Electronic wallet checkout platform apparatuses, methods and systems

Abstract
The ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS (“EWCP”) transform customer purchase requests triggering electronic wallet applications via EWCP components into electronic purchase confirmation and receipts. In one implementation, the EWCP receives a merchant payment request, and determines a payment protocol handler associated with the merchant payment request. The EWCP instantiates a wallet application via the payment protocol handler. The EWCP obtains a payment method selection via the wallet application, wherein the selected payment method is one of a credit card, a debit card, a gift card selected from an electronic wallet, and sends a transaction execution request for a transaction associated with the merchant payment request. Also, the EWCP receives a purchase response to the transaction execution request, and outputs purchase response information derived from the received purchase response.
Description

This application for letters patent discloses and describes various novel innovations and inventive aspects of ELECTRONIC WALLET CHECKOUT PLATFORM technology (hereinafter “disclosure”) and contains material that is subject to copyright, mask work, and/or other intellectual property protection. The respective owners of such intellectual property have no objection to the facsimile reproduction of the disclosure by anyone as it appears in published Patent Office file/records, but otherwise reserve all rights.


FIELD

The present innovations generally address apparatuses, methods, and systems for electronic purchase transactions, and more particularly, include ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS (“EWCP”).


BACKGROUND

Credit cards, debit cards, and gift cards have supplemented cash in facilitating purchase transactions. Such forms of payment are used extensively in online purchase transactions, where direct exchange of cash is usually not practical.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying appendices, drawings, figures, images, etc. illustrate various example, non-limiting, inventive aspects, embodiments, and features (“e.g.,” or “example(s)”) in accordance with the present disclosure:



FIG. 1 shows a block diagram of an exemplary e-wallet checkout platform usage scenario in one embodiment of the EWCP;



FIG. 2 shows a screen shot diagram illustrating a mobile EWCP application in one embodiment of the EWCP;



FIG. 3 shows a data flow diagram for e-wallet checkout in one embodiment of the EWCP;



FIG. 4 shows a logic flow diagram of an E-Wallet Checkout (EWC) component in one embodiment of the EWCP;



FIG. 5 shows a logic flow diagram of an E-Wallet Checkout Payment Acquisition (EWCPA) component in one embodiment of the EWCP;



FIG. 6 shows a logic flow diagram of an E-Wallet Checkout Purchase Transaction (EWCPT) component in one embodiment of the EWCP;



FIG. 7 shows a datagraph diagram illustrating example aspects of transforming a user checkout request input via a User Purchase Checkout (“UPC”) component into a checkout data display output;



FIG. 8 shows a logic flow diagram illustrating example aspects of transforming a user checkout request input via a User Purchase Checkout (“UPC”) component into a checkout data display;



FIGS. 9A-B show datagraph diagrams illustrating example aspects of transforming a user virtual wallet access input via a Purchase Transaction Authorization (“PTA”) component into a purchase transaction receipt notification;



FIGS. 10A-B show logic flow diagrams illustrating example aspects of transforming a user virtual wallet access input via a Purchase Transaction Authorization (“PTA”) component into a purchase transaction receipt notification;



FIGS. 11A-B show datagraph diagrams illustrating example aspects of transforming a merchant transaction batch data query via a Purchase Transaction Clearance (“PTC”) component into an updated payment ledger record;



FIGS. 12A-B show logic flow diagrams illustrating example aspects of transforming a merchant transaction batch data query via a Purchase Transaction Clearance (“PTC”) component into an updated payment ledger record;



FIG. 13 shows a user interface diagram illustrating an overview of example features of virtual wallet applications in some embodiments of the EWCP;



FIGS. 14A-K show user interface and logic flow diagrams illustrating example features of virtual wallet applications in a shopping mode, in some embodiments of the EWCP;



FIGS. 15A-F show user interface diagrams illustrating example features of virtual wallet applications in a payment mode, in some embodiments of the EWCP;



FIG. 16 shows a user interface diagram illustrating example features of virtual wallet applications, in a history mode, in some embodiments of the EWCP;



FIGS. 17A-E show user interface diagrams illustrating example features of virtual wallet applications in a snap mode, in some embodiments of the EWCP;



FIG. 18 shows a user interface diagram illustrating example features of virtual wallet applications, in an offers mode, in some embodiments of the EWCP;



FIGS. 19A-B show user interface diagrams illustrating example features of virtual wallet applications, in a security and privacy mode, in some embodiments of the EWCP; and



FIG. 20 shows a block diagram illustrating example aspects of a EWCP controller.





The leading number of each reference number within the drawings indicates the figure in which that reference number is introduced and/or detailed. As such, a detailed discussion of reference number 101 would be found and/or introduced in FIG. 1. Reference number 201 is introduced in FIG. 2, etc.


DETAILED DESCRIPTION

Electronic Wallet Checkout Platform (EWCP)


The ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS (hereinafter “EWCP”) transform customer purchase requests triggering electronic wallet applications, via EWCP components, into electronic purchase confirmation and receipts. A consumer who wants to purchase a product and/or a service from a merchant may go to the merchant's website to engage in a purchase transaction. For example, this may involve using the merchant's website to provide personal information, such as credit card billing address and credit card information, to the merchant to facilitate the purchase transaction. Such online shopping experience may be fraught with security risks and usability problems. The customer's data may be exposed or misused by the merchant during the checkout and/or payment flow. If the merchant stores the customer's personal information, this information may be also vulnerable to security breaches that may happen long after the customer engaged in a purchase transaction. In addition, different checkout and payment implementations provide inconsistent user experience across merchant websites, which may result in customer confusion and unpleasant shopping experience. The EWCP externalizes the checkout and/or payment flow from the web based, merchant driven model. Using the EWCP, the customer may engage in a purchase transaction via a secure platform that may provide a consistent user experience across merchant websites.



FIG. 1 shows a block diagram of an exemplary e-wallet checkout platform usage scenario in one embodiment of the EWCP. In FIG. 1, a customer 102a may wish to purchase a product and/or service 110 from a merchant 104 via a web browser (e.g., at the merchant's website). For example, the customer may be shopping online for an item at the merchant's website, via consumer device 102b. In another example, the customer may be shopping at the merchant's retail location and may purchase an item using a mobile device to scan the item's product identifier, as described in more detail in U.S. provisional patent application Ser. No. 61/467,890 filed Mar. 25, 2011, entitled “In-Person One-Tap Purchasing Apparatuses, Methods and Systems,”, and in U.S. provisional patent application Ser. No. 61/467,969 filed Mar. 25, 2011, entitled “In-Person One-Tap Purchasing Apparatuses, Methods and Systems,” (the entire contents of the aforementioned applications are herein expressly incorporated by reference).


The merchant may provide an indication 115 that the customer may use an e-wallet app (e.g., provided by the EWCP as described with reference to FIGS. 13-19B) to pay for an item. For example, such an indication may take the form of using an EWCP-supported protocol at the checkout webpage. The EWCP may detect that the merchant uses an EWCP-supported protocol (e.g., via a mobile EWCP application described in more detail in FIG. 2), and may prompt the customer to use an EWCP electronic wallet (hereinafter “E-Wallet” or “wallet application”) to facilitate payment. Using the E-Wallet may facilitate payment for the item without revealing the customer's personal information to the merchant. The customer may be asked to provide authentication and/or authorization information to use the E-Wallet. The customer may also provide a selection of a payment method (e.g., a specific credit card) 120. In some embodiments, the customer device providing the E-Wallet may be a separate device from the customer device using which the customer initiated shopping with the merchant.


An EWCP provider 106 may verify authentication and/or authorization and/or payment information. The EWCP may use information regarding the merchant selling the item and/or regarding the item (e.g., obtained via parameter values in a universal resource identifier (URI) link used to access the E-Wallet), to facilitate completion of the purchase transaction. For example, the EWCP may determine the price and/or quantity of each item being purchased, calculate the total amount due from the customer, collect the total amount due and provide appropriate payment (e.g., total amount due minus fees) to the merchant. The EWCP provider may also provide a confirmation to the merchant that payment information was obtained 125 (e.g., via an API call, via an email, and/or the like). In one embodiment, the EWCP provider may provide a receipt (e.g., a confirmation page, a confirmation email, and/or the like) to the customer. For example, this may be a receipt customized for the merchant (e.g., containing merchant branding), a generic default receipt, and/or the like. In another embodiment, the merchant may provide a receipt to the customer 130. For example, the merchant may generate the receipt based on the confirmation information received from the EWCP provider.


In some implementations, the wallet application may allow the user to shop within the inventories of merchants participating in the EWCP. For example, the inventories of the merchants may be provided within the wallet application for the user to make purchases. In some implementations, the wallet application may provide a virtual storefront for the user within the graphical user interface of the virtual wallet application. Thus, the user may be virtually injected into a store of the merchant participating in the EWCP's wallet application.


In some implementations, the wallet application may utilize the location coordinates of the user device (e.g., via GPS, IP address, cellular tower triangulation, etc.) to identify merchants that are in the vicinity of the user's current location. In some implementations, the wallet application may utilize such information to provide information to the user on the inventories of the merchants in the locality, and or may inject the merchant store virtually into the user's wallet application.


In some implementations, the wallet application may provide a shopping assistant. For example, a user may walk into a physical store of a merchant. The user may require assistance in the shopping experience. In some implementations, the wallet application may allow the user to turn on the shop assistant, and a store executive in the merchant store may be able to assist the user via another device. In some embodiments, a user may enter into a store (e.g., a physical brick-and-mortar store, virtual online store via a computing device, etc.) to engage in a shopping experience. The user may have a user device. The user device may have executing thereon a wallet application, including features such as those as described herein. Upon entering the store, the user device may communicate with a store management server. For example, the user device may communicate geographical location coordinates, user login information and/or like check-in information to check in automatically into the store. In some embodiments, the EWCP may inject the user into a virtual wallet store upon check in. For example, the wallet app executing on the user device may provide features as described below to augment the user's in-store shopping experience. In some embodiments, the store management server may inform a customer service representative (“CSR”) of the user's arrival into the store. For example, the CSR may have a CSR device, and an app (“CSR app”) may be executing thereon. For example, the app may include features such as described below in the discussion herein. The CSR app may inform the CSR of the user's entry, including providing information about the user's profile, such as the user's identity, user's prior and recent purchases, the user's spending patterns at the current and/or other merchants, and/or the like. In some embodiments, the store management server may have access to the user's prior purchasing behavior, the user's real-time in-store behavior (e.g., which items' barcode did the user scan using the user device, how many times did the user scan the barcodes, did the user engage in comparison shopping by scanning barcodes of similar types of items, and/or the like), the user's spending patterns (e.g., resolved across time, merchants, stores, geographical locations, etc.), and/or like user profile information. The store management system may utilize this information to provide offers/coupons, recommendations and/or the like to the CSR and/or the user, via the CSR device and/or user device, respectively. In some embodiments, the CSR may assist the user in the shopping experience. For example, the CSR may convey offers, coupons, recommendations, price comparisons, and/or the like, and may perform actions on behalf of the user, such as adding/removing items to the user's physical/virtual cart, applying/removing coupons to the user's purchases, searching for offers, recommendations, providing store maps, or store 3D immersion views, and/or the like. In some embodiments, when the user is ready to checkout, the EWCP may provide a checkout notification to the user's device and/or CSR device. The user may checkout using the user's wallet application executing on the user device, or may utilize a communication mechanism (e.g., near field communication, card swipe, QR code scan, etc.) to provide payment information to the CSR device. Using the payment information, the EWCP may initiate the purchase transaction(s) for the user, and provide an electronic receipt to the user device and/or CSR device. Using the electronic receipt, the user may exit the store with proof of purchase payment.



FIG. 2 shows a screen shot diagram illustrating a mobile EWCP application in one embodiment of the EWCP. As illustrated in screen 201 of FIG. 2, a customer may visit a merchant's website using a mobile device (e.g., a cell phone, a PDA, a tablet, and/or the like). The customer may wish to purchase two 204 Micro SD cards 202 at a price 206 of $3.45 each. The customer may click the “Buy” button 208a to purchase these items. The mobile EWCP application may detect that the merchant's website uses an EWCP-supported protocol (see FIG. 5 for additional details regarding detecting merchant support for an EWCP-supported protocol), and may prompt the customer to use an E-Wallet to facilitate payment. In one embodiment, the E-Wallet may be a part of the mobile EWCP application. In another embodiment, the E-Wallet may be a different mobile EWCP application. In yet another embodiment, the E-Wallet may be a website associated with the EWCP provider, and the customer may be redirected to this website.


In one embodiment, the “Buy” button 208a may facilitate a single click purchase. The “More” button 208b may be used to configure the default payment method to be used upon clicking the “Buy” button 208a (e.g., the customer may select the default payment method). For example, clicking the “More” button 208b may bring up an E-Wallet popup 208c (e.g., a Web 2.0 popup, an HTML popup, a Javascript popup, a Java applet popup, and/or the like) that facilitates selection of the default payment method. In one embodiment, the selections may be set as default for future preferences/transactions and may be synched to other applications and/or devices as default settings for E-Wallet transactions (e.g., as in FIGS. 13-19B). See FIGS. 13-19B for additional details regarding exemplary E-Wallet popup features and/or embodiments. In one embodiment, the E-Wallet may challenge the user with a password login/dialog box prior to displaying the information shown in the E-Wallet popup 208c and/or prior to allowing a single click purchase. In one embodiment, subsequent selections of the “Buy” or “Authorize” button(s) may use these default settings. Upon clicking the “Buy” button 208a, the default payment method (e.g., a specific credit card) may be used instead of prompting the customer to select a wallet and/or a payment method to be used.


In another embodiment, the “Buy” button 208a may trigger the launch of an E-Wallet application and the application may be instantiated. As illustrated in screen 211, upon authentication and/or authorization to use the E-Wallet, the customer may be prompted to select an available wallet. In one embodiment, the customer may select a wallet stored on the mobile device 212 (e.g., stored on the mobile device's memory card, such as on a secure micro SD card). In another embodiment, the customer may select an online wallet 214 (e.g., stored in a database of the EWCP provider and which may be accessed via a Java applet, HTML5 application, Javascript application, and/or the like).


As illustrated in screen 221, the customer may be presented with a choice of payment methods 222a-222d (e.g., credit cards, debit cards, gift cards, and/or the like) available in the wallet selected by the customer. In one embodiment, the available payment methods in the wallet may be presented to the customer. In another embodiment, the merchant may specify criteria (e.g., via parameter values in a URI link used to access the E-Wallet, via a configuration file stored on the EWCP provider's server, and/or the like) for payment methods that are acceptable (e.g., credit cards and the merchant's gift cards) and only the payment methods that satisfy the specified criteria may be presented to the customer. In some embodiments, merchants may also specify (e.g., via parameter values in a URI link used to access the E-Wallet, via a configuration file stored on the EWCP provider's server, and/or the like) rewards, discounts, bonus items, and/or the like associated with using various payment methods. For example, a merchant may specify that using the merchant's gift card gives an additional 2% discount off the price of the order. The customer may also add additional payment methods if desired. For example, the customer may add a new credit card and select it as the payment method. In some embodiments, a merchant may specify (e.g., via parameter values in a URI link used to access the E-Wallet, via a configuration file stored on the EWCP provider's server, and/or the like) that a customer who does not have a preferred payment method (e.g., the merchant's credit card) should be prompted to sign up for and/or add the preferred payment method to the wallet. The merchant may also specify rewards, discounts, bonus items, and/or the like associated with signing up for and/or adding the preferred payment method to the wallet. Upon selecting a payment method (e.g., 222a), the customer may use the “Complete the purchase . . . ” button 224 to submit payment information.


The EWCP provider may analyze payment information provided by the customer and/or information regarding the merchant and/or the item (e.g., obtained via parameter values in a URI link used to access the E-Wallet, via a configuration file stored on the EWCP provider's server, and/or the like) to facilitate the purchase transaction. For example, the EWCP provider may verify payment information, determine the amount to charge the customer, verify that the merchant is authorized to receive payment, and/or the like. As illustrated in screen 231, the EWCP provider may provide a receipt 232 to the customer confirming the purchase transaction. The receipt may include item name 234, quantity purchased 236, item price 238, transaction authorization and/or verification code 240, payment information 242, and/or the like. The EWCP provider may also provide a payment confirmation to the merchant to confirm that the payment has been made.



