Referring to
The electronic throttle control pedal assembly 10 of this example transmits a signal from the driver to a throttle controller (not shown) regarding movement of the vehicle. The pedal assembly 10 includes a housing 12 having a mounting wall with tabs 16 for mounting the pedal assembly 10 to a vehicle (not shown). The housing includes a pair of spaced apart side walls 14 and a curved end wall 15 between the side walls 14 that define a cavity. An opening is formed in the lower portion of the housing as shown at 19, between the end wall 15 and the mounting wall 16.
The end wall 15 includes a friction wall portion 18 that has an overall arcuate shape and a radius of curvature centered at a pedal arm pivot point 20. As shown in
The first frictional surface 18a and second frictional surface 18b are separated by a step 18c or ramped portion of the friction wall 18. The step 18c provides a transition between the first frictional surface 18a of the friction wall 18 and the second frictional surface 18b of the friction wall 18. The step 18c can assume various shapes, depending on the desired kickdown force. For example, the step 18c can be an angled wall 18c that projects downwardly away from the first frictional surface at a predetermined angle. For example, 45 degrees from the first frictional surface 18a. In another example, the step 18c can have another wall shape, such as a backwards “J” shape. The corner between the first frictional surface 18a and step 18c or step 18c and second frictional surface 18b may have a radius. It should be appreciated that the shape and dimensional characteristics of the step 18c influence the kickdown “feel”, and are varied to achieve the desired kickdown “feel”. Further, the location of the step 18c, and length of the first frictional surface 18a, or second frictional surface 18b are generally determinable based on predetermined transmission shift points. Generally, the step 18c is located nearer the end of the travel of the pedal than the beginning.
It should be appreciated various techniques may be utilized to influence the frictional characteristics of the friction wall 18. For example, any one of the first frictional surface 18a, second frictional surface 18b or transitional step 18c may be abraded. In another example, a frictional member 56, such as a friction pad or the like, may be disposed on any of the first frictional surface 18a, second frictional surface 18b or transitional step 18c, in order to provide additional resistance. In a further example, a material used for a friction shoe, to be described, is selected having a predetermined coefficient of friction, to achieve the desired hysteresis and kickdown feel.
The pedal assembly 10 includes a pedal arm 22 rotatably supported by a mounting means, as shown at 24. The pedal arm 22 includes a mounting portion, which in this example is disc shaped, and that is supported by the mounting means 24. The pedal arm 22 also includes an upper pedal arm member 32 extending radially from an upper edge pedal arm of the mounting portion 26, generally towards the friction wall 18. The pedal arm 22 also includes a lower pedal arm member 34 extending radially from a lower edge of the mounting portion 26. A pedal pad 36 that is actuated by a driver's foot (not shown) is attached to a distal end of the lower pedal arm member 34 using an attaching means, such as a pivot pin or the like. The lower pedal arm 22 extends through the lower opening 19 in the housing 12. The upper pedal arm 32 and lower pedal arm 34 may be integrally formed as one member, or as two members that operate together.
The mounting means 24 rotatably supports the pedal arm 22, so that the pedal arm 22 rotates about the pedal arm pivot point 20. Various examples of mounting means 24 are contemplated. One example of a mounting means is a pivot pin. Another example of a mounting means is a hub on each side of the pedal arm. Still another example of a mounting means is a hub and post arrangement.
In the example of a hub and post, the mounting means 24 may be a pivot pin mounted to the housing and supporting the pedal arm. Alternatively, the mounting means may include a post extending radially from one side of the mounting portion of the pedal arm 26 at a pedal arm pivot point 20. The post includes a longitudinally extending bore 28 extending partially therethrough for receiving a position sensing device 70. The post is supported by the housing. The opposite side of the pedal arm disk portion 26 includes a longitudinally extending bore (not shown) for receiving another post integrally formed in the housing. The mounting means may include a bushing 30.
The electronically controlled pedal assembly 10 further includes an integrated hysteresis and kickdown generating device 38. The upper pedal arm member 32 is operatively in communication with the integrated hysteresis and kickdown generating device 38. In this example, the integrated hysteresis and kickdown device includes a friction lever 40 pivotally mounted to a distal end of the upper pedal arm member 32 at a friction lever pivot point shown at 42. In this example, the friction lever 40 generally has an “S” shape, and is integral and formed as one piece.
The friction lever 40 of this example includes an integrally formed main member 40a, an upper member 40b extending radially from an upper edge of the main member 40a and a lower member 40c extending radially from a lower edge of the main member 40a. The distal end of the friction lever lower member 40c is pivotally connected to the upper pedal arm member 32 at the friction lever pivot point 42. The friction lever upper member 40b has an arcuate shape that is complementary with the shape of the first frictional surface 18a of the friction wall 18. The friction lever upper member 18b may have a frictional feature that influences generating the hysteresis or kickdown feel. For example, the outer surface 40d of the friction lever upper member 40b may be abraded, to frictionally engage the corresponding arcuate surface of the friction wall 18. In another example, the material of the friction lever upper member 40b is selected according to a desired amount of friction to be generated between the friction lever upper member 40b and the friction wall 18. An example of a material is a plastic or a metal.
