1. Field of the Invention
The present invention relates to an electronic toy capable of controlling motions arbitrarily in accordance with external sounds and contacts, control method thereof, and storage medium.
2. Description of the Related Art
Animal dolls, such as those of dogs, cats, bears, etc., have been widely used as toy animals from the past. Further, there are toy animals wherein motors and speakers are built in the animal dolls or the body of animal-shaped toys manufactured from synthetic resin. For example, by contacting the head and pressing it down, the toy animals will conduct prescribed motions such as moving the feet or mouth, and generate prescribed cries.
With these types of toy animals, as the same motions are repeated and the same cries are generated repeatedly, the user will often lose interest in the toy easily. Contrarily, if the motions are selected at random, the user will also lose interest in the toy easily since the motions expected by such user will not be made. In light of such conventional toy animals, electronic toys with microcomputers for controlling various motions such that the user will not lose interest in the toy have been developed.
As an example of such electronic toy, there are those that conduct certain motions (e.g., generating pre-stored phrases from a speaker, shaking the body, etc.) pursuant to commands of a microcomputer upon the user stroking the head, lifting the toy, speaking to it, and so on. This type of electronic toy counts the number of times the head was stroked, the number of times the doll was raised, the number of times the user spoke to it and, for example, controls the toy to gradually change the phrases generated from the speaker to become a more charming expression pursuant to the increase in the count value.
With the conventional electronic toy described above, as the toy will merely change the spoken words to gradually become a more charming expression pursuant to the increase in the number of times the head was stroked, the number of times the toy was lifted, and the number of times the user spoke to the toy, the motion patterns thereof are predictable.
Thus, with conventional electronic toys, there is a problem in that the user will lose interest in the toy in a relatively short period of time as such user will know what the toy will say next pursuant to the length of contracting such toy.
Accordingly, an electronic toy is provided which overcomes the aforementioned problems by changing the motion patterns in accordance with the frequency of external input of sounds and contacts or the result of combining parameters that change with time. The disclosed electronic toy is further capable of controlling motions arbitrarily in accordance with external inputs received at detection input sensors by detecting sequences of external inputs for predetermined time intervals in which a number of detection signals are output from the detection input sensors, with parameter alteration for changing the parameter value in accordance with the predetermined time intervals. Memory is provided for storing information relating to a plurality of motion patterns which moves the electronic toy, and a selection is made based upon detection signals being output from the detection input sensors. Information relating to arbitrary motion patterns among the plurality of motion patterns is stored in memory pursuant to the parameter value set by the parameter alteration.
Thus, an information processor for controlling the electronic toy generates movements according to selected motion patterns. Accordingly, when detection signals are output from the detection input sensors, information of an arbitrary motion pattern among the plurality of motion patterns stored is selected based on the parameter value determined with the parameter alteration. Thus, for example, when external inputs of sound or contact are made, it is possible to make the motions differ pursuant to the input timing. Moreover, as it is possible to control the toy to take unexpected actions in response to the input, the user will not lose interest even after long hours of playing with the toy since it is difficult to predict the motion pattern.
The parameter alteration means alternates between a happy mode and grumpy mode in predetermined cycles based on the control parameter which changes together with the lapse in time. Thus, the happy mode and grumpy mode may be alternated in predetermined cycles based on the control parameter which changes together with the lapse in time, such that the toy may switch between the happy mode or grumpy mode pursuant to he input timing, and it is therefore possible to increase the amusement by conducting unpredicted motions. Further, the modes of operation may be changed in accordance with the number of detections, and thus the cycle of, e.g., the happy mode, may be extended pursuant to the way the user contacts the toy. Therefore, it is possible to increase the amusement since the motion pattern at such time will be difficult to predict and unexpected motions are conducted.
The selection means selects information on a special motion pattern when the value representing the parameter change conforms with the count representing the parameter change conforms with predetermined values. To this end, the detection input sensors include sound detection means for detecting external sound, contact detection means for detecting external contact, and light detection means for detecting changes in the brightness of the surrounding light. Accordingly, by detecting the changes in external sounds, external contacts, and the brightness of the surrounding light, the toy will recognize that it is being treated with affection. Thus, it is further possible to produce interesting reactions in response to the inputs by making the motion pattern selected according to the sound detection frequency, contact detection frequency, and light detection frequency.
The memory provides for a first storage unit for storing data of a plurality of posture motion patterns which changes the posture, a second storage unit for storing data of a plurality of sound patterns which changes the sound, and a third storage unit for storing data of a plurality of expression patterns which changes the expression. Thus, an arbitrary motion may be selected from the data of posture motion patterns stored in the first storage unit, sound patterns stored in the second storage unit, and expression patterns stored in the third storage unit. The selection of a combination of the posture motion pattern, sound pattern, and expression pattern stored in the memory facilitates selection of a combination of the posture motion pattern, sound pattern, and expression pattern. The expression pattern includes a motion pattern for changing at least the size or the shape of the eyes. Thus, produced is an expression according to the changes in the character at such time. The electronic toy is thus capable of controlling motions arbitrarily in accordance with external inputs with a head housing a drive motor and a transmission mechanism for transmitting rotational driving force to the drive motor, a display for displaying the shape of the eyes are provided from the front of the head, first detection means provided on the top of the head and for detecting the pressing thereof, second detection means for detecting sound, third detection means for detecting the peripheral brightness, a body housing a cam mechanism, which is driven by rotational driving force from said drive motor via the transmission mechanism, legs driven by said cam mechanism, a lower jaw driven by said transmission mechanism, ears driven by said transmission mechanism, storage means for storing the respective motion patterns of the legs, lower jaw, and ears, and a controller for selecting an arbitrary motion pattern among the plurality of motion patterns stored in the storage means in accordance with the timing of detection signals output from the first to third detection means, and controlling the drive motor and the display pattern of the display in accordance with the selected motion pattern. Arbitrary motion patterns are then selected among a plurality of motion patterns stored in the storage means according to the timing of the detection signals output from the first through third detection means, and as the drive motor and the display pattern of the display are controlled according to the selected motion pattern.