FIG. 3 shows a data flow diagram for e-wallet checkout in one embodiment of the EWCP. In FIG. 3, a merchant may have initially provided to a web browser executing on client 308, for a customer 302a, a checkout page (e.g., a HTML web page), including an e-wallet launch protocol message, e.g., 300. The customer 302a may send, using the client 308, a customer purchase request 305 to client 308. For example, the customer may send a request to purchase an item from a merchant 304. In one implementation, the user may use a keyboard, a mouse, a touch screen, and/or the like to input the customer purchase request via a merchant's website. In another implementation, the customer may use a camera of the client (e.g., of a cell phone, a PDA, a tablet, and/or the like) to scan the item's product identifier. The client may provide a purchase request 315 to the merchant 304 indicating to the merchant that the customer wants to purchase the item. For example, the client may use a web browser 310 to submit the purchase request to the merchant's website and the purchase request may be in XML format substantially in the following form:

    • <XML>
      • <PurchaseRequest>
        • <ItemName>SD Card</ItemName>
        • <ItemID>ID123I</ItemID>
        • <ItemPrice>$3.45</ItemPrice>
        • <ItemQuantity>2</ItemQuantity>
        • <UserID>ID123U</UserID>
        • <PromotionalCodes>Code123C</PromotionalCodes>
        • <RewardCodes>None</RewardCodes>
      • </PurchaseRequest>
    • </XML>


The merchant may respond with a payment request 320. The payment request may prompt the customer to provide payment information to pay for the item. In some embodiments, the payment request 320 may include an e-wallet launch protocol message. For example, the payment request may be a webpage that uses a protocol string (e.g., a string starting with “ewalletcheckout://”) to indicate that the merchant uses an EWCP-supported protocol. In one embodiment, the protocol string may be detected by an EWCP application 312 (see FIG. 5 for additional details regarding detecting merchant support for an EWCP-supported protocol), and the E-Wallet may be activated in response. In another embodiment, the webpage may detect (e.g., via Javascript) whether an EWCP application 312 is installed on the client and use the protocol string if the EWCP application is installed (and use a non EWCP payment method otherwise). In some embodiments, if the EWCP application is not installed on the client, the merchant's webpage may prompt the customer to install the EWCP application on the client. If the customer chooses to install the EWCP application, an application installation request 322 may be sent by the client to obtain the EWCP application from the EWCP provider 306 via an application installation response 324. For example, the merchant may provide a link to a webpage of the EWCP provider 306, and the customer may follow that link to obtain an installation file for the EWCP application. In another example, the merchant may provide a link to an Apple App Store and/or Android Market distributed application that the customer may follow to obtain the EWCP application.


The client may provide an application payment request 325 to the EWCP provider 306. The application payment request may be used to provide information regarding the merchant, the item, the customer, and/or the like to the EWCP provider to facilitate payment to the merchant. For example, the application payment request may identify the unique ID of the merchant that should receive payment, the unique ID and/or description of the item being purchased, the quantity being purchased, the purchase price, the customer's EWCP login information, client information, and/or the like, and may be in XML format substantially in the following form:

    • <XML>
      • <ApplicationPaymentRequest>
        • <MerchantID>ID456M</Merchant>
        • <ItemName>SD Card</ItemName>
        • <ItemID>ID123I</ItemID>
        • <ItemPrice>$3.45</ItemPrice>
        • <ItemQuantity>2</ItemQuantity>
        • <CustomerID>ID789C</CustomerID>
        • <CustomerPassword>* * * * * *</CustomerPassword>
        • <PromotionalCodes>Code123C</PromotionalCodes>
        • <RewardCodes>None</RewardCodes>
      • </ApplicationPaymentRequest>
    • </XML>


The EWCP provider may provide a payment selection request 330 to the client 308. In alternative embodiments, the merchant 304 may provide the payment selection request 330 to the client 308. The payment selection request may be used to determine the wallet and/or the payment method that the customer may wish to use to pay for the item. For example, the payment selection request may include lists of wallets and/or payment methods (e.g., credit cards, debit cards, gift cards, and/or the like) that the customer may use, and may be in XML format substantially in the following form:














<XML>









<PaymentSelectionRequest>









<Wallet>









<WalletID>ID234W</WalletID>



<PaymentMethods>









<PaymentMethod>Credit Card 1</PaymentMethod>



<PaymentMethod>Credit Card 2</PaymentMethod>



<PaymentMethod>Debit Card 1</PaymentMethod>









</PaymentMethods>









</Wallet>



<Wallet>









<WalletID>ID345W</WalletID>



<PaymentMethods>









<PaymentMethod>Credit Card 3</PaymentMethod>



<PaymentMethod>Credit Card 4</PaymentMethod>



<PaymentMethod>Gift Card 1</PaymentMethod>









</PaymentMethods>









</Wallet>









</PaymentSelectionRequest>







</XML>









In another embodiment, the payment selection request may be a store injection package. For example, the store injection package may use payment request 320 to preselect items provided through the store injection package. In a further example, the merchant may have provided the store injection package along with the payment request 320 to client 308, or may have provided it to the e-wallet checkout platform provider 306 for transmission to the client 308 with the payment selection request 330. The customer may select the desired wallet and/or payment method, and the client may provide a payment selection response 335 to the EWCP provider. For example, the payment selection response may include a payment method selection, a payment method security code, and/or the like, and may be in XML format substantially in the following form:

    • <XML>
      • <PaymentSelectionResponse>
        • <PaymentMethod>Credit Card 1</PaymentMethod>
        • <PaymentMethodSecurityCode>432</PaymentMethodSecurityCode>
      • </PaymentSelectionResponse>
    • </XML>


Upon verifying that the customer's payment information is acceptable, the EWCP provider may provide a payment confirmation 340a to the merchant, and/or 340b to the client. For example, the payment confirmation may include a transaction ID, the transaction date and/or time, transaction status, a transaction authorization and/or verification code, details regarding the purchase, and/or the like, and may be in XML format substantially in the following form:

    • <XML>
      • <PaymentConfirmation>
        • <TransactionID>ID567T</TransactionID>
        • <TransactionDate>Jun. 12, 2011</TransactionDate>
        • <TransactionTime>9:00:00 pm</TransactionTime>
        • <TransactionStatus>0K</TransactionStatus>
        • <AuthorizationCode>ANET10</AuthorizationCode>
        • <ItemName>SD Card</ItemName>
        • <ItemID>ID123I</ItemID>
        • <ItemPrice>$3.45</ItemPrice>
        • <ItemQuantity>2</ItemQuantity>
        • <CustomerID>ID789C</CustomerID>
      • </PaymentConfirmation>
    • </XML>


The EWCP provider may also provide a purchase response 345 to the client. The purchase response may facilitate providing the customer with a receipt (e.g., it may include a transaction authorization code that confirms the transaction and may be included as part of the receipt), may redirect the customer to a webpage (e.g., a merchant provided webpage to which the customer should be redirected upon successful payment), and/or the like, and may be in XML format substantially in the following form:

    • <XML>
      • <PurchaseResponse>
        • <TransactionAuthorizationCode>ANET10</TransactionAuthorizationCode>
        • <RedirectPage>www.merchant.com/redirect_success.html<RedirectPage>
      • </PurchaseResponse>
    • </XML>


The client 308 may output a customer purchase response 350 to the customer 302. The client may output the response using a display, speakers, a printer, and/or the like. For example, the client may display the receipt and/or the redirect webpage to the customer.



FIG. 4 shows a logic flow diagram of an E-Wallet Checkout (EWC) component in one embodiment of the EWCP. In FIG. 4, a user (e.g., a customer) may indicate that the user wants to purchase at item from a merchant at 405. The user may access a merchant site supporting the e-wallet checkout platform provided by the EWCP, e.g., 406. The user may then initiate a checkout procedure at the merchant site, e.g., 407. For example, the user may click a “Buy” button on the merchant's website, take a picture of a barcode identifying the item while shopping in a store, and/or the like. The merchant may request payment for the item from the buyer at 410. For example, the merchant's website may provide a webpage that facilitates payment (e.g., by instructing the user's mobile device to launch an EWCP application upon recognizing an EWCP-supported protocol). In another example, an EWCP application (e.g., used by the user to take a picture of the barcode) may provide a payment page upon recognizing an EWCP-supported barcode.


In one embodiment, the EWCP may already be supported and trusted by the client. In another embodiment, EWCP support may be added to the client upon the user's authorization. A determination may be made at 415 whether the EWCP is supported by the user's client. For example, the merchant's payment request webpage may execute code that queries the client regarding EWCP support, and the code may be written in JavaScript substantially in the following form:

    • //The result of the IF statement indicates whether the device supports EWCP
    • if (navigator.mimeTypes && navigator.mimeTypes[“application/EWCP”])


      If the client does not support EWCP, the merchant's website may prompt the user to add EWCP support 420. For example, the merchant's website may present a webpage to the user. In various embodiments, the webpage may be a webpage with a link that the user may use to add EWCP support, a redirect to a webpage of the EWCP provider, a webpage with a Java applet that provides EWCP support, a Web 2.0 and/or Javascript widget loaded/embedded into the currently viewed webpage, and/or the like. In one embodiment, the user may add EWCP support by installing a browser extension, a plug-in, an add-on, an applet, and/or the like. Such an extension may be used to trigger, launch and instantiate an E-Wallet application. In another embodiment, the user may add EWCP support by installing a mobile EWCP application. Thus, regardless of the medium, location, and/or format the user may enjoy full access to the EWCP and/or E-Wallet.


A determination may be made at 425 whether the user added EWCP support. If the user does not add EWCP support 430, a non-EWCP payment scheme may be used by the merchant if available. If the user has and/or adds EWCP support, the merchant may obtain payment via EWCP at 435. For example, the user may provide payment information to the EWCP provider authorized by the merchant to collect payment. See FIG. 5 for additional details regarding obtaining payment via EWCP.


A determination may be made at 440 whether the payment was successful (e.g., whether the user's credit card was charged successfully). For example, such a determination may be based on a payment confirmation from the EWCP provider (e.g., transaction details may be verified and the TransactionStatus field of the PaymentConfirmation data structure may be examined to determine whether the value of the field is “OK”). If the payment was unsuccessful, the purchase may be denied at 445. For example, the user may be directed to a webpage that informs the user that the payment was unsuccessful and/or provides the user an opportunity to correct payment information and/or choose a different payment method. If the payment was successful, the purchase transaction may be completed at 450. For example, the user may be provided with a receipt and/or redirected to a merchant specified webpage. See FIG. 6 for additional details regarding completing the purchase transaction.



FIG. 5 shows a logic flow diagram of an E-Wallet Checkout Payment Acquisition (EWCPA) component in one embodiment of the EWCP. In FIG. 5, a request to obtain payment via EWCP may be received at 505. For example, an EWCP browser extension may detect that a merchant's webpage is using an EWCP-supported protocol (e.g., by determining existence of a protocol string starting with “ewalletcheckout://”, “specialcheckout://”, “specialwallet://”, and/or the like) to request payment from a user. The appropriate protocol handler may be determined at 510. Such a determination may be made by examining the protocol string. In some embodiments, the protocol handler may parsed from the request. For example, the EWCP may utilize various parsers to parse the protocol handler from the request, including those discussed below in the description with reference to FIG. 20. The EWCP may look for string matches (e.g., using the Perl m//operator) to identify the protocol handlers from the parsed request. In one embodiment, different protocol handlers may be available for different customer types. For example, “ewalletcheckout://” may be handled by a protocol handler available to consumers, while “specialcheckout://” may be handled by a protocol handler available to selected corporate customers. In another embodiment, different protocol handlers may be available for different device types, operating systems, configurations, and/or the like. For example, “ewalletcheckout://” may be handled by a mobile EWCP application, while “specialcheckout://” may be handled by a desktop EWCP application. In some embodiments, the client may support a plurality of protocol handlers, and the protocol handler that is used may be determined based on a ranking of the protocol handlers. In one implementation, this ranking may be based on a configuration file (e.g., which lists the protocol handlers in order of preference) stored on the client, and the client may choose the appropriate protocol handler. In another implementation, the merchant's website may detect (e.g., via Javascript) that the client supports multiple protocol handlers and provide a protocol string based on a ranking specified by the merchant. If a supported protocol handler is found, and the protocol handler is one that is handled by an EWCP application, the client may utilize the protocol handler to instantiate a EWCP application (e.g., an e-wallet application) and pass any parameters to it. For example, the client may first authenticate the user, e.g., 511. For example, the client may challenge the user in a variety of ways. As non-limiting illustrative example, the user may be required to enter login information, answer a challenge question, submit a voice/biometric signature, provide a digital certificate, enter into a video call for verification purposes, and/or the like. If the user is not verified, e.g., 512, option “No,” the client may use an alternative payment scheme if available (see FIG. 4, 440). If the user is verified, e.g., 512, option “Yes,” the client may obtain security credentials (e.g., a hash code, a secure key, etc.), for example, retrieved from the client's memory, to launch the wallet application, and may instantiate the wallet application, e.g., 513.


In some embodiments, the client may determine whether a store injection package is available to inject into the wallet application, e.g., 514a. For example, the merchant and/or e-wallet checkout platform provider may have provided a store injection package to the client, via which the user may engage in additional shopping actions. The determination of whether a store injection package is available to injection into the wallet application may include a determination of whether the user is authenticated or authorized to receive store injection features via the wallet application. If the client determines that a store injection package is available and should be injected into the wallet application, e.g., 514a, option “Yes,” the client may provide the store injection package to the wallet application executing on the client, and the user may engage in shopping actions via the store injected into the wallet application, e.g., 514b (for example, see FIGS. 14H-K). For example, items selected by the user while shopping via the store injection into the wallet application may be added on the items selected by the user during the web-browser-based shopping session with the merchant.


Purchase information may be obtained via the protocol handler at 515. Such information may include the unique ID of the merchant that should receive payment, the unique ID and/or description of the item being purchased, the quantity being purchased, the purchase price, and/or the like. For example, the purchase information may be obtained by parsing (e.g., using the Perl m//operator) the protocol string that may be substantially in the following form:

    • ewalletcheckout://<globallyUniqueId>/<productId>/<productDetail>


      The purchase information may be provided to the EWCP provider via the protocol handler to facilitate a purchase transaction. It is to be understaood that numerous languages, forms, implementations, and expressions are contemplated (e.g., JavaScript™, Adobe® Flash, HTML5, downloadable compiled plug-ins, etc.); however, in one non-limiting example implementation, a Java program substantially in the following form may be used to externalize the checkout and/or payment flow:














import android.app.Activity;


import android.content.Intent;


import android.os.Bundle;


import android.webkit.WebView;


import android.webkit.WebViewClient;


/**


 * An example implementation of approach to externalize the checkout or payment


 * flow from the web based, merchant site driven checkout and


 * payment flow.


*/


public class Example extends Activity {









//this is the payment protocol that we intercept i.e. ewalletcheckout://



//Although, what is shown here is a single protocol, this could be a



//plurality of protocols.



//ex: ewalletcheckout://, specialcheckout://, specialwallet:// etc.



private static final String EWALLET_CHECKOUT = “ewalletcheckout://A?”;



/**



 * May be called when the activity is first created.



 * One approach may be as follows:










 * 1.
Use the web view (browser) of the OS (android in this



 *
example)



 * 2.
Create an intercept mechanism where we get to handle the request for



 *
a resource



 * 3.
When we detect that the protocol is one of the ones we can handle,



 *
launch the wallet. In the case shown below, we launch our wallet in



 *
response to ewalletcheckout://



 * 4.
In addition to the protocol, the specified URI may contain items of



 *
interest (e.g., regarding a transaction), for example:



 *
a. Globally unique identification of the merchant making the sale.



 *
b. Identification of the product being sold



 *
ex: ewalletcheckout://<globallyUniqueId>/<productId>/<productDetail>



 * 5.
When intercepted, the requested URI may be handled to send the



 *
payment request to an entry point that may handle the payment or



 *
switch it out based on the Globally unique ID of the merchant, to



 *
the processing gateway.









 */



@Override



public void onCreate(Bundle savedInstanceState) {









super.onCreate(savedInstanceState);



//create the view where we can display the browser.



WebView wv = new WebView(this);



wv.getSettings( ).setJavaScriptEnabled(true);



//create the OS specific browser.



wv.setWebViewClient(









//create the intercept mechanism.



new WebViewClient( ){









//this may be called when we request a URI.



@Override



public void onLoadResource(WebView view, String url) {









if(url.startsWith(EWALLET_CHECKOUT))



{









//stop the browser from continuing with the request



view.stopLoading( );



//start handling the URI



String modUrl = url.replace(EWALLET_CHECKOUT, “”);



//Launch the handler. In this case this is the



//wallet. Although the decision may be made here



//to launch the specific handler in one



//implementation, this may be abstracted



//out further in other



//implementations to make the handler



//registration and invocation more dynamic



//and update friendly and to handle more protocols.



Intent intent = new Intent(









Example.this,Payment.class);









//pass the URI to the handler,



intent.putExtra(“mydata”,modUrl);



//start the handler.



startActivity(intent);



//In some implementations, we may block here so



//that we can deal with the return



//from the handler. This may be a receipt



//(text, bar code, and/or the like)



//that may be displayed and/or analyzed.









