The specification relates to electronic vapor provision devices.
Electronic vapor provision devices are typically cigarette-sized and typically function by allowing a user to inhale a nicotine vapor from a liquid store by applying a suction force to a mouthpiece. Some electronic vapor provision devices have an airflow sensor that activates when a user applies the suction force and causes a heater coil to heat up and vaporize the liquid. Electronic vapor provision devices include electronic cigarettes.
In an embodiment there is provided an electronic vapor provision device comprising a heating element for vaporizing liquid; an air outlet for vaporized liquid from the heating element; and a porous heating element support. The heating element support can be a store of liquid and have an internal channel having a circular cross-sectional shape, whereby the heating element can be fitted into the internal channel and be in contact with a surface of the internal channel along the length of the internal channel.
For a better understanding of the disclosure, and to show how example embodiments may be carried into effect, reference will now be made to the accompanying drawings in which:
In an embodiment there is provided an electronic vapor provision device comprising a power cell, a vaporizer and a liquid store, where the vaporizer comprises a heating element and a heating element support, wherein the liquid store comprises a porous material. The electronic vapor provision device may be an electronic cigarette. By having a liquid store comprising porous material, the liquid can be retained more efficiently, and also release and storage of the liquid is more controlled through the wicking action of the porous material.
The liquid store may comprise a solid porous material or a rigid porous material. For example, the liquid store may comprise a porous ceramic material. A solid porous material is advantageous since it is not open to deformation so the properties can be set and maintained. The shape can be defined at the manufacturing stage and this specific shape can be retained in the device to give consistency in device usage.
The liquid store may not comprise an outer liquid store container. Providing a solid porous material removes the need for an outer liquid store container and therefore gives a more efficient storage means.
The porous material may be optimized for liquid retention and wicking and/or for liquid glycerine retention and wicking. Moreover, the porous material may have pores of substantially equal size. The porous material may comprise pores distributed evenly throughout the material. Moreover, the porous material may be configured such that the majority of the material volume comprises open pores for liquid storage. The liquid store may be sealed on at least part of an outer surface region to inhibit porosity in that region.
The porous material may have smaller pores in a region next to the heating element and larger pores further from the heating element. The porous material may have a gradient of pore sizes ranging from smaller pores next to the heating element to larger pores further from the heating element.
The liquid store may be configured to wick liquid onto the heating element. The configuration of pores acts to determine the wicking effect of the storage medium, such that a more efficient means of transmission of liquid onto the heating element can be achieved.
The heating element support may form part of the liquid store, a separate additional liquid store or the entirety of the liquid store. By removing the requirement for a separate support, the number of components is reduced giving a simpler and cheaper device and enabling a larger liquid store to be used for increased capacity.
The heating element may be supported from its outside by the heating element support. Alternatively or additionally, the heating element may be supported from its inside by the heating element support.
One or more gaps may be provided between the heating element and the heating element support. Providing a gap between the heating element and the heating element support allows liquid to be gathered and stored in the gap region for vaporization. The gap can also act to wick liquid onto the heating element. Also, providing a gap between the heating element and support means that a greater surface area of the heating element is exposed thereby giving a greater surface area for heating and vaporization.
The heating element may be a heating coil, such as a wire coil. The heating coil may be coiled so as to be supported along its length by the heating element support. Moreover, the turns of the heating coil may be supported by the heating element support. For example, the turns of the heating coil may be in contact with the heating element support. One or more gaps may be provided between the heating coil and the heating element support. By providing a gap between a coil turn and the support, liquid can be wicked into the gap and held in the gap for vaporization. In particular, liquid can be wicked by the spaces between coil turns and into the gap between a coil turn and the support.
The vaporizer may further comprise a vaporization cavity such that, in use, the vaporization cavity is a negative pressure cavity. At least part of the heating element may be inside the vaporization cavity. By having the heating element in the vaporization cavity, which in turn is a negative pressure cavity when a user inhales through the electronic cigarette, the liquid is directly vaporized and inhaled by the user.
The electronic vapor provision device may comprise a mouthpiece section and the vaporizer may form part of the mouthpiece section. Moreover, the liquid store may form part of the mouthpiece section. For example, the liquid store may substantially fill the mouthpiece section.
Referring to
The battery assembly 5 comprises a battery assembly casing 8, a power cell 9, electrical contacts 10 and a control circuit 11.
The battery assembly casing 8 comprises a hollow cylinder which is open at a first end 12. For example, the battery assembly casing 8 may be plastic. The electrical contacts 10 are located at the first end 12 of the casing 8, and the power cell 9 and control circuit 11 are located within the hollow of the casing 8. The power cell 9 may for example be a Lithium Cell.
The control circuit 11 includes an air pressure sensor 13 and a controller 14 and is powered by the power cell 9. The controller 14 is configured to interface with the air pressure sensor 13 and to control provision of electrical power from the power cell 9 to the vaporizer 6.
The vaporizer 6 comprises a vaporizer casing 15, electrical contacts 16, a heating element 17, a wicking element 18, a vaporization cavity 19 and a heating element support 20.
The vaporizer casing 15 comprises a hollow cylinder which is open at both ends with an air inlet 21. For example, the vaporizer casing 15 may be formed of an aluminum alloy. The air inlet 21 comprises a hole in the vaporizer casing 15 at a first end 22 of the vaporizer casing 15. The electrical contacts 16 are located at the first end 22 of the vaporizer casing 15.
The first end 22 of the vaporizer casing 15 is releasably connected to the first end 12 of the battery assembly casing 8, such that the electrical contacts 16 of the vaporizer are electrically connected to the electrical contacts 10 of the battery assembly. For example, the device 1 may be configured such that the vaporizer casing 15 connects to the battery assembly casing 8 by a threaded connection.
The heating element 17 is formed of a single wire and comprises a heating element coil 23 and two leads 24, as is illustrated in
The wire of the coil 23 is approximately 0.12 mm in diameter. The coil is approximately 25 mm in length, has an internal diameter of approximately 1 mm and a helix pitch of approximately 420 micrometers. The void between the successive turns of the coil 23 is therefore approximately 300 micrometers.
The heating element 17 is located towards the second end 25 of the vaporizer casing 15 and is orientated such that the axis A of the coil 23 is perpendicular to the cylindrical axis B of the vaporizer casing 15. The coil 23 of the heating element 17 is thus perpendicular to the longitudinal axis C of the electronic cigarette 1.
The wicking element 18 extends from the vaporizer casing 15 into contact with the liquid store 7 of the mouthpiece 2. The wicking element 18 is configured to wick liquid in the direction W from the liquid store 7 of the mouthpiece 2 to the heating element 17. In more detail, the wick 18 comprises an arc of porous material extending from a first end of the coil 23, out past the second end 25 of the vaporizer casing 14 and back to a second end of the coil. For example, the porous material may be nickel foam, wherein the porosity of the foam is such that the described wicking occurs.
The vaporization cavity 19 comprises a region within the hollow of the vaporizer casing 15 in which liquid is vaporized. The heating element 17, heating element support 20 and portions 26 of the wicking element 18 are situated within the vaporization cavity 19.
The heating element support 20 is configured to support the heating element 17 and to facilitate vaporization of liquid by the heating element 17. The heating element support 20 is an inner support and is illustrated in
The surface 28 of the support 20 provides a route for liquid from the wick element 18 to wick onto and along, improving the provision of liquid to the vicinity of the heating element 17 for vaporization. The surface 28 of the support 20 also provides surface area for exposing wicked liquid to the heat of the heating element 17. The porosity of the support allows liquid to be stored in the heating element support 20. The support is thus a further liquid store.
The mouthpiece 2 comprises a mouthpiece casing 29. The mouthpiece casing 29 comprises a hollow cylinder which is open at a first end 30, with the air outlet 4 comprising a hole in the second end 31 of the casing. For example, the mouthpiece casing may be formed of plastic.
