As a further example, the media 104 can be a linear magnetic strip for one embodiment of the electronic system 100 as a linear storage system, such as a tape drive or a magnetic card reader.
The laser 106, as an example, can be a laser diode or other solid-state based lasers. In addition, embodiments can employ any suitable techniques for focusing the laser 106 on the media 104, such as a suitable waveguide, magnifying lens, or other suitable optics. The laser 106 is increased to a write power in order to heat the disk, thereby decreasing the coercivity of the media 104 so that the data is written more reliably on the data tracks 124.
A media motor 116 can rotate the media 104, about a center of the media 104, at constant or varying speed 107. For illustrative purposes, the media motor 116 is described as a motor for a rotation, although it is understood that the media motor 116 can be other actuating motors for a tape drive, as an example.
As examples, a head actuation motor 130 can be a voice coil motor assembly, a stepper motor assembly, or a combination thereof. The head actuation motor 130 can generate a torque or force for positioning the head 102. The positional feedback for the head 102 can be provided to control circuitry 138 by reading servo sectors 114 from the media 104. The servo sectors 114 are distributed around the media 104 at intervals sufficient to allow proper positioning of the head 102 within the data tracks 124.
A tapered end of the flex arm 118 can support the head 102. The flex arm 118 can be mounted to the actuator arm 122, which is pivoted around a bearing assembly 126 by the torque generated by the head actuation motor 130. The head 102 can include a single instance of the write element 110 and a single instance of the read element 112 that is narrower than the write element 110. The head 102 can fly over the media 104 at a dynamically adjustable span of the flying height 108, which represents a vertical displacement between the head 102 and the media 104. The head 102 can be positioned by the flex arm 118 and the actuator arm 122 and can have the flying height 108 adjusted by the control circuitry 138. The control circuitry 138 can measure a magnitude of the environmental disturbance, through the environmental sensor 136, and calculate a feed forward adjustment for the head actuation motor 130. The control circuitry 138 can control a head actuation motor (HAM) control signal 120 in order to manage the position of the head actuation motor 130.
The head 102 can be positioned over the media 104 along an arc shaped path between an inner diameter of the media 104 and outer diameter of the media 104. For illustrative purposes, the actuator arm 122 and the head actuation motor 130 are configured for rotary movement of the head 102. The actuator arm 122 and the head actuation motor 130 can be configured to have a different movement. For example, the actuator arm 122 and the head actuation motor 130 could be configured to have a linear movement resulting in the head 102 traveling along a radius of the media 104.
The head 102 can be positioned over the media 104 to create magnetic transitions or detect magnetic transitions from the data tracks 124 recorded in the coating layer that can be used to representing written data or read data, respectively. The position of the head 102 and the speed 107 of the media 104 can be controlled by the control circuitry 138. Examples of the control circuitry 138 can include a processor, an application specific integrated circuit (ASIC) an embedded processor, a microprocessor, a hardware control logic, a hardware finite state machine (FSM), a digital signal processor (DSP), digital circuitry, analog circuitry, optical circuitry, or a combination thereof. The control circuitry 138 can also include memory devices, such as a volatile memory, a nonvolatile memory, or a combination thereof. For example, the nonvolatile storage can be non-volatile random access memory (NVRAM) or Flash memory and a volatile storage can be static random access memory (SRAM) or dynamic random access memory (DRAM).
A system interface 140 can couple the control circuitry 138 to a host electronics (not shown). The system interface 140 can transfer host commands 142 between the host electronics and the control circuitry 138. The host commands 142 can be encoded or decoded by the control circuitry 138 in preparation for transfer to or from the media 104.
The control circuitry 138 can be configured to control the media motor 116 for adjusting the speed 107 of the media 104. The control circuitry 138 can be configured to cause the head 102 to move relative to the media 104, or vice versa. The control circuitry 138 can be configured to control the speed 107 of the media 104 by sensing the back electro-motive force (EMF) of the media motor 116 and the position of the head 102 by reading the servo sectors 114 strategically placed on the media 104. The servo sectors 114 can be recorded on the media 104 during a manufacturing process. The control circuitry 138 can also be configured to control the flow of information to the head 102 for writing to the media 104. The information sent to the head 102 can include the preconditioning pattern, direct current erase signals, user data, or a combination thereof. The control circuitry 138 can retrieve the recorded information and monitor the servo sectors 114 through a read signal 128 provided by the head 102.