}









}









});



//set the view for display.



setContentView(wv);



//first invocation to load the site.



wv.loadData(“<a href=‘http://.../android/first.html?“+









System.currentTimeMillis( )



+”’>Use Shop Keeper.</a>”,“text/html”,“utf-8”);









}







}









The user's authentication information (e.g., login information for the EWCP) may be obtained. For example, the protocol handler may request authentication information to determine whether to allow the user access to the E-Wallet. A determination may be made at 517 regarding whether the authentication is Near Field Communication (NFC) based. For example, if the user taps the client with an NFC capable credit card, the authentication may be NFC based, otherwise, if the user enters a password, the authentication may be non-NFC based. If the authentication is non-NFC based, the user's non-NFC based authentication information may be obtained at 520. For example, a password associated with the E-Wallet entered by the user may be obtained. If the authentication is NFC based, the user's NFC based authentication information may be obtained at 522. For example, if the user tapped the client with an NFC capable credit card and provided a pin associated with that credit card (e.g., a pin that decrypts a certificate associated with the client that decrypts data from a tag associated with the credit card), information transmitted via NFC and the pin may be obtained. In one implementation, a program substantially in the following form may be used to facilitate NFC based authentication:

    • ############START ISSUER ############
    • //at the issuer side before providing the tag
    • Tag newTag;
    • String cardTrack1=“<track1>”;
    • String cardTrack2=“<track2>”;
    • String pin=generateRandomNCharPin( )
    • cardTrack1=encrypt(pin//key used to encrypt
      • ,cardTrack1);
    • cardTrack2=encrypt(pin//key used to encrypt
      • ,cardTrack2);


//form the data to be pushed on to the tag and write it

    • String finalData=cardTrack1+MARKER+cardTrack2;
    • newTag.write(finalData);
    • //issuer may then provide the PIN via an electronic PIN retrieval system, via mail, and/or
    • the like to the user
    • ###########END ISSUER ############
    • ############START CARD USER ############
    • //Gets the tag and PIN and uses the wallet/application
    • //to activate the tag for the card (e.g., by re-encrypting the tag using a
    • //client certificate encrypted by a PIN.
    • Tag recdTag;
    • String tagData=recdTag.read( )
    • //get the (temporary) PIN provided to the user.
    • String mailedPin=promptUserForPIN( )
    • //split the data based on the marker
    • Byte[ ] cardTrack1; //obtained from tagData above
    • Byte[ ] cardTrack2; //obtained from tagData above
    • //decrypt the data using the temporary PIN
    • cardTrack1=decrypt(mailedPin, cardTrack1);
    • cardTrack2=decrypt(mailedPin, cardTrack2);
    • //get the PIN for device use.
    • String pin=promptUserForPIN( )
    • //decrypt the certificate to use.
    • Certificate cert=getDecryptedCert(pin);
    • //encrypt the data using the public key.
    • cardTrack1=cert.encryptWithPublicKey(
      • cardTrack1);
    • cardTrack2=cert.encryptWithPublicKey(
      • cardTrack2);
    • //form the data to be pushed on to the
    • //tag and write it.
    • Byte [ ] finalData=
      • cardTrack1
      • +MARKER
      • +cardTrack2;
    • //push the data on to the tag.
    • recdTag.write(finalData);
    • //stick the tag on the card.
    • ############END CARD USER ############


A determination may be made at 525 whether the authentication information provided by the user is valid. If the user does not provide valid authentication information, access to the EWCP may be denied at 530. For example, the user may be informed that login information was incorrect, and/or may be provided opportunity to re-enter correct login information. If the user provides valid authentication information, access to the EWCP may be granted. The authentication information may be provided to the EWCP provider via the protocol handler to facilitate the purchase transaction. For example, the login information provided by the user may be sent via SSL to an authentication server of the EWCP provider, which may verify the information.


A determination may be made at 532 whether a default payment method has been specified by the user. For example, the user may have selected a Visa credit card as the default payment method, for all client devices, for this client, and/or the like. In one implementation, this determination may be made by examining a default payment method field of a User Accounts table and/or Client Accounts table via a SQL statement substantially in the following form:

    • SELECT DefaultPaymentMethod
    • FROM UserAccounts
    • WHERE UserAccounts.CustomerID=‘Customer's ID’ AND
      • ClientAccounts.ClientID=‘Client device ID’


        In another implementation, this determination may be by examining a default payment method setting stored on the client device (e.g., in a settings file of the E-Wallet). In yet another embodiment, if the user uses an NFC capable credit card to authenticate, that credit card may be used as the default payment method.


If the default payment method is specified, the EWCP may select the default payment method at 534. Otherwise, a selection of a wallet may be obtained at 535. For example, the user may be prompted to select an available wallet via the E-Wallet. In one embodiment, the user may select a wallet stored on the user's client (e.g., stored on a secure micro SD card of a mobile device). In another embodiment, the user may select an online wallet (e.g., stored in a database of the EWCP provider). A selection of a payment method associated with the selected wallet may be obtained at 540. For example, the payment method may be a credit card, debit card, gift card, and/or the like.


A determination may be made at 545 whether any rewards, discounts, bonus items, and/or the like are associated with using the selected payment method. For example, a merchant may specify that using the merchant's gift card gives the customer 100 merchant reward points with every order. If there is a promotion associated with the selected payment method, adjusted price (e.g., discounted price), rewards points, and/or the like may be calculated in accordance with promotion rules.


The selected payment method may be used to obtain payment for the item being purchased at 555. In one embodiment, the user may not have to enter additional information to use the selected payment method. In another embodiment, the user may have to enter a payment method security code (e.g., a three digit security code on the back of a credit card) to use the selected payment method. The EWCP provider may obtain the selected payment method and verify that the user may pay for the item using the selected payment method. For example, the EWCP provider may verify the payment security code, that the amount does not exceed the user's credit card limit, that the transaction is not suspicious, and/or the like.



FIG. 6 shows a logic flow diagram of an E-Wallet Checkout Purchase Transaction (EWCPT) component in one embodiment of the EWCP. In FIG. 6, a request to complete a purchase transaction may be received at 605. For example, such a request may be received upon verifying that a user successfully paid for an item (e.g., via a callback function). The EWCP provider may provide the merchant with a payment confirmation at 610. The payment confirmation may indicate that the user successfully paid for the item and may include a transaction ID, the transaction date and/or time, transaction status, a transaction authorization and/or verification code, details regarding the purchase, and/or the like. In one embodiment, the payment confirmation may be provided to the merchant upon verifying the payment method. For example, upon verifying that a user successfully paid for an item, the EWCP provider may send an email to the merchant that includes the payment confirmation. In another example, the EWCP provider may access the merchant's webpage with parameters that correspond to the data in the payment confirmation (e.g., http://www.merchant.com/payment_confirm.html?TransactionID=ID567T&AuthorizationCode=ANET10). In another embodiment, a plurality of payment confirmations may be provided to the merchant at specified times (e.g., daily, weekly, monthly, and/or the like). For example, the EWCP provider may store (e.g., in the Transactions table 2019f) payment confirmations for the merchant during a week via a SQL statement substantially in the following form:

    • INSERT INTO ECP_Transactions (TransactionID, AuthorizationCode, Date)
    • VALUES (′ID567T′, ‘ANET10’, ‘Date of the transaction’)


      The EWCP provider may retrieve this data from the database at the end of the week via a SQL statement substantially in the following form:
    • SELECT TransactionID, AuthorizationCode
    • FROM ECP_Transactions
    • WHERE Date=‘Dates for the week’


      and provide the retrieved data to the merchant by sending an email, by accessing the merchant's webpage, and/or the like. In some embodiments, a history of purchase transactions may be stored (e.g., in the Transactions table 2019f) and/or made available to various applications (e.g., EWCP applications, third party applications, and/or the like). For example, an application may access the transaction history and analyze data (e.g., determine the amount spent per month and/or the types of products purchased by the user) for a variety of purposes (e.g., to determine which protocol handlers the user may be allowed to use).


A determination may be made at 615 whether a receipt should be generated. In one embodiment, the EWCP provider may generate the receipt and provide the receipt to the client (e.g., an image may be generated and sent to the client). In another embodiment, the client may obtain applicable information (e.g., transaction authorization code) and generate the receipt via the EWCP application. If the receipt is generated, the receipt may be provided to the user (e.g., via the EWCP application) at 620. A determination may be made at 622 whether to continue the user experience in-wallet (e.g., whether to continue the user's shopping experience in a store injected into the wallet), or to redirect the user back to an online website of the merchant that the user was shopping at via the user's web browser, e.g., 622. For example, the client may prompt the user to provide a one-time/default preference selection on whether to continue within the wallet application or redirect to the client's web browser. If the determination is made to continue in-wallet, the client may (re)load/refresh the store injection package via the wallet application, and the user may continue the in-wallet shopping experience, e.g., 623. A determination may be made at 625 whether a redirect page was specified by the merchant (e.g., by checking a “RedirectPage” field associated with the merchant's database record). For example, the merchant may wish to redirect the user to a “Thank you” webpage upon completion of the purchase transaction. If the merchant specifies a redirect page, the EWCP application may redirect the user's browser to the redirect page at 630. Otherwise, the user may be redirected to a redirect page specified by the EWCP provider 635 (e.g., a generic “Purchase Complete” webpage).



FIG. 7 shows a datagraph diagram illustrating example aspects of transforming a user checkout request input via a User Purchase Checkout (“UPC”) component into a checkout data display. In some embodiments, a user, e.g., 701a, may desire to purchase a product, service, offering, and/or the like (“product”), from a merchant via a merchant online site or in the merchant's store. The user may communicate with a merchant/acquirer (“merchant”) server, e.g., 703a, via a client such as, but not limited to: a personal computer, mobile device, television, point-of-sale terminal, kiosk, ATM, and/or the like (e.g., 702). For example, the user may provide user input, e.g., checkout input 711, into the client indicating the user's desire to purchase the product. In various embodiments, the user input may include, but not be limited to: a single tap (e.g., a one-tap mobile app purchasing embodiment) of a touchscreen interface, keyboard entry, card swipe, activating a RFID/NFC equipped hardware device (e.g., electronic card having multiple accounts, smartphone, tablet, etc.) within the user device, mouse clicks, depressing buttons on a joystick/game console, voice commands, single/multi-touch gestures on a touch-sensitive interface, touching user interface elements on a touch-sensitive display, and/or the like. As an example, a user in a merchant store may scan a product barcode of the product via a barcode scanner at a point-of-sale terminal. As another example, the user may select a product from a webpage catalog on the merchant's website, and add the product to a virtual shopping cart on the merchant's website. The user may then indicate the user's desire to checkout the items in the (virtual) shopping cart. For example, the user may activate a user interface element provided by the client to indicate the user's desire to complete the user purchase checkout. The client may generate a checkout request, e.g., 712, and provide the checkout request, e.g., 713, to the merchant server. For example, the client may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) POST message including the product details for the merchant server in the form of data formatted according to the eXtensible Markup Language (“XML”). An example listing of a checkout request 712, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:

    • POST/checkoutrequest.php HTTP/1.1
    • Host: www.merchant.com
    • Content-Type: Application/XML
    • Content-Length: 667
    • <?XML version=“1.0” encoding=“UTF-8”?>
    • <checkout_request>
      • <session_ID>4NFU4RG94</session_ID>
    • <!--optional parameters-->
      • <timestamp>2011-02-22 15:22:41</timestamp>
      • <user_ID>john.q.public@ gmail.com</user_ID>
      • <device_fingerprint>
        • <device_IP>192.168.23.126</device_IP>
        • <device_MAC>0123.4567.89ab</device_MAC>
        • <device_serial>312456768798765432</device_serial>
        • <device_ECID>00000AEBCDF12345</device_ECID>
        • <device_identifier>jqp_air</device_identifier>
        • <device_UDID>21343e34-14f4-8jn4-7yfe-124578632134</device_UDID>
        • <device_browser>firefox 2.2</device_browser>
        • <device_type>smartphone</device_type>
        • <device_model>HTC Hero</device_model>
        • <OS>Android 2.2</OS>
        • <wallet_app_installed_flag>true</wallet_app_installed_flag>
      • </device_fingerprint>
    • </checkout_request>


In some embodiments, the merchant server may obtain the checkout request from the client, and extract the checkout detail (e.g., XML data) from the checkout request. For example, the merchant server may utilize a parser such as the example parsers described below in the discussion with reference to FIG. 20. Based on parsing the checkout request 712, the merchant server may extract product data (e.g., product identifiers), as well as available PoS client data, from the checkout request. In some embodiments, using the product data, the merchant server may query, e.g., 714, a merchant/acquirer (“merchant”) database, e.g., 703b, to obtain product data, e.g., 715, such as product information, product pricing, sales tax, offers, discounts, rewards, and/or other information to process the purchase transaction and/or provide value-added services for the user. For example, the merchant database may be a relational database responsive to Structured Query Language (“SQL”) commands. The merchant server may execute a hypertext preprocessor (“PHP”) script including SQL commands to query a database table (such as FIG. 20, Products 20191) for product data. An example product data query 714, substantially in the form of PHP/SQL commands, is provided below:

    • <?PHP
    • header(‘Content-Type: text/plain’);
    • mysq1_connect(“254.93.179.112”,$DBserver,$password); //access database server
    • mysq1_select_db(“EWCP_DB.SQL”); //select database table to search
    • //create query
    • $query=“SELECT product_title product_attributes_list product_price tax_info_list related_products_list offers_list discounts_list rewards_list merchants_list merchant_availability_list FROM ProductsTable WHERE product_ID LIKE ‘%’ $prodID”;
    • $result=mysq1_query($query); //perform the search query
    • mysq1_close(“EWCP_DB.SQL”); //close database access
    • ?>


In some embodiments, in response to obtaining the product data, the merchant server may generate, e.g., 716, checkout data to provide for the PoS client. In some embodiments, such checkout data, e.g., 717, may be embodied, in part, in a HyperText Markup Language (“HTML”) page including data for display, such as product detail, product pricing, total pricing, tax information, shipping information, offers, discounts, rewards, value-added service information, etc., and input fields to provide payment information to process the purchase transaction, such as account holder name, account number, billing address, shipping address, tip amount, etc. For example, the checkout data may be a HTML webpage that includes a protocol string (e.g., a string starting with “ewalletcheckout://”) to indicate that the merchant uses an EWCP-supported protocol, and may facilitate triggering the instantiation of an e-wallet checkout application. In some embodiments, the checkout data may be embodied, in part, in a Quick Response (“QR”) code image that the PoS client can display, so that the user may capture the QR code using a user's device to obtain merchant and/or product data for generating a purchase transaction processing request. In some embodiments, a user alert mechanism may be built into the checkout data. For example, the merchant server may embed a URL specific to the transaction into the checkout data. In some embodiments, the alerts URL may further be embedded into optional level 3 data in card authorization requests, such as those discussed further below with reference to FIGS. 9-10. The URL may point to a webpage, data file, executable script, etc., stored on the merchant's server dedicated to the transaction that is the subject of the card authorization request. For example, the object pointed to by the URL may include details on the purchase transaction, e.g., products being purchased, purchase cost, time expiry, status of order processing, and/or the like. Thus, the merchant server may provide to the payment network the details of the transaction by passing the URL of the webpage to the payment network. In some embodiments, the payment network may provide notifications to the user, such as a payment receipt, transaction authorization confirmation message, shipping notification and/or the like. In such messages, the payment network may provide the URL to the user device. The user may navigate to the URL on the user's device to obtain alerts regarding the user's purchase, as well as other information such as offers, coupons, related products, rewards notifications, and/or the like. An example listing of a checkout data 717, substantially in the form of XML-formatted data, is provided below:














<?XML version = “1.0” encoding = “UTF-8”?>


<checkout_data>









<session_ID>4NFU4RG94</session_ID>



<!--optional data-->



<timestamp>2011-02-22 15:22:43</timestamp>



<expiry_lapse>00:00:30</expiry_lapse>



<total_cost>$121.49</total_cost>



<alerts_URL>www.merchant.com/shopcarts.php?sessionID=4NFU4RG94</alerts_URL>



<user_ID>john.q.public@gmail.com</user_ID>



<user_device_fingerprint>









<device_IP>192.168.23.126</device_IP>



<device_MAC>0123.4567.89ab</device_MAC>



<device_serial>312456768798765432</device_serial>



<device_ECID>00000AEBCDF12345</device_ECID>



<device_identifier>jqp_air</device_identifier>



<device_UDID>21343e34-14f4-8jn4-7yfe-124578632134</device_UDID>



<device_browser>firefox 2.2</device_browser>



<device_type>smartphone</device_type>



<device_model>HTC Hero</device_model>



<OS>Android 2.2</OS>



<wallet_app_installed_flag>true</wallet_app_installed_flag>









</user_device_fingerprint>



<purchase_detail>









<cart>









<product>









<merchant_params>









<merchant_id>54TBRELF8</merchant_id>



<merchant_name>BARNES, Inc.</merchant_name>



<merchant_auth_key>TMN45GER98</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>XML for dummies</product_title>



<ISBN>938-2-14-168710-0</ISBN>



<edition>2nd ed.</edition>



<cover>hardbound</cover>









</product_params>



<quantity>2</quantity>



<unit_cost>$14.46</unit_cost>



<coupon_id>AY34567</coupon_id>









<social_flag>ON</social_flag>



<social_message>Look what I bought today!</social_message>



<social_networks>facebook twitter</social_networks>



</product>



<product>









<merchant_params>









<merchant_id>3FBCR4INC</merchant_id>



<merchant_name>Books, Inc.</merchant_name>



<merchant_auth_key>1N484MCP</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>Sophie's World</product_title>



<ISBN>955-2-14-112310-0</ISBN>



<edition>NULL</edition>



<cover>hardbound</cover>









</product_params>



<quantity>1</quantity>



<unit_cost>$34.78</unit_cost>



<coupon_id>null</coupon_id>









<social_flag>OFF</social_flag>



</product>









</cart>



<cart>









<product>









<merchant_params>









<merchant_id>RFH5IB4FT</merchant_id>



<merchant_name>Amzn, Inc.</merchant_name>



<merchant_auth_key>44543DSJFG</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>XML - a primer</product_title>



<ISBN>938-2-14-1436710-0</ISBN>



<edition>2nd ed.</edition>



<cover>hardbound</cover>









</product_params>



<quantity>1</quantity>



<unit_cost>$12.93</unit_cost>



<coupon_id>AY34567</coupon_id>









<social_flag>ON</social_flag>



<social_message>Look what I bought today!</social_message>



<social_networks>facebook twitter</social_networks>



</product>



<product>









<merchant_params>









<merchant_id>3FBCR4INC</merchant_id>



<merchant_name>BestBooks, Inc.</merchant_name>



<merchant_auth_key>1N484MCP</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>Sophie's Choice</product_title>



<ISBN>938-2-14-168710-0</ISBN>



<edition>1st ed.</edition>









</product_params>



<quantity>1</quantity>



<unit_cost>$44.86</unit_cost>



<coupon_id>null</coupon_id>









<social_flag>OFF</social_flag>



</product>









</cart>









</purchase_detail>







<checkout_data>









Upon obtaining the checkout data, e.g., 717, the PoS client may render and display, e.g., 718, the checkout data for the user.