The friction lever 40 is initially biased against the housing 12, as shown at 44, by a spring member 46. In this example, the spring 46 is a compression spring. It is positioned between the friction lever 40, and in particular the main member 40a of the friction lever 40, and a spring attachment portion of the end wall 15 of the housing 12, as shown at 48. There may be two springs 46 in parallel with each other. In this example, the spring 46 has one end fixedly attached to the spring attachment portion of the housing end wall 48, and a second end fixedly attached to the friction lever 40. The spring 46 extends between the housing 12 and the friction lever 40, in order to generate friction during actuation of the pedal, to provide the hysteresis feel to the vehicle operator.
The electronically controlled pedal assembly 10 further includes a position sensing device 70 operatively supported by the mounting means 24 at the pedal arm pivot point 24. The sensing device 70 is used to sense the rotational movement of the pedal arm 22, which is indicative of the relative pedal position, and transmit a signal to a control means (not shown) to operatively control a throttle controller (not shown) and thus the movement of the vehicle. Preferably the signal is a proportional voltage signal. It should be appreciated that the electronically controlled pedal assembly 10 may include a blade (not shown) operatively connected to the sensing device 70 to generate a signal indicative of the position of the pedal arm 22 during operation.
Various types of position sensing devices are known in the art to sense rotational movement. One example of such a sensing device is a potentiometer. Another example of a sensing device is an induction sensor. The induction sensor utilizes inductance changes in a transducer circuit to produce an output signal representing the change in position of the pedal arm 22. Advantageously, the induction sensor works well in harsh environments or in environments subject to fluctuations in temperature. One example of an induction sensor utilizes a linear or a rotary variable differential transformer means, or a Hall effect detection of magnetic change, to convert a displacement or angular measurement to an electronic or electromagnetic signal. While these types of sensors work well, they require complex electronic circuitry to transduce a signal, and are expensive to manufacture.
Another example of an induction sensor is disclosed in U.S. Pat. No. 6,384,596, the disclosure of which is incorporated herein by reference. An example of a cap assembly for use with an electronically controlled pedal assembly is disclosed in commonly assigned U.S. patent application Ser. No. 10/621,904, which is incorporated herein by reference. The induction sensor 70 operatively senses the angular movement of the pedal arm 22 about the pedal arm pivot point 20, and transmits a proportional signal, such as a voltage signal, to a controller. The controller analyzes the signal, and transmits a signal to the throttle controller instructing the throttle controller to actuate the throttle accordingly.
In operation, as the pedal arm 22 is depressed by the operator, the mounting portion 26 and upper pedal arm 32 rotates. As the pedal arm 22 and friction lever 40 rotate, the spring 46 is compressed between the friction lever 44 and the end wall 15 of the housing 12. At the same time, the friction lever upper member 40a travels along the first frictional surface 18a of the friction wall 18, as shown in
When the load on the pedal arm 22 is released to permit the pedal arm 22 to return towards a resting portion, the spring force on the rear wall of the friction lever 18 pivots the friction lever upper portion 40b into coaxial alignment with the friction wall arcuate surface 18, thereby reducing the friction between the frictional surface 40d of the upper portion friction member 40b and friction wall 18, and permitting return of the pedal arm 22 to a resting position.
Referring to
Referring to
In this example, the pedal arm 122 includes an upper pedal arm 132 extending radially from the pedal arm mounting portion 126 towards the friction wall 118. The pedal arm 122 also includes a lower pedal arm with pedal pad attached thereto. It should be appreciated that the upper pedal arm 132 in this embodiment is longer than the upper pedal arm in the previous embodiment. A friction lever 140 is pivotally mounted to a distal end of the upper pedal arm 132 at a friction lever pivot point as shown at 142. The friction lever 140 has a main member 140a, and an upper member 140b extending forwardly from the friction lever main member 140a. The friction lever upper member 140b is arcuate in shape and has an outer surface 140d complementary with an inner arcuate surface of the friction wall 118. As previously described, the frictional resistance is predeterminable. For example, the upper member arcuate surface 140d may be abraded, to frictionally increase the resistance between the upper member arcuate surface 140d and the friction wall 118, which may also be abraded.