In an embodiment, the electronic system 100 further comprises control circuitry 138 configured to execute the flow diagrams of
In an action 144, the control circuitry 138 can manage the head actuation motor (HAM) 130 through a system on a chip (SOC) when the head 102 is flown over the media 104 during execution by the electronic system 100, such as a manufacturing test fixture, a hard disk drive, a tape drive, or a hybrid drive.
In an action 146, the SOC can generate a pulse-width modulation (PWM) code bus reflecting the operations required to communicate the control of the HAM. The bits in the PWM code bus can be coded to reflect a single operational step or a group of coordinated operational steps.
In an action 148, the HAM control signals are driven by a power integrated circuit (PIC) based on the PWM code bus. The PWM code bus can meet the performance requirements for all of the analog control functions in the electronic system 100, while reducing the pin count and package size required by the control circuitry 138.
It has been discovered that various embodiments of the electronic system 100 can improve the overall performance while reducing system cost and size. The electronic system 100 can manage the analog control requirements without adding additional package size or complicating the interconnect structure of the printed circuit board assembly of the control circuitry 138.
Referring now to
As an example, the control circuitry 138 can include a system-on-a-chip (SOC) 212 that includes the digital functions supported by the electronic system 100. A power integrated circuit (PIC) 214 can be driven by the SOC 212 through a pulse-width modulation (PWM) code bus 216. The PIC 214 can drive a media motor control bus 218 for managing the commutation of the media motor 116. By allowing the SOC 212 to manage the switching of analog control signals in the media motor control bus 218, the PIC 214 is greatly simplified and can be further reduced in size and cost. The SOC 212 can implement the commutation logic for driving the media motor 116 in very small and high speed Complementary Metal Oxide Semiconductor (CMOS) digital logic dedicated to that purpose.
The PIC 214 can concurrently provide the HAM control signal 120 and the media motor control bus 218. The functional management of the HAM control signal 120 and the media motor control bus 218 can remain in the SOC 212 while the analog signal drive capability is provided by the PIC 214. This combination can dramatically reduce the cost of the PIC 214, which can be produced in a bipolar technology, such as Silicon Germanium (SiGe), Gallium Arsenide (GaAs), or Bipolar Complementary Metal Oxide Semiconductor (BiCMOS). By reducing the function as well as the size of the PIC 214, the overall system cost can be reduced.
The control circuitry 138 can receive feedback on the position of the head 102 by way of the PES 210. The SOC 212 can interpret the PES 210 in order to determine the response required by the HAM control signal 120 in order to correctly position the head 102. The control of the media motor 116 can be monitored by detecting the frequency of the servo related fields in the servo sectors 114 as well as the time interval between the servo sectors 114.
The communication between the SOC 212 and the PIC 214, across the PWM code bus 216, can operate at digital speeds, while the analog control signals from the PIC 214 have much longer durations. The difference in the speed of the control requirements allows the SOC 212 to toggle the control lines of the HAM control signal 120 and the media motor control bus 218 to assert and negate the individual controls or groups of controls.
It has been discovered that the PWM code bus 216 can reduce the amount of control logic required in the PIC 214, which allows a reduction in the physical size of the integrated circuit of the PIC 214 and reduces the pin count which can further reduce the package geometry of the PIC 214. The additional digital logic required in the SOC 212 can have little or no impact on the size of the die of the SOC 212 while also reducing the pin count of the package the SOC 212 requires. The overall reduction in cost of the SOC 212 and the PIC 214 also provides a smaller package size for both.
Referring now to
The PWM signal code 302 can be a multi-bit bus having a number of bits to control a plurality of PWM controls 306. By way of an example the PWM signal code 302 can be 5 bits wide in order to activate up to 32 (25) of the PWM controls 306. The addition of a single additional bit in the PWM signal code 302 can activate up to 64 (26) of the PWM controls 306.
The PWM signal code 302 can be coupled to an activation decoder 308. The activation decoder 308 can assert a selected enable 310 based on the content of the PWM signal code 302. As an example, the selected enable 310 is only asserted during the period that the PWM signal code 302 is stable. Each of the selected enable 310 can be coupled to an enable input of a storage element 312, such as a toggle flip-flop 314 or a data flip-flop 316. A clock input of the storage element 312 can be coupled to the ACT line 304.