FIG. 8 shows a logic flow diagram illustrating example aspects of transforming a user checkout request input via a User Purchase Checkout (“UPC”) component into a checkout data display. In some embodiments, a user may desire to purchase a product, service, offering, and/or the like (“product”), from a merchant via a merchant online site or in the merchant's store. The user may communicate with a merchant/acquirer (“merchant”) server via a PoS client. For example, the user may provide user input, e.g., 801, into the client indicating the user's desire to purchase the product. The client may generate a checkout request, e.g., 802, and provide the checkout request to the merchant server. In some embodiments, the merchant server may obtain the checkout request from the client, and extract the checkout detail (e.g., XML data) from the checkout request. For example, the merchant server may utilize a parser such as the example parsers described below in the discussion with reference to FIG. 20. Based on parsing the checkout request, the merchant server may extract product data (e.g., product identifiers), as well as available PoS client data, from the checkout request. In some embodiments, using the product data, the merchant server may query, e.g., 803, a merchant/acquirer (“merchant”) database to obtain product data, e.g., 804, such as product information, product pricing, sales tax, offers, discounts, rewards, and/or other information to process the purchase transaction and/or provide value-added services for the user. In some embodiments, in response to obtaining the product data, the merchant server may generate, e.g., 805, checkout data to provide, e.g., 806, for the PoS client. For example, the checkout data may be a HTML webpage that includes a protocol string (e.g., a string starting with “ewalletcheckout://”) to indicate that the merchant uses an EWCP-supported protocol, and may facilitate triggering the instantiation of an e-wallet checkout application Upon obtaining the checkout data, the PoS client may render and display, e.g., 807, the checkout data for the user.



FIGS. 9A-B show datagraph diagrams illustrating example aspects of transforming a user virtual wallet access input via a Purchase Transaction Authorization (“PTA”) component into a purchase transaction receipt notification. With reference to FIG. 9A, in some embodiments, a user, e.g., 901a, may wish to utilize a virtual wallet account to purchase a product, service, offering, and/or the like (“product”), from a merchant via a merchant online site or in the merchant's store. The user may utilize a physical card, or a user wallet device, e.g., 901b, to access the user's virtual wallet account. For example, the user wallet device may be a personal/laptop computer, cellular telephone, smartphone, tablet, eBook reader, netbook, gaming console, and/or the like. The user may provide a wallet access input, e.g., 911 into the user wallet device. In various embodiments, the user input may include, but not be limited to: a single tap (e.g., a one-tap mobile app purchasing embodiment) of a touchscreen interface, keyboard entry, card swipe, activating a RFID/NFC equipped hardware device (e.g., electronic card having multiple accounts, smartphone, tablet, etc.) within the user device, mouse clicks, depressing buttons on a joystick/game console, voice commands, single/multi-touch gestures on a touch-sensitive interface, touching user interface elements on a touch-sensitive display, and/or the like. In some embodiments, the user wallet device may authenticate the user based on the user's wallet access input, instantiate a wallet application (see, e.g., FIGS. 13-19B) upon authenticating the user, and provide virtual wallet features for the user via the wallet application. For example, the user wallet device may utilize the components described above in the description with respect to FIGS. 3-6 to provide e-wallet checkout services for the user via the wallet application.


In some embodiments, upon authenticating the user for access to virtual wallet features, the user wallet device may provide a transaction authorization input, e.g., 914, to a point-of-sale (“PoS”) client, e.g., 902. For example, the user wallet device may communicate with the PoS client via Bluetooth, Wi-Fi, cellular communication, one- or two-way near-field communication (“NFC”), and/or the like. In embodiments where the user utilizes a plastic card instead of the user wallet device, the user may swipe the plastic card at the PoS client to transfer information from the plastic card into the PoS client. For example, the PoS client may obtain, as transaction authorization input 914, track 1 data from the user's plastic card (e.g., credit card, debit card, prepaid card, charge card, etc.), such as the example track 1 data provided below:

    • % B123456789012345{circumflex over ( )}PUBLIC/J.Q.{circumflex over ( )}99011200000000000000**901******?*
    • (wherein ‘123456789012345’ is the card number of ‘J.Q. Public’ and has a CVV number of 901. ‘990112’ is a service code, and *** represents decimal digits which change randomly each time the card is used.)


In embodiments where the user utilizes a user wallet device, the user wallet device may provide payment information to the PoS client, formatted according to a data formatting protocol appropriate to the communication mechanism employed in the communication between the user wallet device and the PoS client. An example listing of transaction authorization input 914, substantially in the form of XML-formatted data, is provided below:

    • <?XML version=“1.0” encoding=“UTF-8”?>
    • <transaction_authorization_input>
      • <payment_data>
        • <account>
          • <charge_priority>1</charge_priority>
          • <charge_ratio>40%</charge_ratio>
          • <account_type>debit</account_type>
          • <value_exchange_symbol>USD</value_exchange_symbol>
          • <account_number>123456789012345</account_number>
          • <account_name>John Q. Public</account_name>
          • <bill_add>987 Green St #456, Chicago, IL 94652</bill_add>
          • <ship_add>987 Green St #456, Chicago, IL 94652</ship_add>
          • <CVV_type>dynamic<CVV_type>
          • <CVV>http://www.paynet.com/dcvv.php?sessionID=4NFU4RG94</CVV>
          • <cloak_flag>ON</cloak_flag>
          • <alert_rules>tar1 tar4 tar12</alert_rules>
          • <mode>NFC</mode>
        • </account>
        • <account>
          • <charge_priority>1</charge_priority>
          • <charge_ratio>60%</charge_ratio>
          • <account_type>rewards</account_type>
          • <value_exchange_symbol>VME</value_exchange_symbol>
          • <account_number>234567890123456</account_number>
          • <account_name>John Q. Public</account_name>
          • <bill_add>987 Green St #456, Chicago, IL 94652</bill_add>
          • <ship_add>987 Green St #456, Chicago, IL 94652</ship_add>
          • <CVV_type>static<CVV_type>
          • <CVV>173</CVV>
          • <cloak_flag>ON</cloak_flag>
          • <alert_rules>tar1 tar4 tar12</alert_rules>
          • <mode>Bluetooth</mode>
        • </account>
        • <account>
          • <charge_priority>2</charge_priority>
          • <charge_ratio>100%</charge_ratio>
          • <account_number>345678901234567</account_number>
          • <account_type>credit</account_type>
          • <value_exchange_symbol>USD</value_exchange_symbol>
          • <account_name>John Q. Public</account_name>
          • <bill_add>987 Green St #456, Chicago, IL 94652</bill_add>
          • <ship_add>987 Green St #456, Chicago, IL 94652</ship_add>
          • <CVV_type>static<CVV_type>
          • <CVV>173</CVV>
          • <cloak_flag>ON</cloak_flag>
          • <alert_rules>tar1 tar4 tar12</alert_rules>
          • <mode>NFC</mode>
        • </account>
      • </payment_data>
      • <!--optional data-->
      • <timestamp>2011-02-22 15:22:43</timestamp>
      • <expiry_lapse>00:00:30</expiry_lapse>
      • <secure_key>0445329070598623487956543322</secure_key>
      • <alerts_track_flag>TRUE</alerts_track_flag>
      • <device_fingerprint>
        • <device_IP>192.168.23.126</device_IP>
        • <device_MAC>0123.4567.89ab</device_MAC>
        • <device_serial>312456768798765432</device_serial>
        • <device_ECID>00000AEBCDF12345</device_ECID>
        • <device_identifier>jqp_air</device_identifier>
        • <device_UDID>21343e34-14f4-8jn4-7yfe-124578632134</device_UDID>
        • <device_browser>firefox 2.2</device_browser>
        • <device_type>smartphone</device_type>
        • <device_model>HTC Hero</device_model>
        • <OS>Android 2.2</OS>
        • <wallet_app_installed_flag>true</wallet_app_installed_flag>
      • </device_fingerprint>
    • </transaction_authorization_input>


In some embodiments, the PoS client may generate a card authorization request, e.g., 915, using the obtained transaction authorization input from the user wallet device, and/or product/checkout data (see, e.g., FIG. 7, 715-717). An example listing of a card authorization request 915-916, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:














POST /authorizationrequests.php HTTP/1.1


Host: www.acquirer.com


Content-Type: Application/XML


Content-Length: 1306


<?XML version = “1.0” encoding = “UTF-8”?>


<card_authorization_request>









<session_ID>4NFU4RG94</order_ID>



<!--optional data-->



<timestamp>2011-02-22 15:22:43</timestamp>



<expiry>00:00:30</expiry>



<alerts_URL>www.merchant.com/shopcarts.php?sessionID=AEBB4356</alerts_URL>



<user_ID>john.q.public@gmail.com</user_ID>



<device_fingerprint>









<device_IP>192.168.23.126</device_IP>



<device_MAC>0123.4567.89ab</device_MAC>



<device_serial>312456768798765432</device_serial>



<device_ECID>00000AEBCDF12345</device_ECID>



<device_identifier>jqp_air</device_identifier>



<device_UDID>21343e34-14f4-8jn4-7yfe-124578632134</device_UDID>



<device_browser>firefox 2.2</device_browser>



<device_type>smartphone</device_type>



<device_model>HTC Hero</device_model>



<OS>Android 2.2</OS>



<wallet_app_installed_flag>true</wallet_app_installed_flag>









</device_fingerprint>



<purchase_details>









<total_cost>$121.49</total_cost>



<cart>









<product>









<merchant_params>









<merchant_id>54TBRELF8</merchant_id>



<merchant_name>BARNES, Inc.</merchant_name>



<merchant_auth_key>TMN45GER98</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>XML for dummies</product_title>



<ISBN>938-2-14-168710-0</ISBN>



<edition>2nd ed.</edition>



<cover>hardbound</cover>









</product_params>



<quantity>2</quantity>



<unit_cost>$14.46</unit_cost>



<coupon_id>AY34567</coupon_id>









<social_flag>ON</social_flag>



<social_message>Look what I bought today!</social_message>



<social_networks>facebook twitter</social_networks>



</product>



<product>









<merchant_params>









<merchant_id>3FBCR4INC</merchant_id>



<merchant_name>Books, Inc.</merchant_name>



<merchant_auth_key>1N484MCP</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>Sophie's World</product_title>



<ISBN>955-2-14-112310-0</ISBN>



<edition>NULL</edition>



<cover>hardbound</cover>









</product_params>



<quantity>1</quantity>



<unit_cost>$34.78</unit_cost>



<coupon_id>null</coupon_id>









<social_flag>OFF</social_flag>



</product>









</cart>



<cart>









<product>









<merchant_params>









<merchant_id>RFH5IB4FT</merchant_id>



<merchant_name>Amzn, Inc.</merchant_name>



<merchant_auth_key>44543DSJFG</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>XML - a primer</product_title>



<ISBN>938-2-14-1436710-0</ISBN>



<edition>2nd ed.</edition>



<cover>hardbound</cover>









</product_params>



<quantity>1</quantity>



<unit_cost>$12.93</unit_cost>



<coupon_id>AY34567</coupon_id>









<social_flag>ON</social_flag>



<social_message>Look what I bought today!</social_message>



<social_networks>facebook twitter</social_networks>



</product>



<product>









<merchant_params>









<merchant_id>3FBCR4INC</merchant_id>



<merchant_name>BestBooks, Inc.</merchant_name>



<merchant_auth_key>1N484MCP</merchant_auth_key>









</merchant_params>



<product_type>book</product_type>



<product_params>









<product_title>Sophie's Choice</product_title>



<ISBN>938-2-14-168710-0</ISBN>



<edition>1st ed.</edition>









</product_params>



<quantity>1</quantity>



<unit_cost>$44.86</unit_cost>



<coupon_id>null</coupon_id>









<social_flag>OFF</social_flag>



</product>









</cart>









</purchase_details>



<account_params>









<account>









<charge_priority>1</charge_priority>



<charge_ratio>40%</charge_ratio>



<account_type>debit</account_type>



<value_exchange_symbol>USD</value_exchange_symbol>



<account_number>123456789012345</account_number>



<account_name>John Q. Public</account_name>



<bill_add>987 Green St #456, Chicago, IL 94652</bill_add>



<ship_add>987 Green St #456, Chicago, IL 94652</ship_add>



<CVV_type>dynamic<CVV_type>



<CVV>http://www.paynet.com/dcvv.php?sessionID=4NFU4RG94</CVV>



<cloak_flag>ON</cloak_flag>



<alert_rules>tar1 tar4 tar12</alert_rules>



<mode>NFC</mode>









</account>



<account>









<charge_priority>1</charge_priority>



<charge_ratio>60%</charge_ratio>



<account_type>rewards</account_type>



<value_exchange_symbol>VME</value_exchange_symbol>



<account_number>234567890123456</account_number>



<account_name>John Q. Public</account_name>



<bill_add>987 Green St #456, Chicago, IL 94652</bill_add>



<ship_add>987 Green St #456, Chicago, IL 94652</ship_add>



<CVV_type>static<CVV_type>



<CVV>173</CVV>



<cloak_flag>ON</cloak_flag>



<alert_rules>tar1 tar4 tar12</alert_rules>



<mode>Bluetooth</mode>









</account>



<account>









<charge_priority>2</charge_priority>



<charge_ratio>100%</charge_ratio>



<account_number>345678901234567</account_number>



<account_type>credit</account_type>



<value_exchange_symbol>USD</value_exchange_symbol>



<account_name>John Q. Public</account_name>



<bill_add>987 Green St #456, Chicago, IL 94652</bill_add>



<ship_add>987 Green St #456, Chicago, IL 94652</ship_add>



<CVV_type>static<CVV_type>



<CVV>173</CVV>



<cloak_flag>ON</cloak_flag>



<alert_rules>tar1 tar4 tar12</alert_rules>



<mode>NFC</mode>









</account>









</account_params>



<shipping_info>









<shipping_adress>#ref-ANON-123-45-678</shipping_address>



<ship_type>expedited</ship_type>



<ship_carrier>FedEx</ship_carrier>



<ship_account>ANON-123-45-678</ship_account>



<tracking_flag>true</tracking_flag>



<sign_flag>false</sign_flag>









</shipping_info>







</card_authorization_request>









In some embodiments, the card authorization request generated by the user device may include a minimum of information required to process the purchase transaction. For example, this may improve the efficiency of communicating the purchase transaction request, and may also advantageously improve the privacy protections provided to the user and/or merchant. For example, in some embodiments, the card authorization request may include at least a session ID for the user's shopping session with the merchant. The session ID may be utilized by any component and/or entity having the appropriate access authority to access a secure site on the merchant server to obtain alerts, reminders, and/or other data about the transaction(s) within that shopping session between the user and the merchant. In some embodiments, the PoS client may provide the generated card authorization request to the merchant server, e.g., 916. The merchant server may forward the card authorization request to a pay gateway server, e.g., 904a, for routing the card authorization request to the appropriate payment network for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the merchant server may query a database, e.g., merchant/acquirer database 903b, for a network address of the payment gateway server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the merchant server may issue PHP/SQL commands to query a database table (such as FIG. 20, Pay Gateways 2019h) for a URL of the pay gateway server. An example payment gateway address query 917, substantially in the form of PHP/SQL commands, is provided below:


<?PHP

    • header(‘Content-Type: text/plain’);
    • mysq1_connect(“254.93.179.112”,$DBserver,$password); //access database server
    • mysq1_select_db(“EWCP_DB.SQL”); //select database table to search
    • //create query
    • $query=“SELECT paygate_id paygate_address paygate_URL paygate_name FROM PayGatewayTable WHERE card_num LIKE ‘%’ $cardnum”;
    • $result=mysq1_query($query); //perform the search query
    • mysq1_close(“EWCP_DB.SQL”); //close database access
    • ?>


In response, the merchant/acquirer database may provide the requested payment gateway address, e.g., 918. The merchant server may forward the card authorization request to the pay gateway server using the provided address, e.g., 919. In some embodiments, upon receiving the card authorization request from the merchant server, the pay gateway server may invoke a component to provide one or more services associated with purchase transaction authorization. For example, the pay gateway server may invoke components for fraud prevention, loyalty and/or rewards, and/or other services for which the user-merchant combination is authorized. The pay gateway server may forward the card authorization request to a pay network server, e.g., 905a, for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the pay gateway server may query a database, e.g., pay gateway database 904b, for a network address of the payment network server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the pay gateway server may issue PHP/SQL commands to query a database table (such as FIG. 20, Pay Gateways 2019h) for a URL of the pay network server. An example payment network address query 921, substantially in the form of PHP/SQL commands, is provided below:

    • <?PHP
    • header(‘Content-Type: text/plain’);
    • mysq1_connect(“254.93.179.112”,$DBserver,$password); //access database server
    • mysq1_select_db(“EWCP_DB.SQL”); //select database table to search
    • create query
    • $query=“SELECT payNET_id payNET_address payNET_URL payNET_name FROM PayGatewayTable WHERE
      • card_num LIKE ‘%’ $cardnum”;
    • $result=mysq1_query($query); //perform the search query
    • mysq1_close(“EWCP_DB.SQL”); //close database access
    • ?>


In response, the payment gateway database may provide the requested payment network address, e.g., 922. The pay gateway server may forward the card authorization request to the pay network server using the provided address, e.g., 923.


