The present invention provides a tag housing assembly including a housing which supports an electronic tag, for example, an electronic article surveillance (EAS) tag or radio frequency identification (RFID) tag. The housing is attachable to an article so as to maintain the tag with the article to track shipment, purchase and/or to provide theft deterrence.
The housing of the present invention supports a heat shrinkable tube which may be placed over an article or portion of an article, and shrunk thereabout to secure the housing to the article. The heat shrinkable tube may be severed to effect removal of the housing from the article. While the housing may be used in combination with any desired article, the present invention is particularly useful with articles have elongate segments such as eyeglasses and paint brushes.
Referring to
In the present illustrative embodiment, tag 14 is an elongate generally rectangular planar member which may function as an EAS tag or an RFID tag as is well known in the art. Other configurations and types of electronic tags are also contemplated within the scope of the present invention.
Tag housing 12 is generally an elongate planar shaped two-piece member including a base 16 and cover 18. The base 16 may include an elongate cavity 20 formed therein. Cavity 20 is configured to accommodate tag 14 therein.
Cover 18 is positionable over base 16 and is attached thereto to cover and enclose the tag 14 within the cavity 20 of base 16. The cover 18 may be secured to base 16 by any well known attachment technique such as friction fit, adhesive, ultrasonic welding and the like.
As more fully shown in
The tube 30 is an elongate member having a tubular wall. The tube may be formed of a wide variety of heat activated materials, one material being a polyethylene material, which is sold under the trademark TYVEK. The tube 30 is heat activated so as to shrink upon application of heat. The tube 30 is designed to receive an article or portion of an article to which the tag housing is to be secured, such that upon application of heat the tube 30 will shrink about the article securing the tag housing 12 to the article.
To assure that the shrunk tube 30 conforms to the article placed therein upon heat shrinking, the base 16 includes a pair of opposed longitudinal ends 32 and 34 which are downwardly curved. Edges 32 and 34 allow the shrunk tube 30 to conform to the shape of the article placed therein by directing the tube downward from base 16.
As the heat shrink tube 30 will shrink to conform to the article which has been placed therein, the tag housing will be difficult to remove from the article after heat shrinking. While such securement is beneficial to prevent unauthorized removal of the tag housing from the article, it makes authorized removal inconvenient without damaging the article.
The present invention further provides a technique for allowing authorized personnel to remove the tag housing from the article after the tube has been shrunk onto the article.
Referring to
A further embodiment of the present invention is shown with respect to
Tag housing assembly 110 includes a housing 112 including a base 116 and cover 118. A heat shrinkable tube 130 is supported between the base 116 and cover 118 in a manner similar to that described above. The base 116 defines opposed curved edges 132 and 134 to direct the shrunk tube about an article inserted therein. Similarly, base 116 includes a U-shaped depression 140 underlying tube 130 so as to facilitate removal of the tag housing from the article.
In the present illustrative embodiment, cover 118 supports a two-piece subassembly 150 which is attached thereto. Subassembly 150 is an elongate generally planar member formed of two mating half portions 152 and 154. The portions define therebetween a cavity 155 which supports tag 114 therein.
The subassembly 150 includes opposed planar surfaces 151 and 153 which are used as indicia bearing surface to provide information representing the article to which the tag housing 12 is attached. Such information may include product identification, features, trademarks, as well as pricing and bar code information.
A further feature of the present embodiment is that the subassembly 150 may be attached to cover 118 so as to rotate or swivel thereabout.
As particularly shown in
In order to attach to cover 118, subassembly 150 includes a centrally located socket 158 which mates with bulbous end 164 of cover 118 to form a ball and socket connection. Such connection allows the subassembly to rotate or swivel with respect to cover 118.
A still further embodiment of the present invention is shown with respect to
Tag housing assembly 210 includes a housing 212 including a base 216, a cover 218 and a bottom closure 213. A heat shrinkable tube 230 is supported between based 216 and cover 218 as will be described hereinbelow. The tube 230 is positioned to define an insertion channel 232 for insertably receiving an article such as the elongate temple piece 285 of eyeglasses 280.