In one embodiment, each of the storage elements 312 can only respond to the activation of the ACT line 304 if the selected enable 310 is present during the negative to positive transition of the ACT line 304. In one embodiment, since the activation decoder 308 only enables one or grouped lines of the selected enable 310, the PWM controls 306 can be managed through the PWM code bus 216.
The PWM controls 306 can be segregated into PWM single controls 318 and PWM group controls 320. The PWM single controls 318 can be utilized to activate a light emitting diode (LED), a flying height control of the head 102 of
The PWM group controls 320 can utilize a pair of the storage element 312. The first of the pair of the storage element 312 can be the toggle flip-flop 314. The second of the pair of the storage element 312 can be the data flip-flop 316 coupled to the toggle flip-flop 314 as a source of the data input. By way of an example, the toggle flip-flop 314 can be asserted then the data flip-flop 316 can be activated to assert the PWM group control 320. The toggle flip-flop 314 can be enabled a second time to negate the output. The PWM group control 320 will remain asserted until the data flip-flop 316 is once again enabled when the toggle flip-flop 314 is negated.
The nature of the PWM controls 306 is a long duration between transitions. As an example, some of the PWM controls can be asserted for 10 to 40 micro-seconds while others of the PWM controls 306 can be asserted for several seconds.
It is understood that the activation period of the PWM signal code 302 can be offset from the ACT line 304 by at least half of the cycle time of the ACT line 304. This assures that the data set-up and hold time requirements of the storage elements 312 are met. It is further understood that the number of the PWM single controls 318 and the PWM group controls 320 is an example only and any combination can be implemented.
Referring now to
Digital PWM requests 402 are optionally coupled to request synchronizing flip-flops 404. The output of the request synchronizing flip-flops 404 can provide an input to a one cycle pulse circuit 406, including a data flip-flop 408 coupled to an exclusive OR gate 410. When a synchronized request is asserted by the request synchronizing flip-flops 404, a request pulse 412 at the output of the exclusive OR gate 410 is asserted. On the subsequent system clock cycle, the data flip-flop 408 will pass the synchronized request and negate the request pulse 412 of the exclusive OR gate 410. The one cycle of the request pulse 412 is assured because the request synchronizing flip-flops 404 and the data flip-flop 408 are both clocked by the same cycle of a PWM clock (PCLK) 414. In one embodiment, the PCLK 414 is a derivative of the clock used throughout the control circuitry 138 of
As an example, the request pulse 412 can be coupled to a counter element 416, such as a multi-bit counter with increment and decrement controls. The counter element 416 is also clocked by the PCLK 414. In one embodiment, the distribution of the PCLK 414 assures that only a single increment is detected for a separate occurrence of the request pulse 412 but multiple occurrences of the request pulse 412 can be captured. The output of the counter element 416 can be a pending PWM request 418.
In order to manage multiple concurrent instances of the pending PWM request 418, an arbiter circuit 420 can prioritize allowing the pending PWM request 418. When the arbiter circuit 420 allows the pending PWM request 418, a PWM code 422 can be represented on the PWM signal code 302. The value of the PWM code 422 can be fixed to represent a single operation on the PWM signal code 302. As an example, the arbiter circuit 420 can be clocked by the falling edge of the ACT line 304. The timing of the switch in value on the PWM signal code 302 and the ACT line 304 provides ample set-up and hold timing in the PIC 214 of
When the requested value of the PWM code 422 is gated to the PWM signal code 302, a comparator circuit 424 can detect the match and provide a decrement to the counter element 416. For example, if only one of the request pulses 412 had been detected by the counter element 416, the pending PWM request 418 is negated. If multiples of the request pulses 412 had been detected by the counter element 416, the number of the pending PWM request 418 is reduced by one, but the pending PWM request(s) 418 remains asserted at the arbiter circuit 420.
Any of the pending PWM requests 418 can initiate a cycle of the ACT line 304 through a cycle generator 426. The cycle generator 426 is clocked by the PCLK 414, which will assert the ACT line 304 on a rising edge of the PCLK 414 and negate the ACT line 304 on the subsequent rising edge of the PCLK 414. If additional lines of the pending PWM requests 418 are present, the ACT line 304 will once again be asserted. This cycle will repeat until the pending PWM requests 418 are satisfied, which will leave the ACT line 304 in the negated state.