With reference to FIG. 9B, in some embodiments, the pay network server may process the transaction so as to transfer funds for the purchase into an account stored on an acquirer of the merchant. For example, the acquirer may be a financial institution maintaining an account of the merchant. For example, the proceeds of transactions processed by the merchant may be deposited into an account maintained by at a server of the acquirer.


In some embodiments, the pay network server may generate a query, e.g., 924, for issuer server(s) corresponding to the user-selected payment options. For example, the user's account may be linked to one or more issuer financial institutions (“issuers”), such as banking institutions, which issued the account(s) for the user. For example, such accounts may include, but not be limited to: credit card, debit card, prepaid card, checking, savings, money market, certificates of deposit, stored (cash) value accounts and/or the like. Issuer server(s), e.g., 906a, of the issuer(s) may maintain details of the user's account(s). In some embodiments, a database, e.g., pay network database 905b, may store details of the issuer server(s) associated with the issuer(s). In some embodiments, the pay network server may query a database, e.g., pay network database 905b, for a network address of the issuer(s) server(s), for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the merchant server may issue PHP/SQL commands to query a database table (such as FIG. 20, Issuers 20190 for network address(es) of the issuer(s) server(s). An example issuer server address(es) query 924, substantially in the form of PHP/SQL commands, is provided below:

    • <?PHP
    • header(‘Content-Type: text/plain’);
    • mysq1_connect(“254.93.179.112”,$DBserver,$password); //access database server
    • mysq1_select_db(“EWCP_DB.SQL”); //select database table to search
    • //create query
    • $query=“SELECT issuer_id issuer_address issuer_URL issuer_name FROM IssuersTable WHERE card_num LIKE
      • ‘%’ $cardnum”;
    • $result=mysq1_query($query); //perform the search query
    • mysq1_close(“EWCP_DB.SQL”); //close database access
    • ?>


In response to obtaining the issuer server query, e.g., 924, the pay network database may provide, e.g., 925, the requested issuer server data to the pay network server. In some embodiments, the pay network server may utilize the issuer server data to generate funds authorization request(s), e.g., 926, for each of the issuer server(s) selected based on the pre-defined payment settings associated with the user's virtual wallet, and/or the user's payment options input, and provide the funds authorization request(s) to the issuer server(s). In some embodiments, the funds authorization request(s) may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. An example listing of a funds authorization request 926, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:

    • POST/fundsauthorizationrequest.php HTTP/1.1
    • Host: www.issuer.com
    • Content-Type: Application/XML
    • Content-Length: 624
    • <?XML version=“1.0” encoding=“UTF-8”?>
    • <funds_authorization_request>
      • <request_ID>VNEI39FK</request_ID>
      • <timestamp>2011-02-22 15:22:44</timestamp>
      • <debit_amount>$72.89</debit_amount>
      • <account_params>
        • <account>
          • <account_type>debit</account_type>
          • <value_exchange_symbol>USD</value_exchange_symbol>
          • <account_number>123456789012345</account_number>
          • <account_name>John Q. Public</account_name>
          • <bill_add>987 Green St #456, Chicago, IL 94652</bill_add>
          • <ship_add>987 Green St #456, Chicago, IL 94652</ship_add>
          • <CVV>1234</CVV>
        • </account>
      • </account_params>
      • <!--optional parameters-->
      • <user_device_fingerprint>
        • <device_IP>192.168.23.126</device_IP>
        • <device_MAC>0123.4567.89ab</device_MAC>
        • <device_serial>312456768798765432</device_serial>
        • <device_ECID>00000AEBCDF12345</device_ECID>
        • <device_identifier>jqp_air</device_identifier>
        • <device_UDID>21343e34-14f4-8jn4-7yfe-124578632134</device_UDID>
        • <device_browser>firefox 2.2</device_browser>
        • <device_type>smartphone</device_type>
        • <device_model>HTC Hero</device_model>
        • <OS>Android 2.2</OS>
        • <wallet_app_installed_flag>true</wallet_app_installed_flag>
      • </user_device_fingerprint>
    • </funds_authorization_request>


In some embodiments, an issuer server may parse the authorization request(s), and based on the request details may query a database, e.g., user profile database 906b, for data associated with an account linked to the user. For example, the merchant server may issue PHP/SQL commands to query a database table (such as FIG. 20, Accounts 2019d) for user account(s) data. An example user account(s) query 927, substantially in the form of PHP/SQL commands, is provided below:

    • <?PHP
    • header(‘Content-Type: text/plain’);
    • mysq1_connect(“254.93.179.112”,$DBserver,$password); //access database server
    • mysq1_select_db(“EWCP_DB.SQL”); //select database table to search
    • //create query
    • $query=“SELECT issuer user_id user_name user_balance account_type FROM AccountsTable WHERE account_num LIKE ‘%’ $accountnum”;
    • $result=mysq1_query($query); //perform the search query
    • mysq1_close(“EWCP_DB.SQL”); //close database access
    • ?>


In some embodiments, on obtaining the user account(s) data, e.g., 928, the issuer server may determine whether the user can pay for the transaction using funds available in the account, 929. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide a funds authorization response, e.g., 930, to the pay network server. For example, the issuer server(s) may provide a HTTP(S) POST message similar to the examples above. In some embodiments, if at least one issuer server determines that the user cannot pay for the transaction using the funds available in the account, the pay network server may request payment options again from the user (e.g., by providing an authorization fail message to the user device and requesting the user device to provide new payment options), and re-attempt authorization for the purchase transaction. In some embodiments, if the number of failed authorization attempts exceeds a threshold, the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client.


In some embodiments, the pay network server may obtain the funds authorization response including a notification of successful authorization, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, e.g., 931, the pay network server may invoke a component to provide value-add services for the user.


In some embodiments, the pay network server may generate a transaction data record from the authorization request and/or authorization response, and store the details of the transaction and authorization relating to the transaction in a transactions database. For example, the pay network server may issue PHP/SQL commands to store the data to a database table (such as FIG. 20, Transactions 2019i). An example transaction store command, substantially in the form of PHP/SQL commands, is provided below:

    • <?PHP
    • header(‘Content-Type: text/plain’);
    • mysq1_connect(“254.92.185.103”,$DBserver,$password); //access database server
    • mysq1_select(“EWCP_DB.SQL”); //select database to append
    • mysq1_query(“INSERT INTO TransactionsTable (PurchasesTable (timestamp, purchase_summary_list, num_products, product_summary, product_quantity, transaction_cost, account_params_list, account_name, account_type, account_num, billing_addres, zipcode, phone, sign, merchant_params_list, merchant_id, merchant_name, merchant_auth_key)
    • VALUES (time( ) $purchase_summary_list, $num_products, $product_summary, $product_quantity, $transaction_cost, $account_params_list, $account_name, $account_type, $account_num, $billing_addres, $zipcode, $phone, $sign, $merchant_params_list, $merchant_id, $merchant_name, $merchant_auth_key)”); //add data to table in database
    • mysq1_close(“EWCP_DB.SQL”); //close connection to database
    • ?>


In some embodiments, the pay network server may forward a transaction authorization response, e.g., 932, to the user wallet device, PoS client, and/or merchant server. The merchant may obtain the transaction authorization response, and determine from it that the user possesses sufficient funds in the card account to conduct the transaction. The merchant server may add a record of the transaction for the user to a batch of transaction data relating to authorized transactions. For example, the merchant may append the XML data pertaining to the user transaction to an XML data file comprising XML data for transactions that have been authorized for various users, e.g., 933, and store the XML data file, e.g., 934, in a database, e.g., merchant database 404. For example, a batch XML data file may be structured similar to the example XML data structure template provided below:

    • <?XML version=“1.0” encoding=“UTF-8”?>
    • <merchant_data>
      • <merchant_id>3FBCR4INC</merchant_id>
      • <merchant_name>Books & Things, Inc.</merchant_name>
      • <merchant_auth_key>1NNF484MCP59CHB27365</merchant_auth_key>
      • <account_number>123456789</account_number>
      • </merchant_data>
      • <transaction_data>
        • <transaction 1>
        • </transaction 1>
        • <transaction 2>
        • </transaction 2>
        • <transaction n>
        • </transaction n>
      • </transaction_data>


In some embodiments, the server may also generate a purchase receipt, e.g., 933, and provide the purchase receipt to the client, e.g., 935. The client may render and display, e.g., 936, the purchase receipt for the user. In some embodiments, the user's wallet device may also provide a notification of successful authorization to the user. For example, the PoS client/user device may render a webpage, electronic message, text/SMS message, buffer a voicemail, emit a ring tone, and/or play an audio message, etc., and provide output including, but not limited to: sounds, music, audio, video, images, tactile feedback, vibration alerts (e.g., on vibration-capable client devices such as a smartphone etc.), and/or the like.



FIGS. 10A-B show logic flow diagrams illustrating example aspects of transforming a user virtual wallet access input via a Purchase Transaction Authorization (“PTA”) component into a purchase transaction receipt notification. With reference to FIG. 10A, in some embodiments, a user may wish to utilize a virtual wallet account to purchase a product, service, offering, and/or the like (“product”), from a merchant via a merchant online site or in the merchant's store. The user may utilize a physical card, or a user wallet device to access the user's virtual wallet account. For example, the user wallet device may be a personal/laptop computer, cellular telephone, smartphone, tablet, eBook reader, netbook, gaming console, and/or the like. The user may provide a wallet access input, e.g., 1001, into the user wallet device. In various embodiments, the user input may include, but not be limited to: a single tap (e.g., a one-tap mobile app purchasing embodiment) of a touchscreen interface, keyboard entry, card swipe, activating a RFID/NFC equipped hardware device (e.g., electronic card having multiple accounts, smartphone, tablet, etc.) within the user device, mouse clicks, depressing buttons on a joystick/game console, voice commands, single/multi-touch gestures on a touch-sensitive interface, touching user interface elements on a touch-sensitive display, and/or the like. In some embodiments, the user wallet device may authenticate the user based on the user's wallet access input, instantiate a wallet application (see, e.g., FIGS. 13-19B) upon authenticating the user, and provide virtual wallet features for the user via the wallet application, e.g., 1002-1003.


In some embodiments, upon authenticating the user for access to virtual wallet features, the user wallet device may provide a transaction authorization input, e.g., 1004, to a point-of-sale (“PoS”) client. For example, the user wallet device may communicate with the PoS client via Bluetooth, Wi-Fi, cellular communication, one- or two-way near-field communication (“NFC”), and/or the like. In embodiments where the user utilizes a plastic card instead of the user wallet device, the user may swipe the plastic card at the PoS client to transfer information from the plastic card into the PoS client. In embodiments where the user utilizes a user wallet device, the user wallet device may provide payment information to the PoS client, formatted according to a data formatting protocol appropriate to the communication mechanism employed in the communication between the user wallet device and the PoS client.


In some embodiments, the PoS client may obtain the transaction authorization input, and parse the input to extract payment information from the transaction authorization input, e.g., 1005. For example, the PoS client may utilize a parser, such as the example parsers provided below in the discussion with reference to FIG. 20. The PoS client may generate a card authorization request, e.g., 1006, using the obtained transaction authorization input from the user wallet device, and/or product/checkout data (see, e.g., FIG. 7, 715-717).


In some embodiments, the PoS client may provide the generated card authorization request to the merchant server. The merchant server may forward the card authorization request to a pay gateway server, for routing the card authorization request to the appropriate payment network for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the merchant server may query a database, e.g., 1008, for a network address of the payment gateway server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. In response, the merchant/acquirer database may provide the requested payment gateway address, e.g., 1010. The merchant server may forward the card authorization request to the pay gateway server using the provided address. In some embodiments, upon receiving the card authorization request from the merchant server, the pay gateway server may invoke a component to provide one or more service associated with purchase transaction authorization, e.g., 1011. For example, the pay gateway server may invoke components for fraud prevention (see e.g., VerifyChat, FIG. 3E), loyalty and/or rewards, and/or other services for which the user-merchant combination is authorized.


The pay gateway server may forward the card authorization request to a pay network server for payment processing, e.g., 1014. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the pay gateway server may query a database, e.g., 1012, for a network address of the payment network server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. In response, the payment gateway database may provide the requested payment network address, e.g., 1013. The pay gateway server may forward the card authorization request to the pay network server using the provided address, e.g., 1014.


With reference to FIG. 10B, in some embodiments, the pay network server may process the transaction so as to transfer funds for the purchase into an account stored on an acquirer of the merchant. For example, the acquirer may be a financial institution maintaining an account of the merchant. For example, the proceeds of transactions processed by the merchant may be deposited into an account maintained by at a server of the acquirer. In some embodiments, the pay network server may generate a query, e.g., 1015, for issuer server(s) corresponding to the user-selected payment options. For example, the user's account may be linked to one or more issuer financial institutions (“issuers”), such as banking institutions, which issued the account(s) for the user. For example, such accounts may include, but not be limited to: credit card, debit card, prepaid card, checking, savings, money market, certificates of deposit, stored (cash) value accounts and/or the like. Issuer server(s) of the issuer(s) may maintain details of the user's account(s). In some embodiments, a database, e.g., a pay network database, may store details of the issuer server(s) associated with the issuer(s). In some embodiments, the pay network server may query a database, e.g., 1015, for a network address of the issuer(s) server(s), for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query.


In response to obtaining the issuer server query, the pay network database may provide, e.g., 1016, the requested issuer server data to the pay network server. In some embodiments, the pay network server may utilize the issuer server data to generate funds authorization request(s), e.g., 1017, for each of the issuer server(s) selected based on the pre-defined payment settings associated with the user's virtual wallet, and/or the user's payment options input, and provide the funds authorization request(s) to the issuer server(s). In some embodiments, the funds authorization request(s) may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. In some embodiments, an issuer server may parse the authorization request(s), e.g., 1018, and based on the request details may query a database, e.g., 1019, for data associated with an account linked to the user.


In some embodiments, on obtaining the user account(s) data, e.g., 1020, the issuer server may determine whether the user can pay for the transaction using funds available in the account, e.g., 1021. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide a funds authorization response, e.g., 1022, to the pay network server. In some embodiments, if at least one issuer server determines that the user cannot pay for the transaction using the funds available in the account, the pay network server may request payment options again from the user (e.g., by providing an authorization fail message to the user device and requesting the user device to provide new payment options), and re-attempt authorization for the purchase transaction. In some embodiments, if the number of failed authorization attempts exceeds a threshold, the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client.


In some embodiments, the pay network server may obtain the funds authorization response including a notification of successful authorization, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, e.g., 1023, the pay network server may invoke a component to provide value-add services for the user, e.g., 1023.


In some embodiments, the pay network server may forward a transaction authorization response to the user wallet device, PoS client, and/or merchant server. The merchant may parse, e.g., 1024, the transaction authorization response, and determine from it that the user possesses sufficient funds in the card account to conduct the transaction, e.g., 1025, option“Yes.” The merchant server may add a record of the transaction for the user to a batch of transaction data relating to authorized transactions. For example, the merchant may append the XML data pertaining to the user transaction to an XML data file comprising XML data for transactions that have been authorized for various users, e.g., 1026, and store the XML data file, e.g., 1027, in a database. In some embodiments, the server may also generate a purchase receipt, e.g., 1028, and provide the purchase receipt to the client. The client may render and display, e.g., 1029, the purchase receipt for the user. In some embodiments, the user's wallet device may also provide a notification of successful authorization to the user. For example, the PoS client/user device may render a webpage, electronic message, text/SMS message, buffer a voicemail, emit a ring tone, and/or play an audio message, etc., and provide output including, but not limited to: sounds, music, audio, video, images, tactile feedback, vibration alerts (e.g., on vibration-capable client devices such as a smartphone etc.), and/or the like.



FIGS. 11A-B show data flow diagrams illustrating example aspects of transforming a merchant transaction batch data query via a Purchase Transaction Clearance (“PTC”) component into an updated payment ledger record. With reference to FIG. 11A, in some embodiments, a merchant server, e.g., 1103a, may initiate clearance of a batch of authorized transactions. For example, the merchant server may generate a batch data request, e.g., 1111, and provide the request, to a merchant database, e.g., 1103b. For example, the merchant server may utilize PHP/SQL commands similar to the examples provided above to query a relational database. In response to the batch data request, the database may provide the requested batch data, e.g., 1112. The server may generate a batch clearance request, e.g., 1113, using the batch data obtained from the database, and provide, e.g., 1114, the batch clearance request to an acquirer server, e.g., 1107a. For example, the merchant server may provide a HTTP(S) POST message including XML-formatted batch data in the message body for the acquirer server. The acquirer server may generate, e.g., 1115, a batch payment request using the obtained batch clearance request, and provide, e.g., 1118, the batch payment request to the pay network server, e.g., 1105a. The pay network server may parse the batch payment request, and extract the transaction data for each transaction stored in the batch payment request, e.g., 1119. The pay network server may store the transaction data, e.g., 1120, for each transaction in a database, e.g., pay network database 1105b. In some embodiments, the pay network server may invoke a component to provide value-add analytics services based on analysis of the transactions of the merchant for whom the EWCP is clearing purchase transactions. Thus, in some embodiments, the pay network server may provide analytics-based value-added services for the merchant and/or the merchant's users.