A shown in the drawings, base 216 includes an elongate member 211 having opposed ends 213 and 215. A pair of rails 217 and 219 extend, respectively, from ends 213 and 215. The elongate member 211 includes an upper surface 211a and an opposed lower surface 211b.
The elongate member 211 supports tube 230 thereabout with the tube positioned against upper surface 211a. The upper surface 211a includes a U-shaped depression 240, as described above with respect to
The lower surface 211b of elongate member 211 supports therealong an elastomeric pad 221. Pad 221 is an elongate member which is co-extensive with the lower surface 211b of elongate member 211. The elastomeric pad 221 is preferably formed of a soft thermoplastic elastomer (TPE) or similar resilient material. The pad 221 is attached to the lower side 211b by overmolding the pad thereto during manufacture. As will be described hereinbelow, the TPE pad 221 helps secure tag housing assembly 210 to the temple piece 285 of eyeglasses 280.
The rails 217 and 219 support thereabout the electronic tag 214. The rails each include an indented portion 217a and 219a, respectively, which seats and supports the opposed ends of the rectangular tag.
Bottom closure 213 is a planar member and is attached to base 216 across the rails 217 and 218. The bottom closure 213 has cut out 212a which forms a space with elongate member 211 to allow accommodation of the tube 230 therebetween.
Cover 218 is supported by base 216 on its upper face over elongate tag 214. Cover 218 is also positioned to engage and secure tube 230 which extends around elongate member 211 of base 216.
As with the above embodiments, the tube 226 is positioned between the elongate member of base 216 and cover 218. The cover 218, base 216, and bottom closure 213 are then secured together, preferably by ultrasonic welding to secure the tube to housing 212 and enclose the tag 214 between the cover and bottom closure.
The embodiment described in
The tag housing assembly 210, including the tube 230, and electronic tag 214 is placed over, for example, the temple piece 285 of eyeglass 280 by inserting the temple piece into the channel defined by the tube 230.
The shrink tube 230 is then shrunk onto the temple piece 285 by applying heat to the tube 230. Shrinking of the tube forces the temple piece 285 in resilient engagement with the TPE pad 221. Such resilient engagement provides a more secure attachment by conforming the TPE pad and the shrink tube to the temple piece. Moreover, the TPE material provides a frictional surface which resists sliding of the assembly along the temple arm piece. In that regard, the TPE material has a high coefficient of friction.
As with the above embodiment previously described, after purchase, the tag housing assembly may be removed by cutting the shrink tube at the U-shaped depression.
A further embodiment of the tag housing assembly of the present invention is shown in
Tag 314 is an elongate generally rectangular planar member of the type described above. However, it is contemplated that other shapes of electronic tags may also be employed. Tag housing 312 is generally an elongate planar shaped multi-component member including a base 316 and a cover 318. The base 316 may include an elongate cavity 320 formed therein. The cavity 320 is configured to accommodate tag 314 therein. The cover 318 is positionable over the base and is attached thereto to cover and enclose the tag 318 within the cavity 320 of base 316. The cover 318 may be secured to the base 316 by an well known attachment techniques such a friction fit, adhesive, ultrasonic welding or the like.
Heat shrink tubing 330 is supported around base 316 between base 316 and cover 318. The heat shrink tubing 330, which is similar to that described above, helps support the electronic tag 314 within the base 316. Similar to the embodiments shown above with respect to
An undersurface 317 of base 316 may include thereon a pad 321 formed of a soft thermoplastic (TPE) material. The pad is similar to that described above with respect to the embodiments of
As shown in
Various changes to the foregoing described and shown structures would now be evident to those skilled in the art. Accordingly, the particularly disclosed scope of the invention is set forth in the following claims.
This application claims priority to U.S. Patent Application Ser. No. 60/801,271, filed on May 18, 2006; U.S. Patent Application Serial No. 60/834,998, filed on Aug. 2, 2006; U.S. Patent Application Ser. No. 60/856,989 filed on Nov. 6, 2006, all of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60801271 | May 2006 | US | |
60834998 | Aug 2006 | US | |
60856989 | Nov 2006 | US |