The electronic toy arbitrarily controls motions in accordance with external inputs by setting the initial mode for a period after the power is turned on until a prescribed time elapses, detecting external inputs while the initial mode is initialized such that the individual differences of gender and the like may be determined pursuant to the number of times the user contacts the toy while the initialization mode is being set after the batteries are foremost installed. This enables the production as though the electronic toy has a gender and character of an animal as individual differences will appear with respect to the expression, sound, and motion in correspondence with the contact of the user after initialization. The individual difference setting means sets individual differences pursuant to whether the count value of the counter is an add or even number. Accordingly, individual differences are set pursuant to whether the count value of the number of inputs detected during the setting of the initialization mode is an odd or even number. This further enables the production as though the electronic toy has a gender and character of an animal as individual differences will appear with respect to the expression, sound, and motion in correspondence with the contact of the user after initialization. The electronic toy may also be provided with gender and like characteristics of an animal as individual differences appear with respect to the expression, sound, and motion in correspondence with the contact of the user after initialization.
The preferred embodiments of the present invention are now explained with reference to the drawings.
As shown in
The four legs 16-19 are respectively formed of circular axes 16a-19a rotatably supported at both sides of the body 14, shanks 16b-19b extending in the radial direction from the axes 16a-19a, and toes 16c-19c provided at the tip of the shanks 16b-19b.
Moreover, the legs 16-19, axes 16a-19a, shanks 16b-19b, and toes 16c-19c are formed integrally, and joints different from those of actual dogs are not provided to the legs 16-19. Semispherical caps 16d-19d are provided to the side of the axes 16a-19a, and these caps 16d-19d may be colored an arbitrary color.
A display 20 for displaying the expression of the eyes is provided to the front of the head 12. Although this display 20 ordinarily displays oval eyes pursuant to the illumination of light emitting diodes (LED), a plurality of LEDs may be selectively illuminated as explained later in order to change the display pattern of the eyes for expressing the feeling at such time.
A sound sensor 24 (sound detection means) structured of a microphone for detecting peripheral sounds is built in the tip face of the nose 22 protruding frontward from the front of the head 12. A light sensor 25 for detecting the peripheral brightness is stored in the upper corner of the nose 22. The light sensor of the present embodiment, for example, is formed of CdS cells (cadmium sulfide cells) and outputs detection signals in accordance with the brightness of the incoming light.
A speaker 26 for producing barking sounds or playing melodies is provided to the upper face of the head 12. This speaker 26 is mounted slidably in the upward/downward directions as described later and, for example, when the head 12 is pushed, the speaker 26 is moved downward so as to detect that the toy has been stroked.
On both sides of the head 12, provided are ears 28 formed of semi-transparent material colored an arbitrary color different than that of the head 12. The upper part of the ears 28 are connected rotatably to the side of the head 12 and, as explained later, rotates upward or downward in accordance with the changes in the feeling at such time.
A lower jaw 30 at the lower side of the nose 22 is provided rotatably to be in an opened position or closed position and operates with the mouth 31 in an open state or closed state in accordance with the changes in the feeling at such time.
A tail 32 is provided to the rear of the body 14 so as to move upward or downward in accordance with the changes in the feeling at such time.
The motion patterns of the electronic toy 10 structured as above are explained below. As shown in
With the electronic toy of this embodiment, the motion patterns of the three types of postures A-C described in aforementioned
As shown in
The motor 36 and transmission mechanism 38 are supported by the bracket 41 provided inside the head 12 and body 14. Therefore, the motor 36 and transmission mechanism 38 are of a compact structure, and are made to correspond to the miniaturization of the electronic toy 10.
Further, the transmission mechanism 38 comprises: a drive gear 40 mounted on the drive axis 36a of the motor 36; a first transmission gear 42 for engaging with the drive gear 40; a second transmission gear 44 for engaging with the first transmission gear 42; a third transmission gear 46 for engaging with the second transmission gear 44; a fourth transmission gear 47 for engaging with the third transmission gear 46; a first cam gear 48 co-axially provided with the fourth transmission gear 47; a first shaft 50 for supporting the first cam gear 48; a fifth transmission gear 52 for supporting the first shaft 50; and a second cam gear 54 for engaging with the fifth transmission gear 52.
Transmission gears 42, 44, 46 are respectively structured of large-diameter gears 42a, 44a, 46a and small-diameter gears 42b, 44b, 46b formed integrally, and decelerate the rotation from the motor 36 at a prescribed deceleration ratio. Moreover, the bracket 41 supports the axes 42c, 44c, 46c to which the respective transmission gears 42, 44, 46 are engaged.
The first cam gear 48 is a driving means for driving the front legs 16, 17, and is formed to rotate such legs 16, 17 to the aforementioned rotational positions A, B, C in accordance with the rotational directions and rotational amounts of the drive axis 36a of the motor 36. The third and fourth cam gears 54, 55 are driving means for driving the hind legs 18, 19, and are formed to rotate such legs 18, 19 to the aforementioned rotational positions A, B, C in accordance with the rotational directions and rotational amounts of the drive axis 36a of the motor 36.
The second cam gear 54 drives the tail 32, and is also connected to the transmission path 56 for driving the ears 28 and lower jaw 30. This transmission path 56 is formed, for example, from a wire and pulley etc. as shown with the one-point chain lines and rotates the ears 28, lower jaw 30 and tail 32 in the e, c, and d directions during the process of rotating the legs 18, 19 from motion position B to motion position C pursuant to the rotational angle of the second cam gear 54.
A battery housing 60 for housing batteries 58 as the power source is internally provided to the head 12. A substrate 64 having a controller 62 mounted thereon is housed inside the nose 22. A speaker 26 is provided slidably in the upward/downward directions, and comprises thereunder a push-type detection switch (contact detection switch) 59 for detecting that the speaker 26 has been pushed and moved downward.
The detection switch 59 is for detecting the lowering of the speaker 26 by the user stroking or knocking on the head 12, and is capable of making such detection while being insensible to the contact made by the user.