With reference to FIG. 11B, in some embodiments, for each extracted transaction, the pay network server may query, e.g., 1123, a database, e.g., pay network database 1105b, for an address of an issuer server. For example, the pay network server may utilize PHP/SQL commands similar to the examples provided above. The pay network server may generate an individual payment request, e.g., 1125, for each transaction for which it has extracted transaction data, and provide the individual payment request, e.g., 1125, to the issuer server, e.g., 1106a. For example, the pay network server may provide an individual payment request to the issuer server(s) as a HTTP(S) POST message including XML-formatted data. An example listing of an individual payment request 1125, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:

    • POST/paymentrequest.php HTTP/1.1
    • Host: www.issuer.com
    • Content-Type: Application/XML
    • Content-Length: 788
    • <?XML version=“1.0” encoding=“UTF-8”?>
    • <pay_request>
      • <request_ID>CNI4ICNW2</request_ID>
      • <timestamp>2011-02-22 17:00:01</timestamp>
      • <pay_amount>$72.89</pay_amount>
      • <account_params>
        • <account>
          • <account_type>debit</account_type>
          • <value_exchange_symbol>USD</value_exchange_symbol>
          • <account_number>123456789012345</account_number>
          • <account_name>John Q. Public</account_name>
          • <bill_add>987 Green St #456, Chicago, IL 94652</bill_add>
          • <ship_add>987 Green St #456, Chicago, IL 94652</ship_add>
          • <CVV>1234</CVV>
        • </account>
      • </account_params>
    • </pay_request>


In some embodiments, the issuer server may generate a payment command, e.g., 1127. For example, the issuer server may issue a command to deduct funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 1127, to a database storing the user's account information, e.g., user profile database 1106b. The issuer server may provide an individual payment confirmation, e.g., 1128, to the pay network server, which may forward, e.g., 1129, the funds transfer message to the acquirer server. An example listing of an individual payment confirmation 1128, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:

    • POST/clearance.php HTTP/1.1
    • Host: www.acquirer.com
    • Content-Type: Application/XML
    • Content-Length: 206
    • <?XML version=“1.0” encoding=“UTF-8”?>
    • <deposit_ack>
      • <request_ID>CNI4ICNW2</request_ID>
      • <clear_flag>true</clear_flag>
      • <timestamp>2011-02-22 17:00:02</timestamp>
      • <deposit_amount>$72.89</deposit_amount>
    • </deposit_ack>


In some embodiments, the acquirer server may parse the individual payment confirmation, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant. For example, the acquirer server may query, e.g. 1130, an acquirer database 1107b for payment ledger and/or merchant account data, e.g., 1131. The acquirer server may utilize payment ledger and/or merchant account data from the acquirer database, along with the individual payment confirmation, to generate updated payment ledger and/or merchant account data, e.g., 1132. The acquirer server may then store, e.g., 1133, the updated payment ledger and/or merchant account data to the acquire database.



FIGS. 12A-B show logic flow diagrams illustrating example aspects of transforming a merchant transaction batch data query via a Purchase Transaction Clearance (“PTC”) component into an updated payment ledger record. With reference to FIG. 12A, in some embodiments, a merchant server may initiate clearance of a batch of authorized transactions. For example, the merchant server may generate a batch data request, e.g., 1201, and provide the request to a merchant database. In response to the batch data request, the database may provide the requested batch data, e.g., 1202. The server may generate a batch clearance request, e.g., 1203, using the batch data obtained from the database, and provide the batch clearance request to an acquirer server. The acquirer server may parse, e.g., 1204, the obtained batch clearance request, and generate, e.g., 1207, a batch payment request using the obtained batch clearance request to provide, the batch payment request to a pay network server. For example, the acquirer server may query, e.g., 1205, an acquirer database for an address of a payment network server, and utilize the obtained address, e.g., 1206, to forward the generated batch payment request to the pay network server.


The pay network server may parse the batch payment request obtained from the acquirer server, and extract the transaction data for each transaction stored in the batch payment request, e.g., 1208. The pay network server may store the transaction data, e.g., 1209, for each transaction in a pay network database. In some embodiments, the pay network server may invoke a component, e.g., 1210, to provide analytics based on the transactions of the merchant for whom purchase transaction are being cleared.


With reference to FIG. 12B, in some embodiments, for each extracted transaction, the pay network server may query, e.g., 1211, a pay network database for an address of an issuer server. The pay network server may generate an individual payment request, e.g., 1213, for each transaction for which it has extracted transaction data, and provide the individual payment request to the issuer server. In some embodiments, the issuer server may parse the individual payment request, e.g., 1214, and generate a payment command, e.g., 1215, based on the parsed individual payment request. For example, the issuer server may issue a command to deduct funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 1215, to a database storing the user's account information, e.g., a user profile database. The issuer server may provide an individual payment confirmation, e.g., 1217, to the pay network server, which may forward, e.g., 1218, the individual payment confirmation to the acquirer server.


In some embodiments, the acquirer server may parse the individual payment confirmation, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant. For example, the acquirer server may query, e.g. 1219, an acquirer database for payment ledger and/or merchant account data, e.g., 1220. The acquirer server may utilize payment ledger and/or merchant account data from the acquirer database, along with the individual payment confirmation, to generate updated payment ledger and/or merchant account data, e.g., 1221. The acquirer server may then store, e.g., 1222, the updated payment ledger and/or merchant account data to the acquire database.



FIG. 13 shows a user interface diagram illustrating an overview of example features of virtual wallet applications in some embodiments of the EWCP. FIG. 13 shows an illustration of various exemplary features of a virtual wallet mobile application 1300. Some of the features displayed include a wallet 1301, social integration via TWITTER, FACEBOOK, etc., offers and loyalty 1303, snap mobile purchase 1304, alerts 1305 and security, setting and analytics 1396. These features are explored in further detail below.



FIGS. 14A-K show user interface and logic flow diagrams illustrating example features of virtual wallet applications in a shopping mode, in some embodiments of the EWCP. With reference to FIG. 14A, some embodiments of the virtual wallet mobile app facilitate and greatly enhance the shopping experience of consumers. A variety of shopping modes, as shown in FIG. 14A, may be available for a consumer to peruse. In one implementation, for example, a user may launch the shopping mode by selecting the shop icon 1410 at the bottom of the user interface. A user may type in an item in the search field 1412 to search and/or add an item to a cart 1411. A user may also use a voice activated shopping mode by saying the name or description of an item to be searched and/or added to the cart into a microphone 1413. In a further implementation, a user may also select other shopping options 1414 such as current items 1415, bills 1416, address book 1417, merchants 1418 and local proximity 1419.


In one embodiment, for example, a user may select the option current items 1415, as shown in the left most user interface of FIG. 14A. When the current items 1415 option is selected, the middle user interface may be displayed. As shown, the middle user interface may provide a current list of items 1415a-h in a user's shopping cart 1411. A user may select an item, for example item 1415a, to view product description 1415j of the selected item and/or other items from the same merchant. The price and total payable information may also be displayed, along with a QR code 1415k that captures the information necessary to effect a snap mobile purchase transaction.


With reference to FIG. 14B, in another embodiment, a user may select the bills 1416 option. Upon selecting the bills 1416 option, the user interface may display a list of bills and/or receipts 1416a-h from one or more merchants. Next to each of the bills, additional information such as date of visit, whether items from multiple stores are present, last bill payment date, auto-payment, number of items, and/or the like may be displayed. In one example, the wallet shop bill 1416a dated Jan. 20, 2011 may be selected. The wallet shop bill selection may display a user interface that provides a variety of information regarding the selected bill. For example, the user interface may display a list of items 1416k purchased, <<1416i>>, a total number of items and the corresponding value. For example, 7 items worth $102.54 were in the selected wallet shop bill. A user may now select any of the items and select buy again to add purchase the items. The user may also refresh offers 1416j to clear any invalid offers from last time and/or search for new offers that may be applicable for the current purchase. As shown in FIG. 14B, a user may select two items for repeat purchase. Upon addition, a message 14161 may be displayed to confirm the addition of the two items, which makes the total number of items in the cart 14.


With reference to FIG. 14C, in yet another embodiment, a user may select the address book option 1417 to view the address book 1417a which includes a list of contacts 1417b and make any money transfers or payments. In one embodiment, the address book may identify each contact using their names and available and/or preferred modes of payment. For example, a contact Amanda G. may be paid via social pay (e.g., via FACEBOOK) as indicated by the icon 1417c. In another example, money may be transferred to Brian S. via QR code as indicated by the QR code icon 1417d. In yet another example, Charles B. may accept payment via near field communication 1417e, Bluetooth 1417f and email 1417g. Payment may also be made via USB 1417h (e.g., by physically connecting two mobile devices) as well as other social channels such as TWITTER.


In one implementation, a user may select Joe P. for payment. Joe P., as shown in the user interface, has an email icon 1417g next to his name indicating that Joe P. accepts payment via email. When his name is selected, the user interface may display his contact information such as email, phone, etc. If a user wishes to make a payment to Joe P. by a method other than email, the user may add another transfer mode 1417j to his contact information and make a payment transfer. With reference to FIG. 14D, the user may be provided with a screen 1417k where the user can enter an amount to send Joe, as well as add other text to provide Joe with context for the payment transaction 1417l. The user can choose modes (e.g., SMS, email, social networking) via which Joe may be contacted via graphical user interface elements, 1417m. As the user types, the text entered may be provided for review within a GUI element 1417n. When the user has completed entering in the necessary information, the user can press the send button 1417o to send the social message to Joe. If Joe also has a virtual wallet application, Joe may be able to review 1417p social pay message within the app, or directly at the website of the social network (e.g., for Twitter™, Facebook®, etc.). Messages may be aggregated from the various social networks and other sources (e.g., SMS, email). The method of redemption appropriate for each messaging mode may be indicated along with the social pay message. In the illustration in FIG. 14D, the SMS 1417q Joe received indicates that Joe can redeem the $5 obtained via SMS by replying to the SMS and entering the hash tag value ‘#1234’. In the same illustration, Joe has also received a message 1417r via Facebook®, which includes a URL link that Joe can activate to initiate redemption of the $25 payment.


With reference to FIG. 14E, in some other embodiments, a user may select merchants 1418 from the list of options in the shopping mode to view a select list of merchants 1418a-e. In one implementation, the merchants in the list may be affiliated to the wallet, or have affinity relationship with the wallet. In another implementation, the merchants may include a list of merchants meeting a user-defined or other criteria. For example, the list may be one that is curated by the user, merchants where the user most frequently shops or spends more than an x amount of sum or shopped for three consecutive months, and/or the like. In one implementation, the user may further select one of the merchants, Amazon 1418a for example. The user may then navigate through the merchant's listings to find items of interest such as 1418f-j. Directly through the wallet and without visiting the merchant site from a separate page, the user may make a selection of an item 1418j from the catalog of Amazon 1418a. As shown in the right most user interface of FIG. 14D, the selected item may then be added to cart. The message 1418k indicates that the selected item has been added to the cart, and updated number of items in the cart is now 13.


With reference to FIG. 14F, in one embodiment, there may be a local proximity option 1419 which may be selected by a user to view a list of merchants that are geographically in close proximity to the user. For example, the list of merchants 1419a-e may be the merchants that are located close to the user. In one implementation, the mobile application may further identify when the user in a store based on the user's location. For example, position icon 1419d may be displayed next to a store (e.g., Walgreens) when the user is in close proximity to the store. In one implementation, the mobile application may refresh its location periodically in case the user moved away from the store (e.g., Walgreens). In a further implementation, the user may navigate the offerings of the selected Walgreens store through the mobile application. For example, the user may navigate, using the mobile application, to items 1419f-j available on aisle 5 of Walgreens. In one implementation, the user may select corn 1419i from his or her mobile application to add to cart 1419k.


With reference to FIG. 14G, in another embodiment, the local proximity option 1419 may include a store map and a real time map features among others. For example, upon selecting the Walgreens store, the user may launch an aisle map 14191 which displays a map 1419m showing the organization of the store and the position of the user (indicated by a yellow circle). In one implementation, the user may easily configure the map to add one or more other users (e.g., user's kids) to share each other's location within the store. In another implementation, the user may have the option to launch a “store view” similar to street views in maps. The store view 1419n may display images/video of the user's surrounding. For example, if the user is about to enter aisle 5, the store view map may show the view of aisle 5. Further the user may manipulate the orientation of the map using the navigation tool 14190 to move the store view forwards, backwards, right, left as well clockwise and counterclockwise rotation.



FIGS. 14H-K show user interface and logic flow diagrams illustrating example aspects of virtual store injection into a virtual wallet application in some embodiments of the EWCP. In some implementations, the virtual wallet application may presents screens 1420 and 1430, respectively, as depicted in FIG. 14H. In FIG. 14H, 1420, the virtual wallet application displays a list of merchants participating in the virtual wallet of the EWCP, e.g., 601-605. Similarly, in FIG. 14H, 1430, the virtual wallet application displays a list of merchants participating in the virtual wallet of the EWCP and at or nearby the approximate location of the user the user. The user may click on any of the merchants listed in the two screens 1420 and 1430, to be injected into the store inventory of the merchant. Upon injection, the user may be presented with a screen such as 1440. In some implementations, the virtual wallet application may be able to store, maintain and manage a plurality of shopping carts and/or wishlists for a user. The carts may be purely virtual or they may represent the contents of a physical cart in a merchant store. The user may activate any of the carts listed (e.g., 1440) to view the items currently stored in a cart (e.g., 1441-1446). In some implementations, the virtual wallet application may also provide wishlists, e.g., tech wishlist, with items that the user desires to be gifted. In some implementations, the virtual wallet may allow the user to quickly change carts or wishlists from another cart or wishlist, using a pop-up menu.


With reference to FIG. 14I, in some embodiments, the user may be injected into a virtual reality 2D/3D storefront of the merchant, e.g., 1447. For example, the user may be presented with a plan map view of the store 1448. In some map views, the user may provided with the user's location (e.g., using GPS, or if not available, then using a coarse approximation using a cellular signal). In some implementations, the locations of the user's prior and current purchases may be provided for the user, if the user wishes (see 1449, the user can turn the indications off, in some implementations). In some implementations, the user may be provided with a 3D aisle view of an aisle within the virtual storefront. The user may point the view direction(s) at any of the objects to obtain virtual tools to obtain items from off the “virtual shelf,” and place them in the user's virtual cart. The screen at 1450 shows an augmented reality view of an aisle, where user may see pins of items suggested by a concierge, or that were bookmarked in their cart/wishlist highlighted through a live video view 1453. In some embodiments, the color of a pin depicted in the augmented reality view may be indicative of an attribute of the suggestion, e.g., a discount offer, a warning not to buy, a prior purchase, etc. In still further embodiments, a color of a 3D viewer window may indicate additional attributes such as, without limitation, whether the product was recommended by the user's social graph, the product's rating (e.g., according to experts, the user's friends, Internet users, etc.), and/or the like.


In another view, a virtual store aisle view (e.g., akin to a Google map Street View) may be navigated 1451 when the consumer is not at the store, but would like to look for product; the directional control 1451 allows for navigation up and down the aisle, and rotation and views of items at the merchant location. Additionally, consumers may tap items in the shelves and create a new product pin, which may then be added 1452 to a cart or wishlist for further transacting.