The liquid store 7 is situated within the hollow of the mouthpiece casing 29. For example, the liquid store may comprise foam, wherein the foam is substantially saturated in the liquid intended for vaporization. The cross-sectional area of the liquid store 7 is less than that of the hollow of the mouthpiece casing so as to form an air passageway 32 between the first end 30 of the mouthpiece casing 2 and the air outlet 4.
The first end 30 of the mouthpiece casing 29 is releasably connected to the second end 25 of the vaporizer casing 15, such that the liquid store 7 is in contact with a portion 33 of the wicking element 18 which protrudes from the vaporizer 6.
Liquid from the liquid store 7 is absorbed by the wicking element 18 and wicks along route W throughout the wicking element 18. Liquid then wicks from the wicking element 18 onto and along the coil 23 of the heating element 17, and onto and along the support 20.
There exists a continuous inner cavity 34 within the electronic cigarette 1 formed by the adjacent hollow interiors' of the mouthpiece casing 29, the vaporizer casing 15 and the battery assembly casing 8.
In use, a user sucks on the second end 31 of the mouthpiece 2. This causes a drop in the air pressure throughout the inner cavity 34 of the electronic cigarette 1, particularly at the air outlet 4.
The pressure drop within the inner cavity 34 is detected by the pressure sensor 13. In response to detection of the pressure drop by the pressure sensor, the controller 14 triggers the provision of power from the power cell 9 to the heating element 17 via the electrical contacts 10, 16. The coil of the heating element 17 therefore heats up. Once the coil 17 heats up, liquid in the vaporization cavity 19 is vaporized. In more detail, liquid on the heating element 17 is vaporized, liquid on the heating element support 20 is vaporized and liquid in portions 26 of the wicking element 18 which are in the immediate vicinity of the heating element 17 may be vaporized.
The pressure drop within the inner cavity 34 also causes air from outside of the electronic cigarette 1 to be drawn, along route F, through the inner cavity from the air inlet 21 to the air outlet 4. As air is drawn along route F, it passes through the vaporization cavity 19 and the air passageway 32. The vaporized liquid is therefore conveyed by the air movement along the air passageway 32 and out of the air outlet 4 to be inhaled by the user. In passing through the vaporization cavity, along route F, the air moves over the heating element 17 in a direction substantially perpendicular to the axis A of the coil 23.
As the air containing the vaporized liquid is conveyed to the air outlet 4, some of the vapor may condense, producing a fine suspension of liquid droplets in the airflow. Moreover, movement of air through the vaporizer 6 as the user sucks on the mouthpiece 2 can lift fine droplets of liquid off of the wicking element 18, the heating element 17 and/or the heating element support 20. The air passing out of the outlet may therefore comprise an aerosol of fine liquid droplets as well as vaporized liquid.
The pressure drop within the vaporization cavity 19 also encourages further wicking of liquid from the liquid store 7, along the wicking element 18, to the vaporization cavity 19.
The battery assembly 50 comprises a battery assembly casing 53, a power cell 54, electrical contacts 55 and a control circuit 56.
The battery assembly casing 53 comprises a hollow cylinder which is open at a first end 57. For example, the battery assembly casing 53 may be plastic. The electrical contacts 55 are located at the first end 57 of the casing 53, and the power cell 54 and control circuit 56 are located within the hollow of the casing 53. The power cell 54 may for example be a Lithium Cell.
The control circuit 56 includes an air pressure sensor 58 and a controller 59 and is powered by the power cell 54. The controller 59 is configured to interface with the air pressure sensor 58 and to control provision of electrical power from the power cell 54 to the vaporizer 52, via the electrical contacts 55.
The mouthpiece 2 further includes a mouthpiece casing 60 and electrical contacts 61. The mouthpiece casing 60 comprises a hollow cylinder which is open at a first end 62, with the air outlet 4 comprising a hole in the second end 63 of the casing 60. The mouthpiece casing 60 also comprises an air inlet 64, comprising a hole near the first end 62 of the casing 60. For example, the mouthpiece casing may be formed of aluminum.
The electrical contacts 61 are located at the first end of the casing 60. Moreover, the first end 62 of the mouthpiece casing 60 is releasably connected to the first end 57 of the battery assembly casing 53, such that the electrical contacts 61 of the mouthpiece 2 are electrically connected to the electrical contacts 55 of the battery assembly 50. For example, the device 1 may be configured such that the mouthpiece casing 60 connects to the battery assembly casing 53 by a threaded connection.
The liquid store 51 is situated within the hollow mouthpiece casing 60 towards the second end 63 of the casing 60. The liquid store 51 comprises a cylindrical tube of porous material saturated in liquid. The outer circumference of the liquid store 51 matches the inner circumference of the mouthpiece casing 60. The hollow of the liquid store 51 provides an air passageway 65. For example, the porous material of the liquid store 51 may comprise foam, wherein the foam is substantially saturated in the liquid intended for vaporization.
The vaporizer 52 comprises a vaporization cavity 66, a heating element support 67 and a heating element 68.
The vaporization cavity 66 comprises a region within the hollow of the mouthpiece casing 60 in which liquid is vaporized. The heating element 68 and a portion 69 of the support 67 are situated within the vaporization cavity 66.
The heating element support 67 is configured to support the heating element 68 from the outside and to facilitate vaporization of liquid by the heating element 68 and is illustrated in
The heating element 68 is formed of a single wire and comprises a heating element coil 71 and two leads 72, as is illustrated in
The wire of the coil 71 is approximately 0.12 mm in diameter. The coil is approximately 25 mm in length, has an internal diameter of approximately 1 mm and a helix pitch of approximately 420 micrometers. The void between the successive turns of the coil 71 is therefore approximately 300 micrometers.
The coil 71 of the heating element 68 is located coaxially within the channel 70 of the support. The heating element coil 71 is thus coiled within the channel 70 of the heating element support 67. Moreover, the axis A of the coil 71 is thus parallel to the cylindrical axis B of the mouthpiece casing 60 and the longitudinal axis C of the electronic cigarette 1.
The coil 71 is the same length as the support 67, such that the ends of the coil 71 are flush with the ends of the support 67. The outer diameter of the helix of the coil 71 is similar to the cross-sectional width of the channel 70. As a result, the wire of the coil 71 is in contact with the surface 73 of the channel 70 and is thereby supported, facilitating maintenance of the shape of the coil 71. Each turn of the coil is in contact with the surface 73 of the channel 70 at a contact point 75 on each of the four walls 73 of the channel 70. The combination of the coil 71 and the support 67 provides a heating rod 74, as illustrated in
The inner surface 73 of the support 67 provides a surface for liquid to wick onto the coil 71 at the points 75 of contact between the coil 71 and the channel 70 walls 73. The inner surface 73 of the support 67 also provides surface area for exposing wicked liquid to the heat of the heating element 68.
There exists a continuous inner cavity 76 within the electronic cigarette 1 formed by the adjacent hollow interiors' of the mouthpiece casing 60 and the battery assembly casing 53.
In use, a user sucks on the second end 63 of the mouthpiece casing 60. This causes a drop in the air pressure throughout the inner cavity 76 of the electronic cigarette 1, particularly at the air outlet 4.
The pressure drop within the inner cavity 76 is detected by the pressure sensor 58. In response to detection of the pressure drop by the pressure sensor 58, the controller 59 triggers the provision of power from the power cell 54 to the heating element 68 via the electrical contacts 55, 26. The coil of the heating element 68 therefore heats up. Once the coil 17 heats up, liquid in the vaporization cavity 66 is vaporized. In more detail, liquid on the coil 71 is vaporized, liquid on the inner surface 73 of the heating element support 67 is vaporized and liquid in the portions 22 of the support 67 which are in the immediate vicinity of the heating element 68 may be vaporized.