The motor 36 and batters 58, which are comparatively heavy among the aforementioned structural components, are arranged at a position near the centroid of the electronic toy 10; that is, at the approximate center of the head 12. The electronic toy 10 is therefore able to maintain the respective postures with steadiness.
Next, the structure of the display 20 for displaying the expression of the eyes is explained. A black smoke plate 68 is mounted on the front display 20, and four red acryl plates 71-74 of end face-illumination are layered on the inside of the smoke plate 68. Light emitting diodes (LEDs) 75-79 are arranged at the upper and lower parts of the respective red acryl plates 71-74. Other than the end face-illumination type described above, other forms of display devices (e.g., liquid crystal displays with back lights, etc.) may be used as the display 20.
A screen 71e for blocking the light is provided between the illuminators 71a and 71b. Thus, when light is emitted from only one of the LEDs 75, 76, one of the illuminators 71a, 71b will illuminate and produce the effect of a wink.
As shown in
As shown in
As shown in
The arrangement of the aforementioned LEDs 75-79 is such that the LEDs are distributed at the upper or lower parts of the red acryl plates 71-74 so that light will not enter into other adjacent red acryl plates, and are covered with a partition wall (not shown) for preventing the light from leaking into its periphery. Thereby, the respective display patterns will not interfere with each other even when the red acryl plates 71-74 are superposed, and it is further possible to place such plates 71-74 in a small space inside the head 12.
At the display 20, lighting control of the respective LEDs 75-79 is conducted pursuant to control signals from the controller 62. This produces changes in the emotions at such time by representing the expressions with any one of the aforementioned nine (9) types of display patterns {circle around (1)}-{circle around (9)}.
The structure of the control system of the aforementioned electronic toy 10 is described below.
Various artificial intelligence (AI) functions and sensor training are provided in which training between the random and sequential behavior modifications of the electronic toy allows the child to provide reinforcement of desirable activities and responses. In connection with the AI functions, appropriate responses are performed for particular activities or conditions, e.g., bored, hungry, sick, sleep. Such predefined conditions have programmed responses which are undertaken by the electronic toy at appropriate times in its operative states. The AI and sensory training functions achieve behavior modification for the interactive toy, thus allowing the child to provide reinforcement of desirable activities and responses. The AI functions are used for the appropriate responses to particular activities or predefined conditions undertaken by the interactive toy at appropriate times in its operative states. Additionally, as discussed, the interactive toy maintains its age in a non-volatile memory, which is used to increment the age where appropriate. Additionally, a co-processor facilitates infrared (IR) communications allowing for communications between electronic toys as discussed herein. Other criteria based on the electronic toy's life as stored in memory may affect the ability to play games. For instance, if the electronic toy is indicated as being sick, either by having received a signal from another electronic toy to enter the sick condition, then no game would be played.
The motion control program 82A stored in the ROM 82 includes a first control program for counting the number of detection signals output from the detection means which detects external inputs; second control program for changing the values of the parameter in accordance with prescribed time intervals; third control program for selecting an arbitrary motion pattern among a plurality of motion patterns pursuant to the number of detection signals and parameter values upon detection signals being output from the detection means; and fourth control program for controlling the electronic toy to move in the selected motion pattern.
Further, stored in the RAM 84 are a counter 84A for counting the detection signals from the sound sensor 24, light sensor 25, and detection switch 59; and communication biorhythm data 84B prepared pursuant to the count value of the counter 84A.
With counter 84A, it is possible to set count mode 1 for counting, without selecting, the detection signals from the sound sensor 24, light sensor 25, and detection switch 59, and count mode 2 comprising first to third counters (not shown) for preparing communication biorhythm data for each sensor upon individually counting the detection signals from the sound sensor 24, light sensor 25, and detection switch 59, respectively.
The control processing executed by the CPU 80 of the controller 62 is now explained.
Further, the controller 62 includes sound generating circuitry as described herein to make the electronic toy 10 appear to make sounds in conjunction with the movement of the body parts so as enhance the ability of the toy to provide seemingly intelligent and life-like interaction with the user in that the electronic toy 10 can have different physical and emotional states as associated with different coordinated positions of the body parts and sounds or exclamations generated by the controller 62. The controller 62 also supports a magnetic switch for feeding functions associated with a bone 69 having a magnet 65 shown in
An embodiment of an embedded processor circuit for the electronic toy, as shown in the schematic block diagram of
As described, the plurality of sensory inputs, i.e., switches 66, and the audio 24, light 25, and infrared blocks 66,68, are coupled to the information processor 62 for receiving corresponding sensory signals. A computer program discussed below in connection with
As shown in
The routine then proceeds to S16, and extrudes parameters (value of happy mode, value of grumpy mode shown in
The relationship between the pet biorhythm and communication biorhythm is now explained. As shown in
The pet biorhythm is prepared by the data stored in the pet biorhythm data 82E and, as shown in Line 1 of
As shown in Line 2 prepared by the data stored in the communication biorhythm data 84B, the communication biorhythm changes in accordance with the number of inputs to the sound sensor 24, light sensor 25, and detection switch 59 and the electronic toy 10 changes its movement or expression pursuant to the degree of the user's affection toward such electronic toy 10. Therefore, the electronic toy 10 is capable of changing its posture to motion postures A-C and the expression of the eyes by the display 20 (see
When the contact frequency of the user, i.e., number of inputs to the sound sensor 24, light sensor 25, and detection switch 59, increases based on the biorhythm revision data 82F, the controller 62 changes the cycle by extending the happy mode and shortening the grumpy mode, or, if the number of inputs decreases, by extending the grumpy mode and shortening the happy mode. Thus, the happy mode and grumpy mode are not repeated in a fixed time period.
Therefore, as the electronic toy 10 will not make a uniform reaction even if contacted in a similar manner and will move and make expressions in accordance with the characteristic changes at such time, the user will not lose interest easily. As the user cannot predict the characteristic changes of the electronic toy 10, he/she may enjoy unexpected movements and expressions of the electronic toy 10.