It is understood that the number of the PWM code 422 is an example and any number of the pending PWM request 418 can be accommodated by changing the number of bits in the PWM signal code 302. The value of the PWM code 422 is coordinated with the PIC 214, but there are no restrictions on the interpretation of the PWM code 422. It is also understood that all of the request synchronizing flip-flops 404, the data flip-flop 408, the counter element 416, and the cycle generator 426 are clocked by the PCLK 414, though for clarity not all of the connections are shown. The arbiter circuit 420 can be switched by the falling edge of the ACT line 304 reflected by the negative output of the cycle generator 426.
Referring now to
The pending PWM request 418 of
At an N+1th rising edge 504 of the PCLK 414, the ACT line 304 can be asserted. Since the PWM signal code 302 can propagate into the PIC 214 of
By way of an example, at an N+2th rising edge 506 of the PCLK 414, the ACT line 304 can be negated and the arbiter circuit 420 can propagate the PWM code 422 of the pending PWM request 418 that is the next priority. In this example, the PWM code 422 having the highest priority is shown to generate the PWM signal code 302 value of “01001”. The transfer of the PWM code bus 216 between the SOC 212 of
The resulting method, process, apparatus, device, product, and/or system is straightforward, cost-effective, uncomplicated, highly versatile, accurate, sensitive, and effective, and can be implemented by adapting known components for ready, efficient, and economical manufacturing, application, and utilization.
These and other valuable aspects of an embodiment consequently further the state of the technology to at least the next level.
While the various embodiments have been described in conjunction with a specific best mode, it is to be understood that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the aforegoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations that fall within the scope of the included claims. All matters set forth herein or shown in the accompanying drawings are to be interpreted in an illustrative and non-limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
6014283 | Codilian et al. | Jan 2000 | A |
6052076 | Patton, III et al. | Apr 2000 | A |
6052250 | Golowka et al. | Apr 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6078453 | Dziallo et al. | Jun 2000 | A |
6091564 | Codilian et al. | Jul 2000 | A |
6094020 | Goretzki et al. | Jul 2000 | A |
6101065 | Alfred et al. | Aug 2000 | A |
6104153 | Codilian et al. | Aug 2000 | A |
6122133 | Nazarian et al. | Sep 2000 | A |
6122135 | Stich | Sep 2000 | A |
6141175 | Nazarian et al. | Oct 2000 | A |
6160368 | Plutowski | Dec 2000 | A |
6181502 | Hussein et al. | Jan 2001 | B1 |
6195222 | Heminger et al. | Feb 2001 | B1 |
6198584 | Codilian et al. | Mar 2001 | B1 |
6198590 | Codilian et al. | Mar 2001 | B1 |
6204988 | Codilian et al. | Mar 2001 | B1 |
6243223 | Elliott et al. | Jun 2001 | B1 |
6281652 | Ryan et al. | Aug 2001 | B1 |
6285521 | Hussein | Sep 2001 | B1 |
6292320 | Mason et al. | Sep 2001 | B1 |