The pressure drop within the inner cavity 76 also causes air from outside of the electronic cigarette 1 to be drawn, along route F, through the inner cavity from the air inlet 64 to the air outlet 4. As air is drawn along route F, it passes through the vaporization cavity 66, picking up vaporized liquid, and the air passageway 65. The vaporized liquid is therefore conveyed along the air passageway 65 and out of the air outlet 4 to be inhaled by the user. In passing through the vaporization cavity, along route F, the air moves over the heating element 68 in a direction substantially parallel to the axis A of the coil 71.
As the air containing the vaporized liquid is conveyed to the air outlet 4, some of the vapor may condense, producing a fine suspension of liquid droplets in the airflow. Moreover, movement of air through the vaporizer 52 as the user sucks on the mouthpiece 2 can lift fine droplets of liquid off of the heating element 68 and/or the heating element support 67. The air passing out of the air outlet 4 may therefore comprise an aerosol of fine liquid droplets as well as vaporized liquid.
With reference to
Many alternatives and variations to the embodiments described above are possible. For example, alternatives and variations to the embodiments of
The heating element support 20 is porous and stores liquid. The gaps 80 provided by the channels 81 have two functions. Firstly, they provide a means for liquid to be wicked both onto the coil 23 and into the heating element support 20 by capillary action. Secondly, they expose the coil 23 surface in the area of the channels 81 thereby increasing the vaporization surface of the coil 23.
In
Again, the heating element support 20 is porous for liquid storage and the gaps 80 provide a means of wicking liquid onto the coil 23, and expose a greater surface of the Coil 23 for increased vaporization.
In
Moreover, where channels 81 are provided in the heating element support 20, a number other than one or four channels 81 can be used.
Furthermore, channels 81 have been described as longitudinal grooves along the surface 28 of cylindrical supports 20. However, the channels 81 may, for example, alternatively or additionally comprise helical grooves in the surface 28 of a cylindrical support 20, spiraling about the axis of the support. Alternatively or additionally the channels 81 may comprise circumferential rings around the surface 28 of the support 20.
In embodiments, the inner support 20 is described as being slightly longer than the coil 23, such that it protrudes from either end of the coil 23. Alternatively, the support 20 may be shorter in length than the coil 23 and may therefore reside entirely within the bounds of the coil.
Furthermore, example alternatives and variations to the embodiments of
In
The first support section 85 and second support section 86 each have a side channel 87, or groove 87, running along their respective lengths, along the middle of their otherwise flat longitudinal surfaces. When the first support section 85 is joined to the second support section 86 to form the heating element support 67, their respective side channels 87 together form the heating elements support 67 internal channel 70.
In this example, the combined side channels 87 form an internal channel 70 having a square cross-sectional shape. Thus, the side channels 87 are each rectangular in cross-section. The coil 71 is situated within the heating element support 67 internal channel 70. Having a heating element support 67 that comprises two separate parts 85, 86 facilitates manufacture of this component. During manufacturing, the coil 71 can be fitted into the side channel 87 of the first support section 85, and the second support section 86 can be placed on top to form the completed heating element support 67.
Internal support channels 70 with cross-sectional shapes other than those described could be used.
Moreover, the coil 71 may be shorter in length than the outer support 67 and may therefore reside entirely within the bounds of the support. Alternatively, the coil 71 may be longer than the outer support 67.
In embodiments, the support 67 may be located partially or entirely within liquid store 51. For example, the support 67 may be located coaxially within the tube of the liquid store 51.
Furthermore, example alternatives and variations to the embodiments described above are as follows.
An electronic vapor provision device comprising an electronic cigarette 1 is described herein. However, other types of electronic vapor provision device are possible.
The wire of the coil 23, 71 is described above as being approximately 0.12 mm thick. However, other wire diameters are possible. For example, the diameter of the coil wire may be in the range of 0.05 mm to 0.2 mm. Moreover, the coil 23, 71 length may be different to that described above. For example, the coil 23, 71 length may be in the range of 20 mm to 40 mm.
The internal diameter of the coil 23, 71 may be different to that described above. For example, the internal diameter of the coil 23, 71 may be in the range of 0.5 mm to 2 mm.
The pitch of the helical coil 23, 71 may be different to that described above. For example, the pitch may be between 120 micrometers and 600 micrometers.
Furthermore, although the distance of the voids between turns of the coil 23, 71 is described above as being approximately 300, different void distances are possible. For example, the void may be between 20 micrometers and 500 micrometers.
The size of the gaps 80 may be different to that described above.
Furthermore, the electronic vapor provision device 1 is not restricted to the sequence of components described and other sequences could be used such as the control circuit 11, 56 being in the tip of the device or the liquid store 7, 51 being in the electronic vapor provision device 1 body 3 rather than the mouthpiece 2.
The electronic vapor provision device 1 of
The electronic vapor provision device 1 of
The heating element 17, 68 is not restricted to being a coil 23, 71, and may be another wire form such as a zig-zag shape.
An air pressure sensor 13, 58 is described herein. In embodiments, an airflow sensor may be used to detect that a user is sucking on the device.
The heating element 17, 68 is not restricted to being a uniform coil.
The porous material of the heating element support 20, 67 may be optimized for retention and wicking of certain liquids. For example the porous material may be optimized for the retention and wicking of a nicotine solution. For instance, the nicotine solution may be liquid containing nicotine diluted in a propylene glycol solution.
The heating element support 20, 67 is not limited to being a porous ceramic and other solid porous materials could be used such as porous plastics materials or solid foams.
Reference herein to a vaporization cavity 19, 66 may be replaced by reference to a vaporization region.
Although examples have been shown and described, it will be appreciated by those skilled in the art that various changes and modifications might be made without departing from the scope of the invention.
In order to address various issues and advance the art, the entirety of this disclosure shows by way of illustration various embodiments in which the claimed invention(s) may be practiced and provide for superior electronic vapor provision. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed features. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilized and modifications may be made without departing from the scope and/or spirit of the disclosure. Various embodiments may suitably comprise, consist of, or consist essentially of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. In addition, the disclosure includes other inventions not presently claimed, but which may be claimed in future. Any feature of any embodiment can be used independently of, or in combination with, any other feature
| Number | Date | Country | Kind |
|---|---|---|---|
| 1212606 | Jul 2012 | GB | national |
This application is a continuation of application Ser. No. 15/914,139 filed Mar. 7, 2018, which in turn is a continuation of application Ser. No. 14/415,552 filed Jan. 16, 2015, which is a National Phase entry of PCT Application No. PCT/EP2013/064952, filed Jul. 15, 2013 which claims the benefit of GB Application No. GB1212606.6 filed Jul. 16, 2012, each of which is fully incorporated herein by reference.