For example, in the happy mode, when the character level is zero and the user strokes the head 12 of the electronic toy 10 and detection signals from the detection switch 59 are output; or the user speaks to the electronic toy 10 and detection signals from the sound sensor 24 are output; or the user waves his/her hand in front of the nose and detection signals from the light sensor 25 are output; notification event {circle around (1)} (cry {circle around (1)} is generated twice and heart eyes are flashed on the display 20 (see
Also in the happy mode, when Line 2 of the communication biorhythm intersects with Line 1 of the pet biorhythm, event occurrence {circle around (1)} (sound effects and melody and commencement of slot game) is conducted. This slot game is a game wherein display patterns {circle around (1)}-{circle around (9)} are successively displayed on the display 20 and, when the speaker 26 is pushed and the detection switch 59 is turned on, any one of the display patterns {circle around (1)}-{circle around (9)} will stop and be displayed. Further in the happy mode, when the character level returns to zero due to the pet biorhythm, notification event {circle around (2)} (cry {circle around (2)} is generated twice and angry eyes are flashed on the display 20 (see
In the grumpy mode, when Line 2 of the communication biorhythm intersects with Line 1 of the pet biorhythm, event occurrence {circle around (2)} (sound effects and melody and commencement of slot game) is conducted. Moreover, in the grumpy mode, when the character level of the pet biorhythm is near 50, the electronic toy 10 will become unresponsive to anything the user does, and extremely grumpy. For example, in response to the motion input of the user, angry eyes are displayed on the display 20 and a sigh is heaved. Also in the grumpy mode, when the character level of the pet biorhythm returns to zero, the aforementioned notification event {circle around (1)} (cry {circle around (1)} is generated twice and heart eyes are displayed on the display 20 (see
The electronic toy 10 changes the posture and expression in accordance with the following motion patterns (1)-(12), for example, if inputs are made by the user when the toy is in the happy mode.
(1) When there is no input, motion posture B (see
(2) When there is input only from the sound sensor 24, the motion posture is changed from B to A, the display of closed eyes are changed to crying eyes on the display 20, and a joyful outcry is generated from the speaker 26.
(3) When there is input only from the light sensor 25, motion posture B is maintained, round eyes are displayed on the display 20, and monologues or sound effects are generated from the speaker 26.
(4) When there is input only from the detection switch 59, the motion posture is changed from B to C (see
(5) When there are inputs from the sound sensor 24 and the light sensor 25, motion posture B is maintained, the display on the display 20 is changed to flashing round eyes, and the sound of a woof {circle around (1)} is generated from the speaker 26. Or, the motion posture is changed from B to C to B, heart eyes are displayed on the display 20, and a bark {circle around (1)} is generated from the speaker 26.
(6) When there are inputs from the sound sensor 24, light sensor 25, and detection sensor 59, the motion posture is changed from B to C to B to C to B, the display on the display 20 is changed from round eyes to heart eyes, or a wink is displayed on the display 20, and a laughing sound {circle around (1)} is generated from the speaker 26.
(7) When there are repeated inputs from the light sensor 25, motion posture B is maintained, the round eyes are made to flash on the display 20, and a joyful outcry and laughing sound {circle around (1)} are generated from the speaker 26.
(8) When there are repeated inputs from the sound sensor 24 and light sensor 25, the motion posture is changed from B to C to B to C to B, the heart eyes are made to flash on the display 20, and monologues {circle around (1)}-{circle around (3)} are generated from the speaker 26.
(9) When there are repeated inputs from the sound sensor 24, detection switch 59, and light sensor 25, the motion posture is changed from B to C to B to C to B, the heart eyes are made to flash on the display 20, and a laughing sound and melody are generated from the speaker 26.
(10) When there are repeated inputs from the detection switch 59 and the light sensor 25, the motion posture is changed from B to C to B to C to B, the heart eyes are made to flash on the display 20 k, and a joyful outcry and melody are generated from the speaker 26.
(11) When there are inputs from the sound sensor 24 and the detection switch 59, the motion posture is changed from B to A, the round eyes are made to flash on the display 20, and a monologue {circle around (2)} is generated from the speaker 26.
(12) When there are inputs from the light sensor 25 and detection witch 59, the motion posture is changed from B to C to B to C to B, the heart eyes are made to flash on the display 20, and a joyful outcry and melody are generated from the speaker 26.
As the character of this electronic toy 10 switches between the happy mode and grumpy mode in prescribed cycles based on the characteristic changes pursuant to the communication biorhythm, it is difficult for the user to predict the response of the toy to his/her input, and the user will thereby not lose interest in the toy.
It is also possible to change the cycle of the happy mode and/or the grumpy mode in accordance with the number of detection of the respective sensors. Thus, the cycle of the happy mode may be extended or the cycle of the grumpy mode may be extended pursuant to the way the user contacts the electronic toy 10. It will therefore be difficult for the user to predict the motion pattern at such time and will increase the amusement by the toy conducting unexpected actions.
The control processing of the initialization mode executed by the CPU 80 of the controller 62 is now explained.
At the next S23, checked is whether or not there was input by a switch. Here, the CPU 80 monitors the detection motion of the sound sensor 24 and detection switch 59 as the detection means. When detection signals are output from the detection switch 59, the routine proceeds to S24, integrates the detection frequency n thereof, and stores such integrated value (count value +1) in the memory. At the subsequent S24, checked is whether prescribed time T (e.g., T=1 hour) has elapsed or not. Therefore, until 1 hour elapses from the time the batteries 58 were installed, the processing steps of S23-S25 are repeated. At S25, when 1 hour elapses, the routine proceeds to S26, and the count value nA of the sound sensor 24 and the count value nB of the detection switch 59 are compared.
At the next S27, the routine proceeds to S28 when the count value nA of the sound sensor 24 is larger than the count value nB of the detection switch 59 (nA>nB), and sets the gender data to male. Moreover, at S27, the routing proceeds to S29 when the count value nA of the sound sensor 24 is not larger than the count value nB of the detection switch 59; that is, (a) when the count value nA of the sound sensor 24 is smaller than the count value nB of the detection switch 59 (nA>nB), (b) when the count value nA of the sound sensor 24 is equal to the count value nB of the detection switch 59 (nA=nB), or (c) when the count value nA of the sound sensor 24 and the count value nB of the detection switch are zero (nA=0, nB=0), and sets the gender data to female. In the aforementioned cases (a) and (b), the gender may be set to a predetermined gender as described above, or set pursuant to random numbers.