6310742 | Nazarian et al. | Oct 2001 | B1 |
6320718 | Bouwkamp et al. | Nov 2001 | B1 |
6342984 | Hussein et al. | Jan 2002 | B1 |
6347018 | Kadlec et al. | Feb 2002 | B1 |
6369972 | Codilian et al. | Apr 2002 | B1 |
6369974 | Asgari et al. | Apr 2002 | B1 |
6462896 | Codilian et al. | Oct 2002 | B1 |
6476996 | Ryan | Nov 2002 | B1 |
6484577 | Bennett | Nov 2002 | B1 |
6493169 | Ferris et al. | Dec 2002 | B1 |
6496324 | Golowka et al. | Dec 2002 | B1 |
6498698 | Golowka et al. | Dec 2002 | B1 |
6507450 | Elliott | Jan 2003 | B1 |
6534936 | Messenger et al. | Mar 2003 | B2 |
6538839 | Ryan | Mar 2003 | B1 |
6545835 | Codilian et al. | Apr 2003 | B1 |
6549359 | Bennett et al. | Apr 2003 | B1 |
6549361 | Bennett et al. | Apr 2003 | B1 |
6560056 | Ryan | May 2003 | B1 |
6568268 | Bennett | May 2003 | B1 |
6574062 | Bennett et al. | Jun 2003 | B1 |
6577465 | Bennett et al. | Jun 2003 | B1 |
6614615 | Ju et al. | Sep 2003 | B1 |
6614618 | Sheh et al. | Sep 2003 | B1 |
6636377 | Yu et al. | Oct 2003 | B1 |
6690536 | Ryan | Feb 2004 | B1 |
6693764 | Sheh et al. | Feb 2004 | B1 |
6707635 | Codilian et al. | Mar 2004 | B1 |
6710953 | Vallis et al. | Mar 2004 | B1 |
6710966 | Codilian et al. | Mar 2004 | B1 |
6714371 | Codilian | Mar 2004 | B1 |
6714372 | Codilian et al. | Mar 2004 | B1 |
6724564 | Codilian et al. | Apr 2004 | B1 |
6731450 | Codilian et al. | May 2004 | B1 |
6735041 | Codilian et al. | May 2004 | B1 |
6738220 | Codilian | May 2004 | B1 |
6747837 | Bennett | Jun 2004 | B1 |
6760186 | Codilian et al. | Jul 2004 | B1 |
6788483 | Ferris et al. | Sep 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6795268 | Ryan | Sep 2004 | B1 |
6819518 | Melkote et al. | Nov 2004 | B1 |
6826006 | Melkote et al. | Nov 2004 | B1 |
6826007 | Patton, III | Nov 2004 | B1 |
6847502 | Codilian | Jan 2005 | B1 |
6850383 | Bennett | Feb 2005 | B1 |
6850384 | Bennett | Feb 2005 | B1 |
6867944 | Ryan | Mar 2005 | B1 |
6876508 | Patton, III et al. | Apr 2005 | B1 |
6882496 | Codilian et al. | Apr 2005 | B1 |
6885514 | Codilian et al. | Apr 2005 | B1 |
6900958 | Yi et al. | May 2005 | B1 |
6900959 | Gardner et al. | May 2005 | B1 |
6903897 | Wang et al. | Jun 2005 | B1 |
6914740 | Tu et al. | Jul 2005 | B1 |
6914743 | Narayana et al. | Jul 2005 | B1 |
6920004 | Codilian et al. | Jul 2005 | B1 |
6924959 | Melkote et al. | Aug 2005 | B1 |
6924960 | Melkote et al. | Aug 2005 | B1 |
6924961 | Melkote et al. | Aug 2005 | B1 |
6934114 | Codilian et al. | Aug 2005 | B1 |
6934135 | Ryan | Aug 2005 | B1 |
6937420 | McNab et al. | Aug 2005 | B1 |
6937423 | Ngo et al. | Aug 2005 | B1 |
6952322 | Codilian et al. | Oct 2005 | B1 |
6954324 | Tu et al. | Oct 2005 | B1 |
6958881 | Codilian et al. | Oct 2005 | B1 |
6963465 | Melkote et al. | Nov 2005 | B1 |
6965488 | Bennett | Nov 2005 | B1 |
6967458 | Bennett et al. | Nov 2005 | B1 |
6967811 | Codilian et al. | Nov 2005 | B1 |
6970319 | Bennett et al. | Nov 2005 | B1 |
6972539 | Codilian et al. | Dec 2005 | B1 |
6972540 | Wang et al. | Dec 2005 | B1 |
6972922 | Subrahmanyam et al. | Dec 2005 | B1 |
6975480 | Codilian et al. | Dec 2005 | B1 |