The pedal assembly 110 further includes a spring member 146, such as a compression spring, positioned between the friction lever main portion 140a and a spring attachment portion of the end wall 115, as shown at 148. It should be appreciated that the friction lever is adapted to receive one end of the spring, and the end wall 115 is adapted to receive the second end of the spring. In this example, there are two springs in parallel, that is, an inner spring and an outer spring. The inner and outer spring are used to create a load in the system and the hysteresis feel that is perceived by the operator. Advantageously, if one of the springs fails, the other is still operational.
In this example, as the pedal arm 122 is depressed, the mounting portion 126 of the pedal arm rotates and the spring 146 is compressed between the friction lever 140 and end wall 115 of the housing 112. The force of the spring 146 works in opposition to the force of the pedal arm 112 to pivot the friction lever 140 slightly. The friction lever arcuate portion 140d is canted slightly with respect to the first frictional surface 118a like a cam, to generate friction that is transmitted to the operator as hysteresis as it travels along the first frictional surface 118a. When the friction lever reaches the step 118c, additional force is required to move the friction lever 140 over the step 118c. This additional pressure provides the feeling of kickdown to the operator. Slightly less force is required to continue moving the friction lever 140 along the second frictional surface 118b. When the load on the pedal arm 122 is released to permit the pedal arm 122 to return towards rest, the spring force on the rear wall of the friction lever 140a pivots the friction lever upper member 140b into coaxial alignment with the friction wall 118 thereby reducing the friction between the frictional surface of the upper member 140b and friction wall 118 and permitting return of the pedal arm 122 to a resting position. In this embodiment, the hysteresis is developed at an increased rate since the pedal arm 122 travels through a greater arc with respect to the friction lever 140. As a result, there is greater interference between the frictional surfaces of the friction lever 140 and the friction wall 118. Similarly, the feeling of kickdown can be likewise increased.
Referring to
The pedal assembly 210 includes a housing having a mounting wall 216, a pair of spaced apart side walls 214, and an end wall 215. A portion of the end wall 215 is a friction wall 218, as shown in
The hysteresis and kickdown generating device 238 includes a friction lever 240 that is pivotally mounted to the upper pedal arm 232 at a friction lever pivot point 242. The friction lever 240 extends from an outer portion of the upper pedal arm 232 and curves rearwardly towards the end wall of the housing 212. The friction lever 240 may include an abraded surface 240d, or another features, as previously described, to increase frictional resistance. The friction lever is biased against the friction wall 218 by a push arm 249 and a spring 246.
The push arm 249 is pivotally mounted to the upper pedal arm 232 at a push lever pivot point 247. In this example the push lever pivot point 247 is located radially inwards from the friction lever pivot point 242. The push lever arm 249 curves upwardly and rearwardly towards the friction wall 218, so as to contact a lower surface of the friction lever 240 at a predetermined contact point, as shown at 241. It should be appreciated that the contact point 241 is selected by the amount of frictional force desired. That is, increasing the distance between the contact point 241 and the friction lever pivot point 242 increases the amount of friction generated by the hysteresis and kickdown generating device 238. The system 210 also includes a spring 246 having one end mounted to the end wall 215 of the housing 212 and the other end to the push arm 249. The spring 246 forces the push arm 249 against the friction lever 240 to generate greater friction, as previously described. The friction lever operates as previously described in order to generate a feeling of hysteresis and kickdown during actuation of the pedal.
Referring to
The hysteresis and feedback generating device 338 includes a friction lever 340 having a main portion 340a pivotally mounted to the upper pedal arm 332 at a friction lever pivot point 342, and a lower portion 340c that angles inwardly and rearwardly from the upper pedal arm 332. The lower portion 340c includes an arcuate friction surface 340d. The arcuate friction surface 340d is complementary to the frictional surface of the friction wall 318.
The pedal assembly 310 further includes a spring 346 having one end attached to the end wall 315 of the housing 312 and the other end attached to the friction lever main portion 340a, as previously described with respect to
In operation, rotation of the pedal arm 322 compresses the spring 316 while the friction lever 342 moves along the first frictional surface 318a of the friction wall 318, to create the frictional hysteresis force in the pedal assembly 310. When the friction lever encounters the step 318c, additional pedal effort is required to move the friction lever 340 past the step 318c, in order to replicate the kickdown force. The friction lever 340 travels along the second frictional surface 318c. However, slightly more effort is required by the operator to actuate the pedal assembly 310 than utilized through the first frictional surface 318a. It should be appreciated that in this example there may be two springs, an inner spring and an outer spring, as previously described.
It should also be appreciated that any of the above described pedal assemblies may include other components that are known in the art, such as an adjustable pedal height mechanism 484 or electrical connectors, or the like.
The present invention has been described in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.
Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the present invention may be practiced other than as specifically described.
This application claims priority of U.S. Provisional Patent Application Ser. No. 60/790,269 filed Apr. 7, 2006, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60790269 | Apr 2006 | US |