| Number | Name | Date | Kind |
|---|---|---|---|
| 2057353 | Whittemore | Oct 1936 | A |
| 2809634 | Hirotada et al. | Oct 1957 | A |
| 2937648 | Meyer | May 1960 | A |
| 2991788 | Brost | Jul 1961 | A |
| 3111396 | Ball | Nov 1963 | A |
| 3148996 | Vukasovich et al. | Sep 1964 | A |
| 3239117 | Letchworth | Mar 1966 | A |
| 3402724 | Blount et al. | Sep 1968 | A |
| 3431393 | Katsuda et al. | Mar 1969 | A |
| 3433632 | Elbert et al. | Mar 1969 | A |
| 3521643 | Toth et al. | Jul 1970 | A |
| 3604428 | Moukaddem | Sep 1971 | A |
| 3804100 | Fariello | Apr 1974 | A |
| 3844199 | Block et al. | Oct 1974 | A |
| 3964902 | Fletcher et al. | Jun 1976 | A |
| 4009713 | Simmons et al. | Mar 1977 | A |
| 4031906 | Knapp | Jun 1977 | A |
| 4094119 | Sullivan | Jun 1978 | A |
| 4145001 | Weyenberg et al. | Mar 1979 | A |
| 4161283 | Hyman | Jul 1979 | A |
| 4193513 | Bull, Jr. | Mar 1980 | A |
| 4219031 | Rainer et al. | Aug 1980 | A |
| 4503851 | Braunroth | Mar 1985 | A |
| 4588976 | Jaselli | May 1986 | A |
| 4676237 | Wood et al. | Jun 1987 | A |
| 4735217 | Gerth et al. | Apr 1988 | A |
| 4827950 | Banerjee et al. | May 1989 | A |
| 4830028 | Lawson et al. | May 1989 | A |
| 4846199 | Rose | Jul 1989 | A |
| 4848374 | Chard et al. | Jul 1989 | A |
| 4885129 | Leonard et al. | Dec 1989 | A |
| 4917301 | Munteanu | Apr 1990 | A |
| 4922901 | Brooks et al. | May 1990 | A |
| 4924886 | Litzinger | May 1990 | A |
| 4947874 | Brooks et al. | Aug 1990 | A |
| 4947875 | Brooks et al. | Aug 1990 | A |
| 4978814 | Honour | Dec 1990 | A |
| 5027837 | Clearman et al. | Jul 1991 | A |
| 5046514 | Bolt | Sep 1991 | A |
| 5060671 | Counts et al. | Oct 1991 | A |
| 5065776 | Lawson et al. | Nov 1991 | A |
| 5095647 | Zobele et al. | Mar 1992 | A |
| 5095921 | Losee et al. | Mar 1992 | A |
| 5099861 | Clearman et al. | Mar 1992 | A |
| 5115823 | Keritsis | May 1992 | A |
| 5121881 | Lembeck | Jun 1992 | A |
| 5129409 | White et al. | Jul 1992 | A |
| 5144962 | Counts et al. | Sep 1992 | A |
| 5167242 | Turner et al. | Dec 1992 | A |
| 5179966 | Losee et al. | Jan 1993 | A |
| 5247947 | Clearman et al. | Sep 1993 | A |
| 5322075 | Deevi et al. | Jun 1994 | A |
| 5369723 | Counts et al. | Nov 1994 | A |
| 5388574 | Ingebrethsen | Feb 1995 | A |
| 5390864 | Alexander | Feb 1995 | A |
| 5415186 | Casey, III et al. | May 1995 | A |
| 5415486 | Wouters et al. | May 1995 | A |
| 5479948 | Counts et al. | Jan 1996 | A |
| 5497792 | Prasad et al. | Mar 1996 | A |
| 5501236 | Hill et al. | Mar 1996 | A |
| 5505214 | Collins et al. | Apr 1996 | A |
| 5540241 | Kim | Jul 1996 | A |
| 5553791 | Alexander | Sep 1996 | A |
| 5611360 | Tang | Mar 1997 | A |
| 5636787 | Gowhari | Jun 1997 | A |
| 5649554 | Sprinkel et al. | Jul 1997 | A |
| 5666977 | Higgins et al. | Sep 1997 | A |
| 5692291 | Deevi et al. | Dec 1997 | A |
| 5692526 | Adams et al. | Dec 1997 | A |
| 5743251 | Howell et al. | Apr 1998 | A |
| 5865185 | Collins et al. | Feb 1999 | A |
| 5954060 | Cardarelli | Sep 1999 | A |
| 6095505 | Miller | Aug 2000 | A |
| 6155268 | Takeuchi | Dec 2000 | A |
| 6275650 | Lambert | Aug 2001 | B1 |
| 6280793 | Atwell et al. | Aug 2001 | B1 |
| 6532965 | Abhulimen et al. | Mar 2003 | B1 |
| 6652804 | Neumann et al. | Nov 2003 | B1 |
| 6681998 | Sharpe et al. | Jan 2004 | B2 |
| 6701921 | Sprinkel, Jr. et al. | Mar 2004 | B2 |
| 6790496 | Levander et al. | Sep 2004 | B1 |
| 7100618 | Dominguez | Sep 2006 | B2 |
| 7112712 | Ancell | Sep 2006 | B1 |
| 7263228 | Mori | Aug 2007 | B2 |
| 7400940 | McRae et al. | Jul 2008 | B2 |
| 7540286 | Cross et al. | Jun 2009 | B2 |
| 7767698 | Warchol et al. | Aug 2010 | B2 |
| 7832410 | Hon | Nov 2010 | B2 |
| 7992554 | Radomski et al. | Aug 2011 | B2 |
| 8156944 | Han | Apr 2012 | B2 |
| 8205622 | Pan | Jun 2012 | B2 |
| 8365742 | Hon | Feb 2013 | B2 |
| 8375957 | Hon | Feb 2013 | B2 |
| 8393331 | Hon | Mar 2013 | B2 |
| 8430106 | Potter et al. | Apr 2013 | B2 |
| 8490628 | Hon | Jul 2013 | B2 |
| 8511318 | Hon | Aug 2013 | B2 |
| 8689805 | Hon | Apr 2014 | B2 |
| 8752545 | Buchberger | Jun 2014 | B2 |
| 8833364 | Buchberger | Sep 2014 | B2 |
| 8948578 | Buchberger | Feb 2015 | B2 |
| 8975764 | Abehasera | Mar 2015 | B1 |
| 9623205 | Buchberger | Apr 2017 | B2 |
| 9974335 | Lord | May 2018 | B2 |
| 10111466 | Lord | Oct 2018 | B2 |
| 10278421 | Lord | May 2019 | B2 |
| 20010042546 | Umeda et al. | Nov 2001 | A1 |
| 20020016370 | Shytle et al. | Feb 2002 | A1 |
| 20020079309 | Cox et al. | Jun 2002 | A1 |
| 20030005620 | Ananth et al. | Jan 2003 | A1 |
| 20030049025 | Neumann et al. | Mar 2003 | A1 |
| 20030063902 | Pedrotti et al. | Apr 2003 | A1 |
| 20030079309 | Vandenbelt et al. | May 2003 | A1 |
| 20030106552 | Sprinkel, Jr. et al. | Jun 2003 | A1 |
| 20030200964 | Blakley et al. | Oct 2003 | A1 |
| 20040031485 | Rustad et al. | Feb 2004 | A1 |
| 20040065749 | Kotary et al. | Apr 2004 | A1 |
| 20040129793 | Nguyen et al. | Jul 2004 | A1 |
| 20050204799 | Koch | Sep 2005 | A1 |
| 20050268911 | Cross et al. | Dec 2005 | A1 |
| 20060078477 | Althouse et al. | Apr 2006 | A1 |
| 20060131439 | Lakatos et al. | Jun 2006 | A1 |
| 20070014549 | Demarest et al. | Jan 2007 | A1 |
| 20070062548 | Horstmann et al. | Mar 2007 | A1 |
| 20070102013 | Adams et al. | May 2007 | A1 |
| 20070107879 | Radomski et al. | May 2007 | A1 |
| 20070137667 | Zhuang et al. | Jun 2007 | A1 |
| 20070155255 | Galauner et al. | Jul 2007 | A1 |
| 20070283972 | Monsees et al. | Dec 2007 | A1 |
| 20080092912 | Robinson et al. | Apr 2008 | A1 |
| 20080216828 | Wensley et al. | Sep 2008 | A1 |
| 20080241255 | Rose et al. | Oct 2008 | A1 |
| 20090095311 | Han | Apr 2009 | A1 |
| 20090188490 | Han | Jul 2009 | A1 |
| 20090272379 | Thorens et al. | Nov 2009 | A1 |
| 20090288668 | Inagaki | Nov 2009 | A1 |
| 20090293888 | Williams et al. | Dec 2009 | A1 |