When the gender data is set to male at S28, or when the gender data is set to female at S29, the routine proceeds to S30, and the initialization mode is cancelled. Thereafter, the routine proceeds to the main control processing shown in
For instance, characteristics when the gender data is set to male are (a) the voice being set to a low-tone version, (b) the normal pattern A for the eyes, and (c) special songs only for males. Further, characteristics when the gender data is set female are (a) the voice being set to a basic pattern, (b) the normal pattern B for the eyes, and (c) special dances only for females. As described above, the gender (individual difference) is set in accordance with the count values nA, nB of the number of detections detected from the sound sensor 24 and detection switch 59 while the initialization mode is being set. Thus, for example, while the initialization mode is being set after the batteries are initially installed, it is possible to set in advance individual differences, such as the gender, as the initial value, and produced are unique expressions and movements unpredictable by the user.
In the aforementioned explanation, the number of detections of the sound sensor 24 and detection switch 59 was counted and the gender was set upon comparing such values. Other than this detection means, for example, it goes without saying that the detection signals from the light sensor 25 and the like may be counted. Needles to say, characteristics when the gender data is set to male or female are not limited to the motion patterns, and other expressions and motions may be initially set.
At S36, when one hour elapses, the routine proceeds to S37, and the count value n of the detection switch n is read. At S37, checked is whether the count value n of the detection switch 59 is an odd number. At the next S38, the gender data is set to male when the count value n of the detection switch 59 is an odd number. When the count value n of the detection switch 59 is not an odd number at S38; in other words, if the count value n of the detection switch 59 is an even number or zero, the routine proceeds to S40, and the gender data is set to female. When the gender data is set to male at S39, or when the gender data is set to female at S40, the routing proceeds to S41, and the initialization mode is cancelled. Thereafter, the routine proceeds to the main control processing shown in
When the initialization of male or female is made after the batteries are initially installed, expressions and motions thereafter will be made in accordance with such selected gender (individual difference). Therefore, the gender is set pursuant to whether the count value of the number of inputs detected while the initialization mode is being set is an odd or even number, produced are expressions and motions according to the gender and character set irrespective of the intention of the user. In other words, individual differences will appear in the expressions, sounds, and movements in correspondence to the contact by the user after initialization, and it is thereby possible to produce the feeling of the electronic toy having a gender and character as though a real animal.
In the aforementioned explanation, the number of detections of the detection switch 59 was counted and the gender was set upon judging whether such count value is an odd or even number. Other than this detection means, for example, it goes without saying that the detection signals from the sound sensor 24 or light sensor 25 and the like may be counted and the gender may be set upon judging whether such count value is an odd or even number.
In the aforementioned
Although a dog-shaped electronic toy was described as an example in the aforementioned embodiment, electronic toys in other shapes of animals such as a cat, tiger, lion, monkey, horse, elephant, giraffe, etc. may also be used as a matter of course.
The second embodiment of the present invention is now explained.
As shown in
Further, in the electronic toy 90, two push-type mode selection switches 91A and 91B are provided on the breast of the body 14. Either of these mode selection switches 91A and 91B is selectively operated in, for example, starting a sound registration mode as explained later, or selecting a character-raising mode and a character basic mode, etc. Furthermore, the mode selection switches 91A and 91B, upon the both being simultaneously operated to be on, functions as a reset switch to reset control data stored in the memory.
Further, the electronic toy 90 can perform 15 types of motions.
As shown in (A) and (B) of
As shown in
Further, as shown in
In the electronic toy 90, the display 20 for displaying the expression of the eyes is provided on the front surface of the head 12. The display 20 may selectively illuminate a plurality of LEDs in order to express the feelings of the electronic toy 90 at such time by the display pattern of the eyes.
Here, the display patterns of the display 20 is explained.
As shown in diagrams (A) through (E) of
In the display pattern {circle around (1)}, a smiling eyes pattern in a circular arc shape illuminates in illuminators 92a and 92b.
In the display pattern {circle around (2)}, a ? eyes pattern in a question mark shape illuminates in illuminators 94a and 94b.
In the display pattern {circle around (3)}, a heart-shaped eyes pattern in a heart-shaped shape illuminates in illuminators 96a and 96b.
In the display pattern {circle around (4)}, an unsatisfying eyes pattern in a crescent shape (sickle-shaped) illuminates in illuminators 98a and 98b.
In the display pattern {circle around (5)}, a round eyes pattern, which simultaneously display the above smiling eyes pattern and melancholy eyes pattern, illuminates in illuminators 100a and 100b.
Next, a sound registration mode to be performed when batteries are installed is explained.
As shown in
Next, steps of sound registration to be taken by CPU 80 in controller 62 are explained.
As shown in
Upon the sound input of the dog's name being registered, the routine proceeds to S53, a sound message “Say ‘hand’” is given from the speaker 26 while smiling eyes are flashing on the display 20 (see
Upon the sound input of “hand” being registered, the routine proceeds to S54 and gives from the speaker 26 a sound message “Say ‘sit’” while smiling eyes (see
Upon the sound input of “sit” being registered, the routine proceeds to S55 and gives from the speaker 26 a sound message “Say ‘lie down’” while smiling eyes (see
Upon the sound input of “lie down” being registered, the routine proceeds to S56 and gives from the speaker 26 a sound message “Say ‘good’” while smiling eyes (see
Upon the sound input of “good” being registered, the routine proceeds to S57 and gives from the speaker 26 a sound message “Say ‘let's play’” while smiling eyes (see
Upon the sound input of “let's play” being completed, the routine proceeds to S58 and the sound registration mode is terminated by giving an electronic sound, e.g., “Piro-rin”.