FIG. 14J shows a logic flow diagram illustrating example aspects of virtual store injection into a virtual wallet application in some embodiments of the EWCP, e.g., a Virtual Wallet Store Injection (“VWSI”) component. In some embodiments, a user may provide a user input into a user device executing a virtual wallet application, e.g., 1461. The user device (“client”) may obtain the user input, e.g., 1462. In various implementations, the user input may include, but not be limited to: keyboard entry, card swipe, activating a RFID/NFC enabled hardware device (e.g., electronic card having multiple accounts, smartphone, tablet, etc.), mouse clicks, depressing buttons on a joystick/game console, voice commands, single/multi-touch gestures on a touch-sensitive interface, touching user interface elements on a touch-sensitive display, and/or the like. The client may determine the type of user input, e.g., 1463. For example, the client may determine whether the user input is one that requests that the a virtual store of merchant(s) be injected into the virtual wallet application. If the user input constitutes a store injection request, e.g., 1464, option “Yes,” the client may generate a store injection request message, e.g., 1465. For example, the client may provide a store injection request message to a server as a HTTP(S) POST message including XML-formatted data. An example listing of a store injection request message, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:

    • POST/storeinjectionrequest.php HTTP/1.1
    • Host: www.merchant.com
    • Content-Type: Application/XML
    • Content-Length: 453
    • <?XML version=“1.0” encoding=“UTF-8”?>
    • <store_injection_request>
      • <session_ID>ANAv483</session_ID>
      • <timestamp>2052-01-01 12:12:12</timestamp>
      • <user_id>john.q.public</user_id>
      • <injection_data_request>
        • <type>NEW STORE REQUEST</type>
        • <merchant_id>JKHVHCGV456</merchant_id>
        • <store_id>1234</store_id>
        • <injection_point>ENTRY</injection_point>
        • <augmented_reality_flag>ON</augmented_reality_flag>
        • <view_type>street view</view_type>
        • <alt_view_type>map view</alt_view_type>
      • </injection_data_request>


In some embodiments, the server may obtain the store injection request from the client, and may parse the message, e.g., 1466. For example, the client may utilize a parser such as the example parsers discussed below in the description with reference to FIG. 20. The client may extract the request parameters from the client's message and generate a query for the requested store injection data, e.g., 1467. Examples of store injection data include, without limitation: product information, product images, product animations, videos, media content, animations, store wireframes, street view data, map data, lists of products (e.g., XML data), URLs pointing to other store injection data, augmented reality data, executable script (e.g., JavaScript™, Adobe Flash® object, .bundle files, HTML5 code, etc.), and/or the like. For example, the server may issue PHP/SQL commands to query a database table (such as FIG. 20, Shop Sessions 2019i) for store injection data. An example store injection data query command, substantially in the form of PHP/SQL commands, is provided below:

    • <?PHP
    • header(‘Content-Type: text/plain’);
    • mysq1_connect(“254.93.179.112”,$DBserver,$password); //access database server
    • mysq1_select_db(“EWCP_DB.SQL”); //select database table to search
    • //create query
    • $query=“SELECT product_information, product_images, product_animations, videos, media_content, animations, store_wireframes, street_view_data, map_data, product_list, pointer_URL_list, augmented_reality_data, executable_script_list FROM ShopSessionTable WHERE session_id LIKE ‘%’ $sessionid”;
    • $result=mysq1_query($query); //perform the search query
    • mysq1_close(“EWCP_DB.SQL”); //close database access
    • ?>


In some embodiments, in response to the query, a database of the server may provide the data requested by the server, e.g., 1468. Using the obtained data, the server may generate a store injection response message, e.g., 1469. For example, the server may provide a store injection response message to the client as a HTTP(S) POST message including XML-formatted data. An example listing of a store injection response message, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:














POST /storeinjectionresponse.php HTTP/1.1


Host: www.client.com


Content-Type: Application/XML


Content-Length: 1777


<?XML version = “1.0” encoding = “UTF-8”?>


<store_injection_response>









<session_ID>ANAv483</session_ID>



<timestamp>2052-01-01 12:12:15</timestamp>



<user_id>john.q.public</user_id>



<merchant_id>JKHVHCGV456</merchant_id>



<store_id>1234</store_id>



<injection_point>ENTRY</injection_point>



<augmented_reality_flag>ON</augmented_reality_flag>



<view_type>street view</view_type>



<alt_view_type>map view</alt_view_type>



<inventory_data>









<categories>









<books>









...



<product_params>









<product_type>Self Help</product_type>



<product_title>XML for dummies</product_title>



<ISBN>938-2-14-168710-0</ISBN>



<edition>2nd ed.</edition>



<cover>hardbound</cover>



<price>$59</price>



<inventory>70</ inventory>









</product_params>



...









</books>



...



<electronics>









<vendors>









...



<Apple>









...



<product_params>









<product_type>tablet</product_type>



<product_name>iPad</product_name>



<serialno>12345678</ serialno >



<modelno>12345</modelno>



<description>64GB, 4G</description>



<price>$829</price>



<inventory>7</ inventory>









</product_params>



...









</Apple>



...









</electronics>









</categories>



<products>









...



<product_params>









<publisher_params>









<publisher_id>54TBRELF8</publisher_id>



<publisher_name>McGraw-Hill,









Inc.</publisher_name>









</publisher_params>



<product_type>book</product_type>



<product_params>









<product_title>XML for dummies</product_title>



<ISBN>938-2-14-168710-0</ISBN>



<edition>2nd ed.</edition>



<cover>hardbound</cover>









</product_params>



<inventory_level>2</inventory_level>



<unit_cost>$14.46</unit_cost>



<coupon_id>AY34567</coupon_id>









</product_params>



...



<product_params>









<product_id>HJKFG345</product_id>



<product_name>Philips Sonicare</product_name>



<vendor_name>Philips, Inc.</vendor_name>



<model>EH57</model>



<product_type>Toothbrush</product_type>



<inventory_level>12</inventory_level>



<unit_cost>$34.78</unit_cost>



<coupon_id>null</coupon_id>









</product_params>



...









</products>



...









</inventory_data>



<store_injection_enhanced_interface_data>









<floorplan_URL>www.inject.com?id= ANAv483&type=img</floorplan_URL>



<UI_script_URL>www.inject.com?id= ANAv483&type=script</UI_script_URL>



<ShopAssistant_UIbundle_url>www.inject.com?id=









ANAv483&type=bundle</ShopAssistant_UIbundle_url>



<AugmentedRealityFloorplanCartPinOverlayUI_html5_url>www.inject.com?id=



ANAv483&type=html5</AugmentedRealityFloorplanCartPinOverlayUI_html5_url>









<InteractiveStore_flash_url>www.inject.com?id=









ANAv483&type=flash</InteractiveStore_flash_url>



</store_injection_enhanced_interface_data>







</store_injection_response>









In some embodiments, the client may obtain the store injection response message, and parse the message, e.g., 1470. The client may render a visualization of the virtual store using the extracted store injection data, e.g., 1471, and display the rendered visualization for the user via a display device of the client, e.g., 1472.


With reference to FIG. 14K, in some embodiments, the user may provide a user input into the virtual store visualization generated by the client, e.g., 1481. The client may obtain the user input, e.g., 1482, and may determine the type of input provided by the user into the client, e.g., 1483. If the user input represents a card addition request, e.g., 1484, option “Yes,” the client may identify a product that the user desires to add to a shopping cart, e.g., 1485, and may add the user-selected product to a virtual shopping cart or wishlist, e.g., 1486. If the user input represents a store navigation request (e.g., walking through the aisle within a virtual store), e.g., 1487, option “Yes,” the client may identify the store navigation action requested by the user, e.g., 1488, and may generate a store injection request message for the server to process the user's store navigation request (see, e.g., 1465-1472). If the user input represents a checkout request, e.g., 1489, option “Yes,” the client may generate a card authorization request, e.g., 1490, as a trigger for a purchase transaction, and may provide the card authorization request to a purchase transaction authorization component such as the example PTA component discussed in the description with reference to FIG. 10A.



FIGS. 15A-F show user interface diagrams illustrating example features of virtual wallet applications in a payment mode, in some embodiments of the EWCP. With reference to FIG. 15A, in one embodiment, the wallet mobile application may provide a user with a number of options for paying for a transaction via the wallet mode 1510. In one implementation, an example user interface 1511 for making a payment is shown. The user interface may clearly identify the amount 1512 and the currency 1513 for the transaction. The amount may be the amount payable and the currency may include real currencies such as dollars and euros, as well as virtual currencies such as reward points. The amount of the transaction 1514 may also be prominently displayed on the user interface. The user may select the funds tab 1516 to select one or more forms of payment 1517, which may include various credit, debit, gift, rewards and/or prepaid cards. The user may also have the option of paying, wholly or in part, with reward points. For example, the graphical indicator 1518 on the user interface shows the number of points available, the graphical indicator 1519 shows the number of points to be used towards the amount due 234.56 and the equivalent 1520 of the number of points in a selected currency (USD, for example).


In one implementation, the user may combine funds from multiple sources to pay for the transaction. The amount 1515 displayed on the user interface may provide an indication of the amount of total funds covered so far by the selected forms of payment (e.g., Discover card and rewards points). The user may choose another form of payment or adjust the amount to be debited from one or more forms of payment until the amount 1515 matches the amount payable 1514. Once the amounts to be debited from one or more forms of payment are finalized by the user, payment authorization may begin.


In one implementation, the user may select a secure authorization of the transaction by selecting the cloak button 1522 to effectively cloak or anonymize some (e.g., pre-configured) or all identifying information such that when the user selects pay button 1521, the transaction authorization is conducted in a secure and anonymous manner. In another implementation, the user may select the pay button 1521 which may use standard authorization techniques for transaction processing. In yet another implementation, when the user selects the social button 1523, a message regarding the transaction may be communicated to one of more social networks (set up by the user) which may post or announce the purchase transaction in a social forum such as a wall post or a tweet. In one implementation, the user may select a social payment processing option 1523. The indicator 1524 may show the authorizing and sending social share data in progress.


In another implementation, a restricted payment mode 1525 may be activated for certain purchase activities such as prescription purchases. The mode may be activated in accordance with rules defined by issuers, insurers, merchants, payment processor and/or other entities to facilitate processing of specialized goods and services. In this mode, the user may scroll down the list of forms of payments 1526 under the funds tab to select specialized accounts such as a flexible spending account (FSA) 1527, health savings account (HAS), and/or the like and amounts to be debited to the selected accounts. In one implementation, such restricted payment mode 1525 processing may disable social sharing of purchase information.


In one embodiment, the wallet mobile application may facilitate importing of funds via the import funds user interface 1528. For example, a user who is unemployed may obtain unemployment benefit fund 1529 via the wallet mobile application. In one implementation, the entity providing the funds may also configure rules for using the fund as shown by the processing indicator message 1530. The wallet may read and apply the rules prior, and may reject any purchases with the unemployment funds that fail to meet the criteria set by the rules. Example criteria may include, for example, merchant category code (MCC), time of transaction, location of transaction, and/or the like. As an example, a transaction with a grocery merchant having MCC 5411 may be approved, while a transaction with a bar merchant having an MCC 5813 may be refused.


With reference to FIG. 15B, in one embodiment, the wallet mobile application may facilitate dynamic payment optimization based on factors such as user location, preferences and currency value preferences among others. For example, when a user is in the United States, the country indicator 1531 may display a flag of the United States and may set the currency 1533 to the United States. In a further implementation, the wallet mobile application may automatically rearrange the order in which the forms of payments 1535 are listed to reflect the popularity or acceptability of various forms of payment. In one implementation, the arrangement may reflect the user's preference, which may not be changed by the wallet mobile application.


Similarly, when a German user operates a wallet in Germany, the mobile wallet application user interface may be dynamically updated to reflect the country of operation 1532 and the currency 1534. In a further implementation, the wallet application may rearrange the order in which different forms of payment 1536 are listed based on their acceptance level in that country. Of course, the order of these forms of payments may be modified by the user to suit his or her own preferences.


With reference to FIG. 15C, in one embodiment, the payee tab 1537 in the wallet mobile application user interface may facilitate user selection of one or more payees receiving the funds selected in the funds tab. In one implementation, the user interface may show a list of all payees 1538 with whom the user has previously transacted or available to transact. The user may then select one or more payees. The payees 1538 may include larger merchants such as Amazon.com Inc., and individuals such as Jane P. Doe. Next to each payee name, a list of accepted payment modes for the payee may be displayed. In one implementation, the user may select the payee Jane P. Doe 1539 for receiving payment. Upon selection, the user interface may display additional identifying information relating to the payee.


With reference to FIG. 15D, in one embodiment, the mode tab 1540 may facilitate selection of a payment mode accepted by the payee. A number of payment modes may be available for selection. Example modes include, blue tooth 1541, wireless 1542, snap mobile by user-obtained QR code 1543, secure chip 1544, TWITTER 1545, near-field communication (NFC) 1546, cellular 1547, snap mobile by user-provided QR code 1548, USB 1549 and FACEBOOK 1550, among others. In one implementation, only the payment modes that are accepted by the payee may be selectable by the user. Other non-accepted payment modes may be disabled.


With reference to FIG. 15E, in one embodiment, the offers tab 1551 may provide real-time offers that are relevant to items in a user's cart for selection by the user. The user may select one or more offers from the list of applicable offers 1552 for redemption. In one implementation, some offers may be combined, while others may not. When the user selects an offer that may not be combined with another offer, the unselected offers may be disabled. In a further implementation, offers that are recommended by the wallet application's recommendation engine may be identified by an indicator, such as the one shown by 1553. In a further implementation, the user may read the details of the offer by expanding the offer row as shown by 1554 in the user interface.


With reference to FIG. 15F, in one embodiment, the social tab 1555 may facilitate integration of the wallet application with social channels 1556. In one implementation, a user may select one or more social channels 1556 and may sign in to the selected social channel from the wallet application by providing to the wallet application the social channel user name and password 1557 and signing in 1558. The user may then use the social button 1559 to send or receive money through the integrated social channels. In a further implementation, the user may send social share data such as purchase information or links through integrated social channels. In another embodiment, the user supplied login credentials may allow EWCP to engage in interception parsing.



FIG. 16 shows a user interface diagram illustrating example features of virtual wallet applications, in a history mode, in some embodiments of the EWCP. In one embodiment, a user may select the history mode 1610 to view a history of prior purchases and perform various actions on those prior purchases. For example, a user may enter a merchant identifying information such as name, product, MCC, and/or the like in the search bar 1611. In another implementation, the user may use voice activated search feature by clicking on the microphone icon 1614. The wallet application may query the storage areas in the mobile device or elsewhere (e.g., one or more databases and/or tables remote from the mobile device) for transactions matching the search keywords. The user interface may then display the results of the query such as transaction 1615. The user interface may also identify the date 1612 of the transaction, the merchants and items 1613 relating to the transaction, a barcode of the receipt confirming that a transaction was made, the amount of the transaction and any other relevant information.


In one implementation, the user may select a transaction, for example transaction 1615, to view the details of the transaction. For example, the user may view the details of the items associated with the transaction and the amounts 1616 of each item. In a further implementation, the user may select the show option 1617 to view actions 1618 that the user may take in regards to the transaction or the items in the transaction. For example, the user may add a photo to the transaction (e.g., a picture of the user and the iPad the user bought). In a further implementation, if the user previously shared the purchase via social channels, a post including the photo may be generated and sent to the social channels for publishing. In one implementation, any sharing may be optional, and the user, who did not share the purchase via social channels, may still share the photo through one or more social channels of his or her choice directly from the history mode of the wallet application. In another implementation, the user may add the transaction to a group such as company expense, home expense, travel expense or other categories set up by the user. Such grouping may facilitate year-end accounting of expenses, submission of work expense reports, submission for value added tax (VAT) refunds, personal expenses, and/or the like. In yet another implementation, the user may buy one or more items purchased in the transaction. The user may then execute a transaction without going to the merchant catalog or site to find the items. In a further implementation, the user may also cart one or more items in the transaction for later purchase.


The history mode, in another embodiment, may offer facilities for obtaining and displaying ratings 1619 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITTER or FACEBOOK). For example, the display area 1620 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 1621. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.


In one embodiment, the history mode may also include facilities for exporting receipts. The export receipts pop up 1622 may provide a number of options for exporting the receipts of transactions in the history. For example, a user may use one or more of the options 1625, which include save (to local mobile memory, to server, to a cloud account, and/or the like), print to a printer, fax, email, and/or the like. The user may utilize his or her address book 1623 to look up email or fax number for exporting. The user may also specify format options 1624 for exporting receipts. Example format options may include, without limitation, text files (.doc, .txt, .rtf, iif, etc.), spreadsheet (.csv, .xls, etc.), image files (.jpg, .tff, .png, etc.), portable document format (.pdf), postscript (.ps), and/or the like. The user may then click or tap the export button 1627 to initiate export of receipts.



FIGS. 17A-E show user interface diagrams illustrating example features of virtual wallet applications in a snap mode, in some embodiments of the EWCP. With reference to FIG. 17A, in one embodiment, a user may select the snap mode 2110 to access its snap features. The snap mode may handle any machine-readable representation of data. Examples of such data may include linear and 2D bar codes such as UPC code and QR codes. These codes may be found on receipts, product packaging, and/or the like. The snap mode may also process and handle pictures of receipts, products, offers, credit cards or other payment devices, and/or the like. An example user interface in snap mode is shown in FIG. 17A. A user may use his or her mobile phone to take a picture of a QR code 1715 and/or a barcode 1714. In one implementation, the bar 1713 and snap frame 1715 may assist the user in snapping codes properly. For example, the snap frame 1715, as shown, does not capture the entirety of the code 1716. As such, the code captured in this view may not be resolvable as information in the code may be incomplete. This is indicated by the message on the bar 1713 that indicates that the snap mode is still seeking the code. When the code 1716 is completely framed by the snap frame 1715, the bar message may be updated to, for example, “snap found.” Upon finding the code, in one implementation, the user may initiate code capture using the mobile device camera. In another implementation, the snap mode may automatically snap the code using the mobile device camera.


With reference to FIG. 17B, in one embodiment, the snap mode may facilitate payment reallocation post transaction. For example, a user may buy grocery and prescription items from a retailer Acme Supermarket. The user may, inadvertently or for ease of checkout for example, use his or her Visa card to pay for both grocery and prescription items. However, the user may have an FSA account that could be used to pay for prescription items, and which would provide the user tax benefits. In such a situation, the user may use the snap mode to initiate transaction reallocation.


As shown, the user may enter a search term (e.g., bills) in the search bar 2121. The user may then identify in the tab 1722 the receipt 1723 the user wants to reallocate. Alternatively, the user may directly snap a picture of a barcode on a receipt, and the snap mode may generate and display a receipt 1723 using information from the barcode. The user may now reallocate 1725. In some implementations, the user may also dispute the transaction 1724 or archive the receipt 1726.