| 20090293892 | Williams et al. | Dec 2009 | A1 |
| 20090302019 | Selenski et al. | Dec 2009 | A1 |
| 20100006113 | Urtsev et al. | Jan 2010 | A1 |
| 20100024834 | Oglesby et al. | Feb 2010 | A1 |
| 20100059070 | Potter et al. | Mar 2010 | A1 |
| 20100065653 | Wingo et al. | Mar 2010 | A1 |
| 20100083959 | Siller | Apr 2010 | A1 |
| 20100108059 | Axelsson et al. | May 2010 | A1 |
| 20100236546 | Yamada et al. | Sep 2010 | A1 |
| 20110005535 | Xiu | Jan 2011 | A1 |
| 20110011396 | Fang | Jan 2011 | A1 |
| 20110036363 | Urtsev et al. | Feb 2011 | A1 |
| 20110094523 | Thorens | Apr 2011 | A1 |
| 20110126848 | Zuber et al. | Jun 2011 | A1 |
| 20110155153 | Thorens et al. | Jun 2011 | A1 |
| 20110168194 | Hon | Jul 2011 | A1 |
| 20110209717 | Han | Sep 2011 | A1 |
| 20110226236 | Buchberger | Sep 2011 | A1 |
| 20110232654 | Mass | Sep 2011 | A1 |
| 20110277756 | Terry et al. | Nov 2011 | A1 |
| 20110277757 | Terry et al. | Nov 2011 | A1 |
| 20110290267 | Yamada et al. | Dec 2011 | A1 |
| 20110297166 | Takeuchi et al. | Dec 2011 | A1 |
| 20110303231 | Li et al. | Dec 2011 | A1 |
| 20120006343 | Renaud et al. | Jan 2012 | A1 |
| 20120111347 | Hon | May 2012 | A1 |
| 20120145169 | Wu | Jun 2012 | A1 |
| 20120179512 | O'Keeffe | Jul 2012 | A1 |
| 20120227753 | Newton | Sep 2012 | A1 |
| 20120234821 | Shimizu | Sep 2012 | A1 |
| 20120255567 | Rose et al. | Oct 2012 | A1 |
| 20120260927 | Liu | Oct 2012 | A1 |
| 20120279512 | Hon | Nov 2012 | A1 |
| 20120285475 | Liu | Nov 2012 | A1 |
| 20120285476 | Hon | Nov 2012 | A1 |
| 20130037041 | Worm et al. | Feb 2013 | A1 |
| 20130056013 | Terry et al. | Mar 2013 | A1 |
| 20130074857 | Buchberger | Mar 2013 | A1 |
| 20130081619 | Seakins et al. | Apr 2013 | A1 |
| 20130081623 | Buchberger | Apr 2013 | A1 |
| 20130192615 | Tucker et al. | Aug 2013 | A1 |
| 20130192623 | Tucker et al. | Aug 2013 | A1 |
| 20130213417 | Chong et al. | Aug 2013 | A1 |
| 20130213419 | Tucker et al. | Aug 2013 | A1 |
| 20130284192 | Peleg et al. | Oct 2013 | A1 |
| 20130298905 | Levin et al. | Nov 2013 | A1 |
| 20130306085 | Sanchez et al. | Nov 2013 | A1 |
| 20130333700 | Buchberger | Dec 2013 | A1 |
| 20130340779 | Liu | Dec 2013 | A1 |
| 20140000638 | Sebastian et al. | Jan 2014 | A1 |
| 20140007863 | Chen | Jan 2014 | A1 |
| 20140024834 | Mergelsberg et al. | Jan 2014 | A1 |
| 20140060528 | Liu | Mar 2014 | A1 |
| 20140060529 | Zhang | Mar 2014 | A1 |
| 20140060554 | Collett et al. | Mar 2014 | A1 |
| 20140060555 | Chang et al. | Mar 2014 | A1 |
| 20140069444 | Cyphert et al. | Mar 2014 | A1 |
| 20140202454 | Buchberger | Jul 2014 | A1 |
| 20140209105 | Sears et al. | Jul 2014 | A1 |
| 20140238396 | Buchberger | Aug 2014 | A1 |
| 20140238423 | Tucker et al. | Aug 2014 | A1 |
| 20140238424 | Macko et al. | Aug 2014 | A1 |
| 20140261490 | Kane | Sep 2014 | A1 |
| 20140270730 | DePiano et al. | Sep 2014 | A1 |
| 20140283825 | Buchberger | Sep 2014 | A1 |
| 20140286630 | Buchberger | Sep 2014 | A1 |
| 20140299125 | Buchberger | Oct 2014 | A1 |
| 20140299142 | Dincer et al. | Oct 2014 | A1 |
| 20140338680 | Abramov et al. | Nov 2014 | A1 |
| 20150020831 | Weigensberg et al. | Jan 2015 | A1 |
| 20150114411 | Buchberger | Apr 2015 | A1 |
| 20150150302 | Metrangolo et al. | Jun 2015 | A1 |
| 20150157055 | Lord | Jun 2015 | A1 |
| 20150196058 | Lord | Jul 2015 | A1 |
| 20150201675 | Lord | Jul 2015 | A1 |
| 20150208728 | Lord | Jul 2015 | A1 |
| 20150245654 | Memari et al. | Sep 2015 | A1 |
| 20150258288 | Sullivan | Sep 2015 | A1 |
| 20150333552 | Alarcon | Nov 2015 | A1 |
| 20150333561 | Alarcon | Nov 2015 | A1 |
| 20160073693 | Reevell | Mar 2016 | A1 |
| 20160106154 | Lord | Apr 2016 | A1 |
| 20160106155 | Reevell | Apr 2016 | A1 |
| 20160250201 | Rose et al. | Sep 2016 | A1 |
| 20160278436 | Verleur et al. | Sep 2016 | A1 |
| 20160295923 | Lin | Oct 2016 | A1 |
| 20160353804 | Lord | Dec 2016 | A1 |
| 20170042245 | Buchberger et al. | Feb 2017 | A1 |
| 20170114965 | Maglica et al. | Apr 2017 | A1 |
| 20170143042 | Batista et al. | May 2017 | A1 |
| 20170173278 | Buchberger | Jun 2017 | A1 |
| 20170197043 | Buchberger | Jul 2017 | A1 |
| 20170197044 | Buchberger | Jul 2017 | A1 |
| 20170197046 | Buchberger | Jul 2017 | A1 |
| 20170208865 | Nettenstrom et al. | Jul 2017 | A1 |
| 20170251725 | Buchberger et al. | Sep 2017 | A1 |
| 20180192705 | Lord | Jul 2018 | A1 |
| 20180199618 | Fuisz et al. | Jul 2018 | A1 |
| 20180235284 | Lord | Aug 2018 | A1 |
| 20210100285 | Spencer et al. | Apr 2021 | A1 |
| Number | Date | Country |
|---|---|---|
| 508244 | Dec 2010 | AT |
| 6393173 | Jun 1975 | AU |
| 2309376 | Nov 2000 | CA |
| 2864238 | Aug 2013 | CA |
| 698603 | Sep 2009 | CH |
| 1040496 | Mar 1990 | CN |
| 2082939 | Aug 1991 | CN |
| 2092880 | Jan 1992 | CN |
| 2220168 | Feb 1996 | CN |
| 2249068 | Mar 1997 | CN |
| 1205849 | Jan 1999 | CN |
| 2719043 | Aug 2005 | CN |
| 1925757 | Mar 2007 | CN |
| 201054977 | May 2008 | CN |
| 201079011 | Jul 2008 | CN |
| 101277623 | Oct 2008 | CN |
| 201238609 | May 2009 | CN |
| 101500443 | Aug 2009 | CN |
| 201375023 | Jan 2010 | CN |
| 201379072 | Jan 2010 | CN |
| 201468000 | May 2010 | CN |
| 101795505 | Aug 2010 | CN |
| 101843368 | Sep 2010 | CN |
| 101878958 | Nov 2010 | CN |
| 202085723 | Dec 2011 | CN |
| 202172846 | Mar 2012 | CN |
| 102655773 | Sep 2012 | CN |
| 202722498 | Feb 2013 | CN |
| 202750708 | Feb 2013 | CN |
| 103070472 | May 2013 | CN |
| 203168033 | Sep 2013 | CN |
| 103750573 | Apr 2014 | CN |
| 103929988 | Jul 2014 | CN |
| 103974369 | Aug 2014 | CN |
| 103974639 | Aug 2014 | CN |
| 104095293 | Oct 2014 | CN |
| 203943069 | Nov 2014 | CN |
| 204120237 | Jan 2015 | CN |
| 104349687 | Feb 2015 | CN |
| 106102863 | Nov 2016 | CN |
| 822964 | Nov 1951 | DE |
| 1950439 | Apr 1971 | DE |
| 3148335 | Jul 1983 | DE |