Thus, the above six types of terms “{circle around (1)} the dog's name, {circle around (2)} hand, {circle around (3)} lie down, {circle around (4)} sit, {circle around (5)} good, and {circle around (6)} let's play” are registered with the user's sound.
Next, an unsuccessful sound registration is explained.
As shown in
Then, at S63, the sound message “Say the name once again” is given from the speaker 26.
Further, a motion of a successful sound registration is explained.
As shown in
Next, upon the sound registration mode of the electronic toy 90 being completed, the routine proceeds to the character registration mode, in which the character of the electronic toy 90 is registered.
Here, the character registration mode of the electronic toy 90 is explained in reference to
As shown in
As shown in
The way of contacting (i.e., training) the electronic toy 90 to be counted for a faithful dog parameter includes, for example, giving commands of “hand”, “sit”, “lie down”, etc. Further, the way of contacting (i.e., training) the electronic toy 90 to be counted for a performing dog parameter includes giving a command of “let's play”.
When a user says “hand”, for example, if the electronic toy 90 extends its hand outward as shown in
Further, as shown in
As shown in
When it is detected in a judgment process that the detection switch is pressed with a strong pressure, a point of the character formation parameter MAP 102 is not registered and the controller 62 selects the next motion candidate.
As shown in
As shown in
For example, if, in the child period, the points in the faithful dog parameter I reached the goal (25 points) prior to the points in the performing dog parameter II, the electronic dog 90 has a character of a faithful dog when it reaches the adult dog period (the period of completion of growing up), and a faithful dog flag (a first control flag) is set.
Further, as shown in
Further, as shown in
As shown in
Thus, the number of points in the faithful dog parameter I and the performing dog parameter II is varied (increases), by which the electronic toy 90 is set to have a character of any of a faithful dog, a performing dog, or a cur. Therefore, a user can enjoy the way of bringing up the electronic toy 90 as the user can cause it to grow up into a faithful dog or a performing dog when the user adequately makes contact with it in a predetermined period of time after the installation of batteries, and to a cur when the amount of contact is low.
Next, emotion parameter to execute motion control when the electronic toy 90 becomes an adult dog after the character developing period.
The emotion parameter includes a mood parameter that varies with the lapse of time and a fullness parameter that varies with the frequencies of feeding.
As shown in (A) of
At the starting point, the initialization value is set as 50 for the mood parameter value PA.
As shown in (B) of
As shown in (C) of
As shown in (D) of
When the electronic toy 90 sleeps, and the mood parameter value PA exceeds 100, it is amended as 100 since it falls under level 5.
When the mood parameter value PA exceeds 127 (maximum value at level 5), it is amended as 20, ultra unhappy state, since the ultra happy state was maintained for a rather long time.
As shown in (A) of
At the starting point, the initialization value is set as 50 for the fullness parameter value PB.
As shown in (B) of
When a fullness parameter value PB exceeds 127, it is reduced to 20 since it is overfed.
As shown in (C) of
As shown in (D) of
Furthermore, as the fixed time (for example, one minute) passes after the electronic toy 90 becomes hungry and demands for food, the fullness parameter value PB decreases by four points. Accordingly, the fullness parameter value PB increases if a user periodically provides food, but the fullness parameter value PB decreases and the toy becomes hungry if a user does not provide food. The mood parameter value PA also decreases and changes to an unhappy state.
As for a food, a similar shape to bone, for example, is prepared in resin, and a magnet is embedded into it. It is possible to detect this food by installing a magnetic sensor inside the mouth 31 of the electronic toy 90. Or, it may be also possible to detect the food by installing a light sensor inside the mouth 31 of the electronic toy 90.
As shown in
At t3, the mood parameter value PA exceeds 127 and decreases rapidly due to the fullness parameter value PB. This prevents the users from getting tired of having an ultra happy mode continuously.
As shown in
Thus, the more the toy becomes hungry, the bigger the changing value of the mood parameter becomes, and the more it becomes full, the smaller the changing value of the mood parameter becomes. Accordingly, the mood parameter changes are affected by the fullness parameters that vary by the feeding frequencies or feeding intervals as well as the sound input or the patting of the head 12 by users. The users are required to pay attention to the feeding time or frequencies as are for an actual dog, which enables them to play with the electronic toy 90 as if they raise an actual dog.
The control processing executed by controller 62 of the electronic toy 90 constructed as in the above is not explained.
As shown in
At next S81, regarding the character of the electronic toy 90, either mode is selected: character developing mode during the child dog period, or standard character mode without character developing. For example, if a user switches on mode selection switch 91A, the character developing mode is selected, and if a user switches on mode selection switch 91B, the standard character mode is selected.
Accordingly, when mode selection switch 91A is on at S81, the user proceeds to S82, and character developing mode is set. When mode selection switch 91B is on at S81, proceeds to S83, and faithful dog mode as standard character mode is set.
When faithful dog mode is set at S83, control data for faithful dog mode is read from ROM 82 at S84. Then control of faithful dog mode is executed at S85, which will be continued until it is reset at S86.
When character developing mode is set at the above S82, the user proceeds to S87, and motion control for the infant dog period is executed. For this motion control, the following motions are included: motions to the sound input or the patting of the head 12 input, motion to no input, motions based on the mood parameter and fullness parameter. At S88, it is checked whether infant dog period ends or not.
When the infant dog period ends at S88, the user proceeds to S89, and motion control for child dog period is executed. This motion control is the above-mentioned learning mode (refer to
When the child dog period ends at S90, proceeds to S91, and one of flags among faithful dog, performing dog, or cur is set in accordance with the character data (faithful dog parameter, performing dog parameter) developed with the processing at about S88 (refer to (A) through (D) in
At S92 (refer to
When the faithful dog flag is not set at the above S92, the user proceeds to S98 judging that the cur flag is set, and the control data for the cur mode is read from ROM 82 at S99 after setting the cur mode. Then control of cur mode is executed at S100, which will be continued until it is reset at S101.
When performing dog flag is not set at the above S93, it moves to above S83, and processing for S83 through S86 is executed.
Thus, in this second embodiment, it is possible to form individual character data (faithful dog parameter, performing dog parameter) by executing character development processing responding to the user's reaction during the child dog period, and to enable to play as if the user raises an actual pet.