6977789 | Cloke | Dec 2005 | B1 |
6980389 | Kupferman | Dec 2005 | B1 |
6987636 | Chue et al. | Jan 2006 | B1 |
6987639 | Yu | Jan 2006 | B1 |
6989954 | Lee et al. | Jan 2006 | B1 |
6992848 | Agarwal et al. | Jan 2006 | B1 |
6992851 | Cloke | Jan 2006 | B1 |
6992852 | Ying et al. | Jan 2006 | B1 |
6995941 | Miyamura et al. | Feb 2006 | B1 |
6999263 | Melkote et al. | Feb 2006 | B1 |
6999267 | Melkote et al. | Feb 2006 | B1 |
7006320 | Bennett et al. | Feb 2006 | B1 |
7016134 | Agarwal et al. | Mar 2006 | B1 |
7023637 | Kupferman | Apr 2006 | B1 |
7023640 | Codilian et al. | Apr 2006 | B1 |
7027256 | Subrahmanyam et al. | Apr 2006 | B1 |
7027257 | Kupferman | Apr 2006 | B1 |
7034479 | Bombaci et al. | Apr 2006 | B2 |
7034501 | Thunes | Apr 2006 | B1 |
7035026 | Codilian et al. | Apr 2006 | B2 |
7046472 | Melkote et al. | May 2006 | B1 |
7050249 | Chue et al. | May 2006 | B1 |
7050254 | Yu et al. | May 2006 | B1 |
7050258 | Codilian | May 2006 | B1 |
7054098 | Yu et al. | May 2006 | B1 |
7061714 | Yu | Jun 2006 | B1 |
7064918 | Codilian et al. | Jun 2006 | B1 |
7068451 | Wang et al. | Jun 2006 | B1 |
7068459 | Cloke et al. | Jun 2006 | B1 |
7068461 | Chue et al. | Jun 2006 | B1 |
7068463 | Ji et al. | Jun 2006 | B1 |
7088547 | Wang et al. | Aug 2006 | B1 |
7095579 | Ryan et al. | Aug 2006 | B1 |
7110208 | Miyamura et al. | Sep 2006 | B1 |
7110214 | Tu et al. | Sep 2006 | B1 |
7113362 | Lee et al. | Sep 2006 | B1 |
7113365 | Ryan et al. | Sep 2006 | B1 |
7116505 | Kupferman | Oct 2006 | B1 |
7126781 | Bennett | Oct 2006 | B1 |
7158329 | Ryan | Jan 2007 | B1 |
7180703 | Subrahmanyam et al. | Feb 2007 | B1 |
7184230 | Chue et al. | Feb 2007 | B1 |
7196864 | Yi et al. | Mar 2007 | B1 |
7199966 | Tu et al. | Apr 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7209321 | Bennett | Apr 2007 | B1 |
7212364 | Lee | May 2007 | B1 |
7212374 | Wang et al. | May 2007 | B1 |
7215504 | Bennett | May 2007 | B1 |
7224546 | Orakcilar et al. | May 2007 | B1 |
7248426 | Weerasooriya et al. | Jul 2007 | B1 |
7251098 | Wang et al. | Jul 2007 | B1 |
7253582 | Ding et al. | Aug 2007 | B1 |
7253989 | Lau et al. | Aug 2007 | B1 |
7265933 | Phan et al. | Sep 2007 | B1 |
7289288 | Tu | Oct 2007 | B1 |
7298574 | Melkote et al. | Nov 2007 | B1 |
7301717 | Lee et al. | Nov 2007 | B1 |
7304819 | Melkote et al. | Dec 2007 | B1 |
7330019 | Bennett | Feb 2008 | B1 |
7330327 | Chue et al. | Feb 2008 | B1 |
7333280 | Lifchits et al. | Feb 2008 | B1 |
7333290 | Kupferman | Feb 2008 | B1 |
7339761 | Tu et al. | Mar 2008 | B1 |
7365932 | Bennett | Apr 2008 | B1 |
7388728 | Chen et al. | Jun 2008 | B1 |
7391583 | Sheh et al. | Jun 2008 | B1 |
7391584 | Sheh et al. | Jun 2008 | B1 |
7433143 | Ying et al. | Oct 2008 | B1 |
7440210 | Lee | Oct 2008 | B1 |
7440225 | Chen et al. | Oct 2008 | B1 |
7450334 | Wang et al. | Nov 2008 | B1 |
7450336 | Wang et al. | Nov 2008 | B1 |
7453661 | Jang et al. | Nov 2008 | B1 |
7457071 | Sheh | Nov 2008 | B1 |
7466509 | Chen et al. | Dec 2008 | B1 |
7468855 | Weerasooriya et al. | Dec 2008 | B1 |
7477471 | Nemshick et al. | Jan 2009 | B1 |
7480116 | Bennett | Jan 2009 | B1 |