| 3218760 | Dec 1983 | DE |
| 3844022 | Feb 1990 | DE |
| 3936687 | May 1990 | DE |
| 29713866 | Oct 1997 | DE |
| 19630619 | Feb 1998 | DE |
| 19654945 | Mar 1998 | DE |
| 10330681 | Jun 2004 | DE |
| 202006013439 | Oct 2006 | DE |
| 102006004484 | Aug 2007 | DE |
| 102007011120 | Sep 2008 | DE |
| 202013100606 | Feb 2013 | DE |
| 015651 | Oct 2011 | EA |
| 201100197 | Mar 2012 | EA |
| 0280262 | Aug 1988 | EP |
| 0295122 | Dec 1988 | EP |
| 0358002 | Mar 1990 | EP |
| 0444553 | Sep 1991 | EP |
| 0488488 | Jun 1992 | EP |
| 0532194 | Mar 1993 | EP |
| 0712584 | May 1996 | EP |
| 0845220 | Jun 1998 | EP |
| 0893071 | Jan 1999 | EP |
| 1166814 | Jan 2002 | EP |
| 1166847 | Jan 2002 | EP |
| 1283062 | Feb 2003 | EP |
| 0845220 | Sep 2003 | EP |
| 1486226 | Dec 2004 | EP |
| 1736065 | Dec 2006 | EP |
| 2018886 | Jan 2009 | EP |
| 2022349 | Feb 2009 | EP |
| 1736065 | Jun 2009 | EP |
| 2113178 | Nov 2009 | EP |
| 2119375 | Nov 2009 | EP |
| 2327318 | Jun 2011 | EP |
| 2340729 | Jul 2011 | EP |
| 2394520 | Dec 2011 | EP |
| 2404515 | Jan 2012 | EP |
| 2444112 | Apr 2012 | EP |
| 2444411 | Apr 2012 | EP |
| 2695531 | Feb 2014 | EP |
| 2698070 | Feb 2014 | EP |
| 2762019 | Aug 2014 | EP |
| 2835062 | Feb 2015 | EP |
| 2939553 | Nov 2015 | EP |
| 2083643 | Sep 2017 | EP |
| 960469 | Apr 1950 | FR |
| 25575 | Mar 1912 | GB |
| 1313525 | Apr 1973 | GB |
| 2333466 | Jul 1999 | GB |
| 2488257 | Aug 2012 | GB |
| 2496105 | May 2013 | GB |
| 1196511 | Oct 2016 | HK |
| 1226611 | Oct 2017 | HK |
| S5130900 | Mar 1976 | JP |
| S5752456 | Mar 1982 | JP |
| S59106340 | Jun 1984 | JP |
| S6196763 | May 1986 | JP |
| S6196765 | May 1986 | JP |
| H02124081 | May 1990 | JP |
| H0339077 | Feb 1991 | JP |
| H05103836 | Apr 1993 | JP |
| H05309136 | Nov 1993 | JP |
| H06315366 | Nov 1994 | JP |
| H07502188 | Mar 1995 | JP |
| H0878142 | Mar 1996 | JP |
| H08299862 | Nov 1996 | JP |
| H1189551 | Apr 1999 | JP |
| H11507234 | Jun 1999 | JP |
| 2002527153 | Aug 2002 | JP |
| 3392138 | Mar 2003 | JP |
| 2004332069 | Nov 2004 | JP |
| 2005537918 | Dec 2005 | JP |
| 2006504431 | Feb 2006 | JP |
| 2007259864 | Oct 2007 | JP |
| 2007267749 | Oct 2007 | JP |
| 2009502136 | Jan 2009 | JP |
| 2009504431 | Feb 2009 | JP |
| 3153675 | Sep 2009 | JP |
| 2009537119 | Oct 2009 | JP |
| 2010520742 | Jun 2010 | JP |
| 3164992 | Dec 2010 | JP |
| 2011518567 | Jun 2011 | JP |
| 2012517229 | Aug 2012 | JP |
| 5130900 | Jan 2013 | JP |
| 2013545473 | Dec 2013 | JP |
| 2014076065 | May 2014 | JP |
| 2014525237 | Sep 2014 | JP |
| 2015524257 | Aug 2015 | JP |
| 20110006928 | Jan 2011 | KR |
| 20110006928 | Jul 2011 | KR |
| 101081481 | Nov 2011 | KR |
| 2004116065 | Jun 2005 | RU |
| 2311859-02 | Dec 2007 | RU |
| 2336001 | Oct 2008 | RU |
| 89927 | Dec 2009 | RU |
| 94815 | Jun 2010 | RU |
| 103281 | Apr 2011 | RU |
| 2420290 | Jun 2011 | RU |
| 110608 | Nov 2011 | RU |
| 115629 | May 2012 | RU |
| 122000 | Nov 2012 | RU |
| 124120 | Jan 2013 | RU |
| 2480485 | Apr 2013 | RU |
| 145715 | Sep 2014 | RU |
| 158129 | Dec 2015 | RU |
| 1641182 | Apr 1991 | SU |
| 201225862 | Jul 2012 | TW |
| WO-9406313 | Mar 1994 | WO |
| WO-9502712 | Jan 1995 | WO |
| WO-9527412 | Oct 1995 | WO |
| WO-9632854 | Oct 1996 | WO |
| WO-9639880 | Dec 1996 | WO |
| WO-9748293 | Dec 1997 | WO |
| WO-9836651 | Aug 1998 | WO |
| WO-0009188 | Feb 2000 | WO |
| WO-0021598 | Apr 2000 | WO |
| WO-02058747 | Aug 2002 | WO |
| WO-03028409 | Apr 2003 | WO |
| WO-03050405 | Jun 2003 | WO |
| WO-03083283 | Oct 2003 | WO |
| WO-03101454 | Dec 2003 | WO |
| WO-2004022128 | Mar 2004 | WO |
| WO-2004022242 | Mar 2004 | WO |
| WO-2004022243 | Mar 2004 | WO |
| WO-2004080216 | Sep 2004 | WO |
| WO-2005106350 | Nov 2005 | WO |
| WO-2006048774 | May 2006 | WO |
| WO-2006082571 | Aug 2006 | WO |
| WO-2007012007 | Jan 2007 | WO |
| WO-2007042941 | Apr 2007 | WO |
| WO-2007078273 | Jul 2007 | WO |
| WO-2007131449 | Nov 2007 | WO |
| WO-2008015441 | Feb 2008 | WO |
| WO-2008029381 | Mar 2008 | WO |
| WO-2009015410 | Feb 2009 | WO |
| WO-2009022232 | Feb 2009 | WO |
| WO-2009132793 | Nov 2009 | WO |
| WO-2010045670 | Apr 2010 | WO |
| WO-2010045671 | Apr 2010 | WO |
| WO-2010091593 | Aug 2010 | WO |
| WO-2011060788 | May 2011 | WO |
| WO-2011079932 | Jul 2011 | WO |
| WO-2011106788 | Sep 2011 | WO |
| WO-2011107737 | Sep 2011 | WO |
| WO-2011109849 | Sep 2011 | WO |
| WO-2011124033 | Oct 2011 | WO |
| WO-2011137453 | Nov 2011 | WO |
| WO-2011146372 | Nov 2011 | WO |
| WO-2011160788 | Dec 2011 | WO |
| WO-2012025496 | Mar 2012 | WO |
| WO-2012072762 | Jun 2012 | WO |
| WO-2012156700 | Nov 2012 | WO |
| WO-2013034453 | Mar 2013 | WO |
| WO-2013034460 | Mar 2013 | WO |
| WO-2013057185 | Apr 2013 | WO |
| WO-2013060784 | May 2013 | WO |
| WO-2013076098 | May 2013 | WO |
| WO-2013082173 | Jun 2013 | WO |
| WO-2013083631 | Jun 2013 | WO |
| WO-2013083634 | Jun 2013 | WO |
| WO-2013098395 | Jul 2013 | WO |
| WO-2013116558 | Aug 2013 | WO |
| WO-2013116571 | Aug 2013 | WO |
| WO-2013148810 | Oct 2013 | WO |
| WO-2013149404 | Oct 2013 | WO |
| WO-2013178766 | Dec 2013 | WO |
| WO-2014061477 | Apr 2014 | WO |
| WO-2014104078 | Jul 2014 | WO |
| WO-2014106093 | Jul 2014 | WO |
| WO-2014130695 | Aug 2014 | WO |
| WO-2014136872 | Sep 2014 | WO |
| WO-2014140320 | Sep 2014 | WO |
| WO-2014150131 | Sep 2014 | WO |
| WO-2015117702 | Aug 2015 | WO |
| WO-2016156493 | Oct 2016 | WO |
| WO-2016162446 | Oct 2016 | WO |
| WO-2017055866 | Apr 2017 | WO |
| Entry |
|---|
| CN 101843368-A Translation; Zhiping Chen (Year: 2010). |
| Aerosols, “Pulmonary Pharmacology: Delivery Devices and Medications,” Sep. 6, 2017, available at www.cdeu.org/cecourses/z98207/ch4.html, 2 pages. |
| Application and File History for U.S. Appl. No. 14/415,540, filed Jan. 16, 2015, Inventor: Lord, 522 pages. |