The following steps are used to train the electronic toy 90 for voice recognition. To give the electronic toy 90 a name:
The electronic toy 90 will go through three stages of development: Baby, Puppy, and Adult. In the Adult stage, the electronic toy 90 will become a LOYAL dog, TALENTED dog, or LAZY dog. As discussed, there are two modes of operation: Nourish mode or Adult mode. In Nourish mode, the user gets to train the electronic toy 90 to do tricks. In Adult mode, the electronic toy 90 will automatically know how to do all his tricks. In both modes the user's voice commands the electronic toy 90 to do his tricks. Press the left chest button to go to Nourish mode; press the right chest button to go to Adult mode.
After the user has completed the training of the electronic toy 90 to recognize its voice, Nourish mode is started automatically.
There are three stages of development in Nourish mode: Baby, Puppy, and Adult. In the Baby stage, the electronic toy 90 cannot understand the user's voice commands well. The electronic toy 90 also cannot stand up for a long time and is only able to sing one song. In the Baby mode, the electronic toy 90 will be able to respond to his name and may be able to do tricks.
When the electronic toy 90 develops to Puppy mode, the “Tada” sound is heard and he will start to bark. The puppy age is a very important development stage during which time the electronic toy 90 learns to do tricks by the user's voice commands. If the user plays a lot it will be able to teach the electronic toy 90 to do many things.
As a result of his learning during the puppy age, the electronic dog will become one of three different types of dog: lazy dog, faithful dog, or talented dog. If the user does not train its dog to properly respond to its voice commands, the electronic dog will become a lazy dog as an adult. If the dog becomes a lazy dog, he will have vague (confused) reaction to the user's voice commands.
If the user trains its dog well during the Puppy stage, he will become a Faithful dog. A Faithful dog will always properly respond to voice commands. If the user trains its dog well as a puppy and plays with it a lot during training, he will become a talented dog. A Talented dog will always respond properly to the user's voice command and will be able to sing lots of songs and dance a lot.
If the user leaves the electronic toy 90 alone without any communication (input voice command, touch, etc.) for over two minutes, the dog will take a nap for one minute. If the user leaves the electronic toy 90 for longer than two minutes, he will go to sleep.
Press his head button to wake him up.
If when the user replaces the electronic toy 90 batteries or if the electronic toy 90 does not make any action, press the Recover (Reset) switch, which is located inside of the upper jaw. If the user wants to start the electronic toy 90 all over again, press both chest buttons and hold for approximately four seconds. The user will then have to re-train the electronic toy 90 to recognize its voice
If the user wants to get into the “secret mode”, which plays all the songs the electronic toy 90 knows in a row without dancing, press the SET button for four seconds and it will begin beeping. Then press the MODE button and it will play the first song. If the user presses the HEAD button, it stops that song and the user can then press the MODE button to go to the next song. If the user presses the SET button again, it exits the secret mode. If the user wants to retain one or two of its commands, it does not have to erase all the commands and start over. The user can press the MODE button for four seconds and it will begin beeping. Then hit the SET button to enter the retrain mode. Then hit the MODE button again to step through the commands, which are indicated by the eye patterns.
If the user puts two electronic toys 90 together (two Electronic toys 90 or one Super and one regular), they will “talk” to each other. In order to get them to communicate, the user needs to face them to each other and touch their head switches. They will then “talk”, and based on how happy they are, they will do different actions. Two happy dogs will sing to each other, one happy and one unhappy will just say “hi”, and two unhappy dogs will fight. If two dogs have been communicating for a while, sometimes the dogs do not have to be facing each other or have been hit on the head to talk. The “talking” signals will bounce off the walls, so sometimes they may talk to each other “spontaneously”.
Although a dog-shaped electronic toy was described as an example in the aforementioned embodiment, electronic toys in other shapes of animals such as a cat, tiger, lion, monkey, horse, elephant, giraffe, etc. may also be used as a matter of course.
When detection signals are output from the detection means, selected is information of an arbitrary motion pattern among the plurality of motion patterns stored in the storage means based on the count value of the counter means and parameter value set by the parameter alteration means. Thus, for example, when external inputs of sound or contact are made, it is possible to make the motions differ pursuant to the input timing. Moreover, as it is possible to control the toy to take unexpected actions in response to the input, the user will not lose interest even after long hours of playing with the toy since it will be difficult to predict the motion pattern. As parameters are changed while the happy mode and grumpy mode are alternated in predetermined cycles based on the control parameter which changes together with the lapse in time, the toy will switch to the happy mode or grumpy mode pursuant to the input timing, and it is therefore possible to increase the amusement by conducting unpredicted motions. The cycle of the happy mode and/or grumpy mode is changed in accordance with the number of detections, the cycle of the happy mode will be extended or the cycle of the grumpy mode will be extended pursuant to the way the user contacts the toy. Therefore, it is possible to increase the amusement since the motion pattern at such time will be difficult to predict and unexpected motions are conducted. As a special motion pattern is selected when the value representing the parameter change conforms with the count value of the counter means, the user will be amused in comparison to cases of ordinary motions as unexpected reactions unlike normal motions will be made. By detecting the changes in external sounds, external contacts, and the brightness of the surrounding light, the toy will recognize that it is being treated with affection. It is possible to produce interesting reactions in response to the inputs by making the motion pattern selected according to the sound detection frequency, contact detection frequency, and light detection frequency counted with the first to third counter means not repeat the same motion as in the case of a changed input.
An arbitrary motion may be selected from the data of posture motion patterns stored in the first storage unit, sound patterns stored in the second storage unit, and expression patterns stored in the third storage unit based on the count value of the counter means and parameter value set pursuant to the parameter alteration means. As the expression pattern includes a motion pattern of at least changing the size or shape of the eyes, it is possible to change the size or shape of the eyes based on the count value of the counter means and the parameter value set by the parameter alteration means. Thus, produced is an expression according to the changes in the character at such time.