7489464 | McNab et al. | Feb 2009 | B1 |
7492546 | Miyamura | Feb 2009 | B1 |
7495857 | Bennett | Feb 2009 | B1 |
7499236 | Lee et al. | Mar 2009 | B1 |
7502192 | Wang et al. | Mar 2009 | B1 |
7502195 | Wu et al. | Mar 2009 | B1 |
7502197 | Chue | Mar 2009 | B1 |
7505223 | McComack | Mar 2009 | B1 |
7542225 | Ding et al. | Jun 2009 | B1 |
7548392 | Desai et al. | Jun 2009 | B1 |
7551390 | Wang et al. | Jun 2009 | B1 |
7558016 | Le et al. | Jul 2009 | B1 |
7573670 | Ryan et al. | Aug 2009 | B1 |
7576941 | Chen et al. | Aug 2009 | B1 |
7580212 | Li et al. | Aug 2009 | B1 |
7583470 | Chen et al. | Sep 2009 | B1 |
7595954 | Chen et al. | Sep 2009 | B1 |
7602575 | Lifchits et al. | Oct 2009 | B1 |
7616399 | Chen et al. | Nov 2009 | B1 |
7619844 | Bennett | Nov 2009 | B1 |
7626782 | Yu et al. | Dec 2009 | B1 |
7630162 | Zhao et al. | Dec 2009 | B2 |
7639447 | Yu et al. | Dec 2009 | B1 |
7656604 | Liang et al. | Feb 2010 | B1 |
7656607 | Bennett | Feb 2010 | B1 |
7660067 | Ji et al. | Feb 2010 | B1 |
7663835 | Yu et al. | Feb 2010 | B1 |
7675707 | Liu et al. | Mar 2010 | B1 |
7679854 | Narayana et al. | Mar 2010 | B1 |
7688534 | McCornack | Mar 2010 | B1 |
7688538 | Chen et al. | Mar 2010 | B1 |
7688539 | Bryant et al. | Mar 2010 | B1 |
7697233 | Bennett et al. | Apr 2010 | B1 |
7701661 | Bennett | Apr 2010 | B1 |
7710676 | Chue | May 2010 | B1 |
7715138 | Kupferman | May 2010 | B1 |
7729079 | Huber | Jun 2010 | B1 |
7733189 | Bennett | Jun 2010 | B1 |
7746592 | Liang et al. | Jun 2010 | B1 |
7746594 | Guo et al. | Jun 2010 | B1 |
7746595 | Guo et al. | Jun 2010 | B1 |
7760461 | Bennett | Jul 2010 | B1 |
7800853 | Guo et al. | Sep 2010 | B1 |
7800856 | Bennett et al. | Sep 2010 | B1 |
7800857 | Calaway et al. | Sep 2010 | B1 |
7839591 | Weerasooriya et al. | Nov 2010 | B1 |
7839595 | Chue et al. | Nov 2010 | B1 |
7839600 | Babinski et al. | Nov 2010 | B1 |
7843662 | Weerasooriya et al. | Nov 2010 | B1 |
7852588 | Ferris et al. | Dec 2010 | B1 |
7852592 | Liang et al. | Dec 2010 | B1 |
7864481 | Kon et al. | Jan 2011 | B1 |
7864482 | Babinski et al. | Jan 2011 | B1 |
7869155 | Wong | Jan 2011 | B1 |
7876522 | Calaway et al. | Jan 2011 | B1 |
7876523 | Panyavoravaj et al. | Jan 2011 | B1 |
7916415 | Chue | Mar 2011 | B1 |
7916416 | Guo et al. | Mar 2011 | B1 |
7916420 | McFadyen et al. | Mar 2011 | B1 |
7916422 | Guo et al. | Mar 2011 | B1 |
7929238 | Vasquez | Apr 2011 | B1 |
7961422 | Chen et al. | Jun 2011 | B1 |
7991584 | Dang et al. | Aug 2011 | B2 |
8000053 | Anderson | Aug 2011 | B1 |
8031423 | Tsai et al. | Oct 2011 | B1 |
8054022 | Ryan et al. | Nov 2011 | B1 |
8059357 | Knigge et al. | Nov 2011 | B1 |
8059360 | Melkote et al. | Nov 2011 | B1 |
8072703 | Calaway et al. | Dec 2011 | B1 |
8077428 | Chen et al. | Dec 2011 | B1 |
8078901 | Meyer et al. | Dec 2011 | B1 |
8081395 | Ferris | Dec 2011 | B1 |
8085020 | Bennett | Dec 2011 | B1 |
8094405 | Ying | Jan 2012 | B1 |
8107187 | Hong | Jan 2012 | B1 |
8116023 | Kupferman | Feb 2012 | B1 |
8134792 | Ranmuthu | Mar 2012 | B2 |
8145934 | Ferris et al. | Mar 2012 | B1 |
8179626 | Ryan et al. | May 2012 | B1 |