| Application and File History for U.S. Appl. No. 14/415,552, filed Jan. 16, 2015, Inventor: Christopher Lord, 382 pages. |
| Application and File History for U.S. Appl. No. 15/563,065, filed Sep. 29, 2017, 471 pages, Inventor: Sutton. |
| Application and File History for U.S. Appl. No. 15/563,078, filed Sep. 29, 2017, 413 pages, Inventor: Sutton. |
| Application and File History for U.S. Appl. No. 15/563,086, filed Sep. 29, 2017, 433 pages, Inventor: Sutton. |
| Application and File History for U.S. Appl. No. 15/914,139, filed Mar. 7, 2018, 245 pages, Inventor: Lord et al. |
| Application and File History for U.S. Appl. No. 15/959,687, filed Apr. 23, 2018, 200 pages, Inventor: Christopher Lord. |
| Cambridge Dictionary, “Definition of Sleeve”, dictionary/Cambridge.org/dictionary/English/sleeve, Feb. 9, 2019, 1 page. |
| Communication pursuant to Article 94(3) EPC for European Application No. 16189742.6, dated Dec. 4, 2020, 9 pages. |
| Decision to Grant dated Apr. 6, 2016 for Russian Application No. 2015100881, 8 Pages. |
| Decision to Grant dated Oct. 24, 2019 for Russian Application No. 2019118770, 11 pages. |
| Decision to Grant dated Sep. 19, 2016 for Russian Application No. 2015100878, 12 pages. |
| Diener Electronic, “Plasma Polymerization,” The company Diener electronic GmbH+Co. KG, Retrieved on Oct. 17, 2017, 19 pages. |
| Dunn P.D., et al., “Heat Pipes,” Fourth Edition, Pergamon, ISBN0080419038, 1994, 14 pages. |
| Exam Report from European Application 16189742.6-1006, dated Dec. 19, 2019, 8 pages. |
| Examination Report for Australian Application No. 2015293686, dated Jul. 25, 2018, 6 pages. |
| Examination Report for European Application No. 15741289.1, dated Jun. 15, 2018, 6 pages. |
| Extended European Search Report for Application No. 15178588, dated Apr. 14, 2016, 2 pages. |
| Extended European Search Report for Application No. 16166656, dated Oct. 11, 2016, 9 pages. |
| Extended European Search Report for Application No. 16177005.2, dated Oct. 26, 2016, 7 pages. |
| Extended European Search Report for Application No. 17189951.1, dated Jan. 4, 2018, 11 pages. |
| Extended European Search Report for Application No. EP16189742.6, dated Mar. 17, 2017, 7 pages. |
| Extended European Search Report for European Application No. EP19174777.3, dated Nov. 11, 2019, 7 pages. |
| Extended Search Report for European Application No. 18195423.1, dated Jan. 29, 2019, 11 pages. |
| First Office Action dated Dec. 3, 2012 for Chinese Application No. 200980152395.4, 16 pages. |
| International Preliminary Report on Patentability for Application No. PCT/EP2016/057060, dated Jul. 12, 2017, 8 pages. |
| International Preliminary Report on Patentability for Application No. PCT/EP2016/057097, dated Oct. 12, 2017, 10 pages. |
| International Search Report and Written Opinion for Application No. PCT/EP2016/057097, dated Sep. 28, 2016, 14 pages. |
| International Preliminary Report on Patentability for Appl. No. PCT/EP2016/057064, dated Oct. 12, 2017, 10 pages. |
| International Preliminary Report on Patentability for Application No. PCT/AT2012/000017, dated Aug. 13, 2013, 5 pages. |
| International Preliminary Report on Patentability for Application No. PCT/EP2012/070647, dated Apr. 22, 2014, 8 pages. |
| International Preliminary Report on Patentability for Application No. PCT/EP2013/064950, dated Oct. 31, 2014, 12 pages. |
| International Preliminary Report on Patentability for Application No. PCT/EP2013/064952, dated Oct. 27, 2014, 9 pages. |
| International Preliminary Report on Patentability for Application No. PCT/GB2014/051332, dated Nov. 12, 2015, 7 pages. |
| International Preliminary Report on Patentability for Application No. PCT/GB2014/051333, dated Aug. 5, 2015, 12 pages. |
| International Preliminary Report on Patentability for Application No. PCT/GB2014/051334, dated Nov. 12, 2015, 7 pages. |
| International Preliminary Report on Patentability for Application No. PCT/GB2015/051213, dated Jul. 14, 2016, 20 pages. |
| International Search Report and Written Opinion for Application No. PCT/AT2012/000017, dated Jul. 3, 2012, 6 pages. |
| International Search Report and Written Opinion for Application No. PCT/EP2012/003103, dated Nov. 26, 2012, 6 pages. |
| International Search Report and Written Opinion for Application No. PCT/EP2012/070647, dated Feb. 6, 2013, 9 pages. |
| International Search Report and Written Opinion for Application No. PCT/EP2013/064950, dated Dec. 2, 2013. |
| International Search Report and Written Opinion for Application No. PCT/EP2013/064952, dated Oct. 11, 2013, 7 pages. |
| International Search Report and Written Opinion for Application No. PCT/EP2016/057064, dated Oct. 19, 2016, 15 pages. |
| International Search Report and Written Opinion for Application No. PCT/GB2014/051332, dated Jul. 21, 2014, 8 pages. |
| International Search Report and Written Opinion for Application No. PCT/GB2014/051333, dated Jul. 17, 2014, 10 pages. |
| International Search Report and Written Opinion for Application No. PCT/GB2014/051334, dated Jul. 21, 2014, 8 pages. |
| International Search Report and Written Opinion dated Dec. 2, 2013, for Application No. PCT/EP2013/064950 filed Jul. 15, 2013, 7 pages. |
| International Search Report for Application No. PCT/AT2009/000413, dated Jan. 25, 2010, 3 pages. |
| International Search Report for Application No. PCT/AT2009/000414, dated Jan. 26, 2010, 2 pages. |
| International Search Report for Application No. PCT/EP2016/057060, dated Sep. 28, 2016, 7 pages. |
| International Search Report for Application No. PCT/GB2015/051213, dated Jul. 16, 2015, 5 pages. |
| Korean Decision for Refusal for Korean Application No. KR2020110006928 dated Jan. 10, 2019. |
| Korean Notice of Trial Decision, IP Trial and Appeal Board, the 10'th Bureau, Trial Decision, Trial No. 2017 won 5687, mailed Aug. 14, 2019, 17 pages. |