The gender is set in accordance with the count value of the number of inputs detected during the setting of the initialization mode and at least one among the expressions of the eyes, sound, or motion corresponding to the set gender is changed. Thus, it is possible to priorly set as the initial value of the contact method of the user and the gender in accordance with such contact method. This enables the production as though electronic toy has a gender and character of an animal as individual differences will appear with respect to the expression, sound, and motion in correspondence with the contact of the user after initialization. Upon application of a battery, a selection switch is used for selecting either a character standard mode for causing motions of a standard specification character, or a character rearing mode for rearing a character. Pursuant to the operation of the selection switch, either the character standard mode or the character rearing mode is set, and motions are performed in accordance with the mode set. Thus, at the wish of the user, the character rearing mode can be omitted and motions can be performed in the character standard mode; otherwise, the user may select the character rearing mode and rear a character in his own way. The character standard mode is set by the initial setting means, motions are controlled on the basis of controlling data of said standard mode set in advance. Thus, the character rearing mode can be omitted, and motions can be controlled on the basis of controlling data of a general character. When the character rearing mode is set, controlling data is renewed to emotion data having a level of control in accordance with the number input from outside during a prescribed period of time, and motions are controlled pursuant to said renewed emotion data. The character of the toy is altered depending on the amount of contact by the user during a prescribed period of time, and motions can be controlled pursuant to the emotion data which depends on the user's handling of the toy. When the character rearing mode is set, further set are: an immature period where the controlling data is not renewed at prescribed time intervals; a rearing period where controlling data is renewed to emotion data with a level of control in accordance with the number input from outside during a prescribed period of time; and a completion-of-rearing period where motions are controlled in accordance with emotion data having a level of control renewed during the rearing period. By executing the character rearing mode, the toy experiences the immature period, the rearing period, and the completion-of-rearing period, and data of the toy is renewed to emotion data which depends on the frequency and method of contact by the user.
The emotion data is renewed in accordance with the frequency of input of sounds, food, contacts, etc. during said rearing period, and motions are controlled in accordance with such renewed emotion data. Thus, emotion data is renewed in accordance with the frequency and the method of contacts by the user. The emotion data is renewed during the rearing period in response to instructions provided in sounds registered by said voice registration means. Thus, emotion data is renewed, primarily reacting to the registered voice of the user. A second parameter which shows the degree of satiety depending on the frequency of input of food during said rearing period, and motions can be controlled in accordance with the renewed second parameter. Thus, the user can rear the toy, feeling as if it is his real pet, and the user can thereby enjoy the rearing period. The first parameter is changed in accordance with said second parameter renewed during the rearing period. The first parameter changes depending on the frequency of input of food by the user, and the cycle of the happy mode or the cycle of the grumpy mode may be extended. As a result, the current motion pattern is difficult to predict, and the amusement of the user is increased by the unexpected motions.
A memory stores the emotion data having the level of control renewed during the rearing period. After the end of the rearing period, motions can be performed in accordance with the emotion data set during the rearing period. The emotion data is saved in the memory so that the rearing period need not be repeated even if batteries are to be exchanged. A first controlling flag for performing actions following at least the instructions inputted pursuant to the emotion data, or a second controlling flag for performing actions differing from the inputted instructions is set. Thus, motions are performed in accordance with the flag set pursuant to the emotion data renewed during the rearing period, and a character corresponding to the set flag can be selected.
Number | Date | Country | Kind |
---|---|---|---|
1999-313033 | Nov 1999 | JP | national |
2000-72778 | Mar 2000 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3867786 | Greenblatt | Feb 1975 | A |
4139968 | Milner | Feb 1979 | A |
4221927 | Dankman et al. | Sep 1980 | A |
4245430 | Hoyt | Jan 1981 | A |
4267606 | Stelter et al. | May 1981 | A |
4451911 | Klose et al. | May 1984 | A |
4642710 | Murtha et al. | Feb 1987 | A |
4654659 | Kubo | Mar 1987 | A |
4673371 | Furukawa | Jun 1987 | A |
4717364 | Furukawa | Jan 1988 | A |
4740186 | Sirota | Apr 1988 | A |
4754133 | Bleich | Jun 1988 | A |
4802879 | Rissman et al. | Feb 1989 | A |
4840602 | Rose | Jun 1989 | A |
4857030 | Rose | Aug 1989 | A |
4923428 | Curran | May 1990 | A |
4949327 | Forsse et al. | Aug 1990 | A |
5141464 | Stern et al. | Aug 1992 | A |
5267886 | Wood et al. | Dec 1993 | A |
5281143 | Arad et al. | Jan 1994 | A |
5324225 | Satoh et al. | Jun 1994 | A |
5572646 | Kawai et al. | Nov 1996 | A |
5636994 | Tong | Jun 1997 | A |
5700178 | Cimerman et al. | Dec 1997 | A |
5870527 | Fujikawa et al. | Feb 1999 | A |
5908345 | Choi | Jun 1999 | A |
5929585 | Fujita | Jul 1999 | A |
5933152 | Naruki et al. | Aug 1999 | A |
5963712 | Fujita et al. | Oct 1999 | A |
5966526 | Yokoi | Oct 1999 | A |
6083104 | Choi | Jul 2000 | A |
6149490 | Hampton et al. | Nov 2000 | A |
6175772 | Kamiya et al. | Jan 2001 | B1 |
6213871 | Yokoi | Apr 2001 | B1 |
6227966 | Yokoi | May 2001 | B1 |
6273815 | Stuckman et al. | Aug 2001 | B1 |
6330494 | Yamamoto | Dec 2001 | B1 |
6337552 | Inoue et al. | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
0 898 237 | Feb 1999 | EP |
898237 | Feb 1999 | EP |
0 923 011 | Jun 1999 | EP |
0 924 034 | Jun 1999 | EP |
1050592 | Jun 1999 | JP |
1038550 | Sep 1999 | JP |
1050592-1 | Sep 1999 | JP |
WO 9603190 | Feb 1996 | WO |
WO 9741936 | Nov 1997 | WO |
WO 9964208 | Dec 1999 | WO |
WO 9967067 | Dec 1999 | WO |