8189286 | Chen et al. | May 2012 | B1 |
8213106 | Guo et al. | Jul 2012 | B1 |
8254222 | Tang | Aug 2012 | B1 |
8300348 | Liu et al. | Oct 2012 | B1 |
8315005 | Zou et al. | Nov 2012 | B1 |
8320069 | Knigge et al. | Nov 2012 | B1 |
8351174 | Gardner et al. | Jan 2013 | B1 |
8358114 | Ferris et al. | Jan 2013 | B1 |
8358145 | Ferris et al. | Jan 2013 | B1 |
8390367 | Bennett | Mar 2013 | B1 |
8432031 | Agness et al. | Apr 2013 | B1 |
8432629 | Rigney et al. | Apr 2013 | B1 |
8451697 | Rigney et al. | May 2013 | B1 |
8482873 | Chue et al. | Jul 2013 | B1 |
8498076 | Sheh et al. | Jul 2013 | B1 |
8498172 | Patton, III et al. | Jul 2013 | B1 |
8508881 | Babinski et al. | Aug 2013 | B1 |
8531798 | Xi et al. | Sep 2013 | B1 |
8537486 | Liang et al. | Sep 2013 | B2 |
8542455 | Huang et al. | Sep 2013 | B2 |
8553351 | Narayana et al. | Oct 2013 | B1 |
8564899 | Lou et al. | Oct 2013 | B2 |
8576506 | Wang et al. | Nov 2013 | B1 |
8605382 | Mallary et al. | Dec 2013 | B1 |
8605384 | Liu et al. | Dec 2013 | B1 |
8610391 | Yang et al. | Dec 2013 | B1 |
8611040 | Xi et al. | Dec 2013 | B1 |
8619385 | Guo et al. | Dec 2013 | B1 |
8630054 | Bennett et al. | Jan 2014 | B2 |
8630059 | Chen et al. | Jan 2014 | B1 |
8634154 | Rigney et al. | Jan 2014 | B1 |
8634283 | Rigney et al. | Jan 2014 | B1 |
8638080 | Agrawal et al. | Jan 2014 | B2 |
8643976 | Wang et al. | Feb 2014 | B1 |
8649121 | Smith et al. | Feb 2014 | B1 |
8654466 | McFadyen | Feb 2014 | B1 |
8654467 | Wong et al. | Feb 2014 | B1 |
8665546 | Zhao et al. | Mar 2014 | B1 |
8665551 | Rigney et al. | Mar 2014 | B1 |
8670206 | Liang et al. | Mar 2014 | B1 |
8687312 | Liang | Apr 2014 | B1 |
8693123 | Guo et al. | Apr 2014 | B1 |
8693134 | Xi et al. | Apr 2014 | B1 |
8699173 | Kang et al. | Apr 2014 | B1 |
8711027 | Bennett | Apr 2014 | B1 |
8717696 | Ryan et al. | May 2014 | B1 |
8717699 | Ferris | May 2014 | B1 |
8717704 | Yu et al. | May 2014 | B1 |
8724245 | Smith et al. | May 2014 | B1 |
8724253 | Liang et al. | May 2014 | B1 |
8724524 | Urabe et al. | May 2014 | B2 |
8737008 | Watanabe et al. | May 2014 | B1 |
8737013 | Zhou et al. | May 2014 | B2 |
8743495 | Chen et al. | Jun 2014 | B1 |
8743503 | Tang et al. | Jun 2014 | B1 |
8743504 | Bryant et al. | Jun 2014 | B1 |
8749904 | Liang et al. | Jun 2014 | B1 |
8760796 | Lou et al. | Jun 2014 | B1 |
8767332 | Chahwan et al. | Jul 2014 | B1 |
8767343 | Helmick et al. | Jul 2014 | B1 |
8767354 | Ferris et al. | Jul 2014 | B1 |
8773787 | Beker | Jul 2014 | B1 |
8779574 | Agness et al. | Jul 2014 | B1 |
8780473 | Zhao et al. | Jul 2014 | B1 |
8780477 | Guo et al. | Jul 2014 | B1 |
8780479 | Helmick et al. | Jul 2014 | B1 |
8780489 | Gayaka et al. | Jul 2014 | B1 |
8792202 | Wan et al. | Jul 2014 | B1 |
8797664 | Guo et al. | Aug 2014 | B1 |
8804267 | Huang et al. | Aug 2014 | B2 |
8824081 | Guo et al. | Sep 2014 | B1 |
8824262 | Liu et al. | Sep 2014 | B1 |
8836396 | Zhang | Sep 2014 | B2 |
20100035085 | Jung et al. | Feb 2010 | A1 |
20120284493 | Lou et al. | Nov 2012 | A1 |
20130120870 | Zhou et al. | May 2013 | A1 |
20130148240 | Ferris et al. | Jun 2013 | A1 |