| KR 101081481 Translation; Kim Hyung Yoon; Nov. 2011,6 pages. |
| Kynol, “Standard Specifications of Kynol™ Activated Carbon Fiber Products,” Sep. 19, 2013, 2 pages. |
| Notice of Opposition for European Patent No. EP2871984 dated Jun. 5, 2017, 17 pages. |
| Notice of Opposition Letter from EPO Opposition against the European Application No. 2358418, dated Mar. 1, 2017, 60 pages. |
| Notice of Reasons for Rejection dated Oct. 15, 2013 for Japanese Application No. 2011532464, 6 pages. |
| Notice of Reasons for Rejection dated May 23, 2017 for Japanese Application No. 2016134648, 18 pages. |
| Notice of Reasons for Rejection dated May 31, 2016 for Japanese Application No. 2015-137361, 6 pages. |
| Notice of Reasons for Rejection dated Sep. 8, 2015 for Japanese Application No. 2014179732, 5 pages. |
| Office Action and Search Report dated Jun. 21, 2019 for Chinese Application No. 201680020842.0, 25 pages. |
| Office Action and Search Report dated Jul. 23, 2019 for Chinese Application No. CN201680020758.9, 21 pages. |
| Office Action and Search Report dated Jun. 24, 2019 for Chinese Application No. CN201680020844.X, 22 pages. |
| Office Action dated Apr. 18, 2016 for Chinese Application No. 201380038055.5, 9 pages. |
| Office Action dated Aug. 24, 2018 for Chinese Application No. 201580040255.3, 8 pages. |
| Office Action for Canadian Application No. 2,878,959, dated Jan. 18, 2016, 6 pages. |
| Office Action for Canadian Application No. 2,878,973, dated Jan. 22, 2016, 6 pages. |
| Office Action for Canadian Application No. 2,954,848, dated Dec. 18, 2017, 4 pages. |
| Office Action for Chinese Application No. 201380038055.5, dated Jul. 11, 2017, 3 pages. |
| Office Action For Chinese Application No. 201811153475.9, dated Apr. 22, 2021, 17 pages. |
| Office Action for Japanese Application No. 2015-522064, dated Dec. 28, 2015, 2 pages. |
| Office Action for Japanese Application No. 2015-522065, dated Jan. 5, 2016, 2 pages. |
| Office Action for Japanese Application No. 2015-522066, dated Dec. 8, 2015, 3 pages. |
| Office Action for Japanese Application No. 2015-522066, dated Jan. 5, 2016. 2 pages. |
| Office Action for Japanese Application No. 2017-504040, dated Feb. 22, 2018, 7 pages. |
| Office Action for Japanese Application No. 2017-504040, dated Oct. 9, 2018, 2 pages (5 pages with translation). |
| Office Action for Japanese Application No. 2017-551206, dated Oct. 23, 2019, 8 pages. |
| Office Action for Japanese Application No. 2018-206299, dated Apr. 13, 2021,7 pages. |
| Office Action for Japanese Application No. 2018-206299, dated Oct. 6, 2020, 9 pages. |
| Office Action for Japanese Application No. 2019-124231, dated Oct. 27, 2020, 8 pages. |
| Office Action For Russian Application No. 2020124363, dated Feb. 17, 2021, 3 pages. |
| Office Action dated Jul. 2, 2019 for Chinese Application No. 201680020844.X, 22 pages. |
| Office Action dated Oct. 2, 2018, for Japanese Application No. 2017-551205, 11 pages. |
| Office Action dated Jan. 5, 2015 for Japanese Application No. 2015-522064, 2 pages. |
| Office Action dated Aug. 6, 2019 for Japanese Application No. 2017-551218,16 pages(lncluding Translation). |
| Office Action dated Sep. 11, 2017 for Chinese Application No. 201480024988.3, 10 pages. |
| Office Action dated Jan. 18, 2017 for Chinese Application No. 201480024978.X, 8 pages. |
| Office Action dated May 22, 2020 for Chinese Application No. 201680020844.X, 21 pages. |
| Office Action dated Sep. 22, 2017 for Russian Application No. 2014120213, 11 pages. |
| Office Action dated Oct. 26, 2016 for Russian Application No. 2014120213, 7 pages. |
| Office Action dated Dec. 30, 2016 for Chinese Application No. 201480024988.3, 26 pages. |
| Office Action dated Oct. 30, 2018 for Japanese Application No. 2017-551218, 4 pages. |
| Office Action dated Jul. 18, 2018 for Korean Application No. 10-2017-7034160, 8 pages (16 pages including Translation). |
| Office Action dated Mar. 15, 2018 for Korean Application No. 2017-7002235, 14 pages. |
| Office Action dated Sep. 7, 2016, for Korean Application No. 10-2015-7001256, 11 pages. |
| Office Action dated Sep. 8, 2016, for Korean Application No. 10-2015-7001257, 15 pages. |
| Office Action dated Sep. 24, 2018 for Russian Application No. 2018118998, 6 pages. |
| Rudolph G., “The Influence of CO2 on the Sensory Characteristics of the Favor-System,” 1987, Accessed at http://legacy.library.ucsf.edu/tid/sld5f100, 24 pages. |
| Search Report dated Oct. 7, 2015 for corresponding GB Application No. 15505597.3, 3 pages. |
| Search Report dated May 17, 2020 for Chinese Application No. 201680020844.X, 4 pages. |
| Search Report dated Oct. 20, 2015 for Great Britain Application No. GB1505595.7, 4 pages. |
| Search Report dated Sep. 22, 2015 for Great Britain Application No. GB1505593.2, 6 pages. |
| Search Report dated Apr. 24, 2017 for Russian Application No. 2015146843, 3 pages. |
| Search Report dated Jan. 15, 2018, for Japanese Application No. 2017-504040, 8 pages (15 pages with translation). |
| Search Report dated Oct. 7, 2015 for Great Britain Application No. GB1505597.3, 3 pages. |
| Second Office Action dated Aug. 20, 2013 for Chinese Application No. 200980152395.4, 16 pages. |
| Written Opinion for Application No. PCT/EP2016/057060, dated Sep. 28, 2016, 8 pages. |
| Written Opinion for International Application No. PCT/EP2016/057060, dated Apr. 7, 2017, 6 pages. |
| Written Opinion of the International Preliminary Examining Authority for International Application No. PCT/GB2015/051213, dated Mar. 29, 2016, 9 pages. |
| Number | Date | Country | |
|---|---|---|---|
| 20200178604 A1 | Jun 2020 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 15914139 | Mar 2018 | US |
| Child | 16795002 | US | |
| Parent | 14415552 | US | |
| Child | 15914139 | US |