In one implementation, when the reallocate button 1725 is selected, the wallet application may perform optical character recognition (OCR) of the receipt. Each of the items in the receipt may then be examined to identify one or more items which could be charged to which payment device or account for tax or other benefits such as cash back, reward points, etc. In this example, there is a tax benefit if the prescription medication charged to the user's Visa card is charged to the user's FSA. The wallet application may then perform the reallocation as the back end. The reallocation process may include the wallet contacting the payment processor to credit the amount of the prescription medication to the Visa card and debit the same amount to the user's FSA account. In an alternate implementation, the payment processor (e.g., Visa or MasterCard) may obtain and OCR the receipt, identify items and payment accounts for reallocation and perform the reallocation. In one implementation, the wallet application may request the user to confirm reallocation of charges for the selected items to another payment account. The receipt 1727 may be generated after the completion of the reallocation process. As discussed, the receipt shows that some charges have been moved from the Visa account to the FSA.


With reference to FIG. 17C, in one embodiment, the snap mode may facilitate payment via pay code such as barcodes or QR codes. For example, a user may snap a QR code of a transaction that is not yet complete. The QR code may be displayed at a merchant POS terminal, a web site, or a web application and may be encoded with information identifying items for purchase, merchant details and other relevant information. When the user snaps such as a QR code, the snap mode may decode the information in the QR code and may use the decoded information to generate a receipt 1732. Once the QR code is identified, the navigation bar 1731 may indicate that the pay code is identified. The user may now have an option to add to cart 1733, pay with a default payment account 1734 or pay with wallet 1735.


In one implementation, the user may decide to pay with default 1734. The wallet application may then use the user's default method of payment, in this example the wallet, to complete the purchase transaction. Upon completion of the transaction, a receipt may be automatically generated for proof of purchase. The user interface may also be updated to provide other options for handling a completed transaction. Example options include social 1737 to share purchase information with others, reallocate 1738 as discussed with regard to FIG. 17B, and archive 1739 to store the receipt.


With reference to FIG. 17D, in one embodiment, the snap mode may also facilitate offer identification, application and storage for future use. For example, in one implementation, a user may snap an offer code 1741 (e.g., a bar code, a QR code, and/or the like). The wallet application may then generate an offer text 1742 from the information encoded in the offer code. The user may perform a number of actions on the offer code. For example, the user use the find button 1743 to find all merchants who accept the offer code, merchants in the proximity who accept the offer code, products from merchants that qualify for the offer code, and/or the like. The user may also apply the offer code to items that are currently in the cart using the add to cart button 1744. Furthermore, the user may also save the offer for future use by selecting the save button 1745.


In one implementation, after the offer or coupon 1746 is applied, the user may have the option to find qualifying merchants and/or products using find, the user may go to the wallet using 1748, and the user may also save the offer or coupon 1746 for later use.


With reference to FIG. 17E, in one embodiment, the snap mode may also offer facilities for adding a funding source to the wallet application. In one implementation, a pay card such as a credit card, debit card, pre-paid card, smart card and other pay accounts may have an associated code such as a bar code or QR code. Such a code may have encoded therein pay card information including, but not limited to, name, address, pay card type, pay card account details, balance amount, spending limit, rewards balance, and/or the like. In one implementation, the code may be found on a face of the physical pay card. In another implementation, the code may be obtained by accessing an associated online account or another secure location. In yet another implementation, the code may be printed on a letter accompanying the pay card. A user, in one implementation, may snap a picture of the code. The wallet application may identify the pay card 1751 and may display the textual information 1752 encoded in the pay card. The user may then perform verification of the information 1752 by selecting the verify button 1753. In one implementation, the verification may include contacting the issuer of the pay card for confirmation of the decoded information 1752 and any other relevant information. In one implementation, the user may add the pay card to the wallet by selecting the ‘add to wallet’ button 1754. The instruction to add the pay card to the wallet may cause the pay card to appear as one of the forms of payment under the funds tab 1516 discussed in FIG. 15A. The user may also cancel importing of the pay card as a funding source by selecting the cancel button 1755. When the pay card has been added to the wallet, the user interface may be updated to indicate that the importing is complete via the notification display 1756. The user may then access the wallet 1757 to begin using the added pay card as a funding source.



FIG. 18 shows a user interface diagram illustrating example features of virtual wallet applications, in an offers mode, in some embodiments of the EWCP. In some implementations, the EWCP may allow a user to search for offers for products and/or services from within the virtual wallet mobile application. For example, the user may enter text into a graphical user interface (“GUI”) element 1811, or issue voice commands by activating GUI element 1812 and speaking commands into the device. In some implementations, the EWCP may provide offers based on the user's prior behavior, demographics, current location, current cart selection or purchase items, and/or the like. For example, if a user is in a brick-and-mortar store, or an online shopping website, and leaves the (virtual) store, then the merchant associated with the store may desire to provide a sweetener deal to entice the consumer back into the (virtual) store. The merchant may provide such an offer 1813. For example, the offer may provide a discount, and may include an expiry time. In some implementations, other users may provide gifts (e.g., 1814) to the user, which the user may redeem. In some implementations, the offers section may include alerts as to payment of funds outstanding to other users (e.g., 1815). In some implementations, the offers section may include alerts as to requesting receipt of funds from other users (e.g., 1816). For example, such a feature may identify funds receivable from other applications (e.g., mail, calendar, tasks, notes, reminder programs, alarm, etc.), or by a manual entry by the user into the virtual wallet application. In some implementations, the offers section may provide offers from participating merchants in the EWCP, e.g., 1817-1819, 1820. These offers may sometimes be assembled using a combination of participating merchants, e.g., 1817. In some implementations, the EWCP itself may provide offers for users contingent on the user utilizing particular payment forms from within the virtual wallet application, e.g., 1820.



FIGS. 19A-B show user interface diagrams illustrating example features of virtual wallet applications, in a security and privacy mode, in some embodiments of the EWCP. With reference to FIG. 19A, in some implementations, the user may be able to view and/or modify the user profile and/or settings of the user, e.g., by activating a user interface element. For example, the user may be able to view/modify a user name (e.g., 1911a-b), account number (e.g., 1912a-b), user security access code (e.g., 1913-b), user pin (e.g., 1914-b), user address (e.g., 1915-b), social security number associated with the user (e.g., 1916-b), current device GPS location (e.g., 1917-b), user account of the merchant in whose store the user currently is (e.g., 1918-b), the user's rewards accounts (e.g., 1919-b), and/or the like. In some implementations, the user may be able to select which of the data fields and their associated values should be transmitted to facilitate the purchase transaction, thus providing enhanced data security for the user. For example, in the example illustration in FIG. 19A, the user has selected the name 1911a, account number 1912a, security code 1913a, merchant account ID 1918a and rewards account ID 1919a as the fields to be sent as part of the notification to process the purchase transaction. In some implementations, the user may toggle the fields and/or data values that are sent as part of the notification to process the purchase transactions. In some implementations, the app may provide multiple screens of data fields and/or associated values stored for the user to select as part of the purchase order transmission. In some implementations, the app may provide the EWCP with the GPS location of the user. Based on the GPS location of the user, the EWCP may determine the context of the user (e.g., whether the user is in a store, doctor's office, hospital, postal service office, etc.). Based on the context, the user app may present the appropriate fields to the user, from which the user may select fields and/or field values to send as part of the purchase order transmission.


For example, a user may go to doctor's office and desire to pay the co-pay for doctor's appointment. In addition to basic transactional information such as account number and name, the app may provide the user the ability to select to transfer medical records, health information, which may be provided to the medical provider, insurance company, as well as the transaction processor to reconcile payments between the parties. In some implementations, the records may be sent in a Health Insurance Portability and Accountability Act (HIPAA)—compliant data format and encrypted, and only the recipients who are authorized to view such records may have appropriate decryption keys to decrypt and view the private user information.


With reference to FIG. 19B, in some implementations, the app executing on the user's device may provide a “VerifyChat” feature for fraud prevention. For example, the EWCP may detect an unusual and/or suspicious transaction. The EWCP may utilize the VerifyChat feature to communicate with the user, and verify the authenticity of the originator of the purchase transaction. In various implementations, the EWCP may send electronic mail message, text (SMS) messages, Facebook® messages, Twitter™ tweets, text chat, voice chat, video chat (e.g., Apple FaceTime), and/or the like to communicate with the user. For example, the EWCP may initiate a video challenge for the user, e.g., 1921. For example, the user may need to present him/her-self via a video chat, e.g., 1922. In some implementations, a customer service representative, e.g., agent 1924, may manually determine the authenticity of the user using the video of the user. In some implementations, the EWCP may utilize face, biometric and/or like recognition (e.g., using pattern classification techniques) to determine the identity of the user. In some implementations, the app may provide reference marker (e.g., cross-hairs, target box, etc.), e.g., 1923, so that the user may the video to facilitate the EWCP's automated recognition of the user. In some implementations, the user may not have initiated the transaction, e.g., the transaction is fraudulent. In such implementations, the user may cancel the challenge. The EWCP may then cancel the transaction, and/or initiate fraud investigation procedures on behalf of the user.


In some implementations, the EWCP may utilize a text challenge procedure to verify the authenticity of the user, e.g., 1925. For example, the EWCP may communicate with the user via text chat, SMS messages, electronic mail, Facebook® messages, Twitter™ tweets, and/or the like. The EWCP may pose a challenge question, e.g., 1926, for the user. The app may provide a user input interface element(s) (e.g., virtual keyboard 1928) to answer the challenge question posed by the EWCP. In some implementations, the challenge question may be randomly selected by the EWCP automatically; in some implementations, a customer service representative may manually communicate with the user. In some implementations, the user may not have initiated the transaction, e.g., the transaction is fraudulent. In such implementations, the user may cancel the text challenge. The EWCP may cancel the transaction, and/or initiate fraud investigation on behalf of the user.


EWCP Controller



FIG. 20 shows a block diagram illustrating example aspects of a EWCP controller 2001. In this embodiment, the EWCP controller 2001 may serve to aggregate, process, store, search, serve, identify, instruct, generate, match, and/or facilitate interactions with a computer through various technologies, and/or other related data.


Users, e.g., 2033a, which may be people and/or other systems, may engage information technology systems (e.g., computers) to facilitate information processing. In turn, computers employ processors to process information; such processors 2003 may be referred to as central processing units (CPU). One form of processor is referred to as a microprocessor. CPUs use communicative circuits to pass binary encoded signals acting as instructions to enable various operations. These instructions may be operational and/or data instructions containing and/or referencing other instructions and data in various processor accessible and operable areas of memory 2029 (e.g., registers, cache memory, random access memory, etc.). Such communicative instructions may be stored and/or transmitted in batches (e.g., batches of instructions) as programs and/or data components to facilitate desired operations. These stored instruction codes, e.g., programs, may engage the CPU circuit components and other motherboard and/or system components to perform desired operations. One type of program is a computer operating system, which, may be executed by CPU on a computer; the operating system enables and facilitates users to access and operate computer information technology and resources. Some resources that may be employed in information technology systems include: input and output mechanisms through which data may pass into and out of a computer; memory storage into which data may be saved; and processors by which information may be processed. These information technology systems may be used to collect data for later retrieval, analysis, and manipulation, which may be facilitated through a database program. These information technology systems provide interfaces that allow users to access and operate various system components.


In one embodiment, the EWCP controller 2001 may be connected to and/or communicate with entities such as, but not limited to: one or more users from user input devices 2011; peripheral devices 2012; an optional cryptographic processor device 2028; and/or a communications network 2013. For example, the EWCP controller 2001 may be connected to and/or communicate with users, e.g., 2033a, operating client device(s), e.g., 2033b, including, but not limited to, personal computer(s), server(s) and/or various mobile device(s) including, but not limited to, cellular telephone(s), smartphone(s) (e.g., iPhone®, Blackberry®, Android OS-based phones etc.), tablet computer(s) (e.g., Apple iPad™, HP Slate™, Motorola Xoom™, etc.), eBook reader(s) (e.g., Amazon Kindle™, Barnes and Noble's Nook™ eReader, etc.), laptop computer(s), notebook(s), netbook(s), gaming console(s) (e.g., XBOX Live™, Nintendo® DS, Sony PlayStation® Portable, etc.), portable scanner(s), and/or the like.


Networks are commonly thought to comprise the interconnection and interoperation of clients, servers, and intermediary nodes in a graph topology. It should be noted that the term “server” as used throughout this application refers generally to a computer, other device, program, or combination thereof that processes and responds to the requests of remote users across a communications network. Servers serve their information to requesting “clients.” The term “client” as used herein refers generally to a computer, program, other device, user and/or combination thereof that is capable of processing and making requests and obtaining and processing any responses from servers across a communications network. A computer, other device, program, or combination thereof that facilitates, processes information and requests, and/or furthers the passage of information from a source user to a destination user is commonly referred to as a “node.” Networks are generally thought to facilitate the transfer of information from source points to destinations. A node specifically tasked with furthering the passage of information from a source to a destination is commonly called a “router.” There are many forms of networks such as Local Area Networks (LANs), Pico networks, Wide Area Networks (WANs), Wireless Networks (WLANs), etc. For example, the Internet is generally accepted as being an interconnection of a multitude of networks whereby remote clients and servers may access and interoperate with one another.


The EWCP controller 2001 may be based on computer systems that may comprise, but are not limited to, components such as: a computer systemization 2002 connected to memory 2029.


Computer Systemization


A computer systemization 2002 may comprise a clock 2030, central processing unit (“CPU(s)” and/or “processor(s)” (these terms are used interchangeably throughout the disclosure unless noted to the contrary)) 2003, a memory 2029 (e.g., a read only memory (ROM) 2006, a random access memory (RAM) 2005, etc.), and/or an interface bus 2007, and most frequently, although not necessarily, are all interconnected and/or communicating through a system bus 2004 on one or more (mother)board(s) 2002 having conductive and/or otherwise transportive circuit pathways through which instructions (e.g., binary encoded signals) may travel to effectuate communications, operations, storage, etc. The computer systemization may be connected to a power source 2086; e.g., optionally the power source may be internal. Optionally, a cryptographic processor 2026 and/or transceivers (e.g., ICs) 2074 may be connected to the system bus. In another embodiment, the cryptographic processor and/or transceivers may be connected as either internal and/or external peripheral devices 2012 via the interface bus I/O. In turn, the transceivers may be connected to antenna(s) 2075, thereby effectuating wireless transmission and reception of various communication and/or sensor protocols; for example the antenna(s) may connect to: a Texas Instruments WiLink WL1283 transceiver chip (e.g., providing 802.11n, Bluetooth 3.0, FM, global positioning system (GPS) (thereby allowing EWCP controller to determine its location)); Broadcom BCM4329FKUBG transceiver chip (e.g., providing 802.11n, Bluetooth 2.1+EDR, FM, etc.), BCM28150 (HSPA+) and BCM2076 (Bluetooth 4.0, GPS, etc.); a Broadcom BCM4750IUB8 receiver chip (e.g., GPS); an Infineon Technologies X-Gold 618-PMB9800 (e.g., providing 2G/3G HSDPA/HSUPA communications); Intel's XMM 7160 (LTE & DC-HSPA), Qualcom's CDMA(2000), Mobile Data/Station Modem, Snapdragon; and/or the like. The system clock may have a crystal oscillator and generates a base signal through the computer systemization's circuit pathways. The clock may be coupled to the system bus and various clock multipliers that will increase or decrease the base operating frequency for other components interconnected in the computer systemization. The clock and various components in a computer systemization drive signals embodying information throughout the system. Such transmission and reception of instructions embodying information throughout a computer systemization may be referred to as communications. These communicative instructions may further be transmitted, received, and the cause of return and/or reply communications beyond the instant computer systemization to: communications networks, input devices, other computer systemizations, peripheral devices, and/or the like. It should be understood that in alternative embodiments, any of the above components may be connected directly to one another, connected to the CPU, and/or organized in numerous variations employed as exemplified by various computer systems.


The CPU comprises at least one high-speed data processor adequate to execute program components for executing user and/or system-generated requests. Often, the processors themselves will incorporate various specialized processing units, such as, but not limited to: floating point units, integer processing units, integrated system (bus) controllers, logic operating units, memory management control units, etc., and even specialized processing sub-units like graphics processing units, digital signal processing units, and/or the like. Additionally, processors may include internal fast access addressable memory, and be capable of mapping and addressing memory 2029 beyond the processor itself; internal memory may include, but is not limited to: fast registers, various levels of cache memory (e.g., level 1, 2, 3, etc.), RAM, etc. The processor may access this memory through the use of a memory address space that is accessible via instruction address, which the processor can construct and decode allowing it to access a circuit path to a specific memory address space having a memory state/value. The CPU may be a microprocessor such as: AMD's Athlon, Duron and/or Opteron; ARM's classic (e.g., ARM7/9/11), embedded (Coretx-M/R), application (Cortex-A), embedded and secure processors; IBM and/or Motorola's DragonBall and PowerPC; IBM's and Sony's Cell processor; Intel's Atom, Celeron (Mobile), Core (2/Duo/i3/i5/i7), Itanium, Pentium, Xeon, and/or XScale; and/or the like processor(s). The CPU interacts with memory through instruction passing through conductive and/or transportive conduits (e.g., (printed) electronic and/or optic circuits) to execute stored instructions (i.e., program code). Such instruction passing facilitates communication within the EWCP controller and beyond through various interfaces. Should processing requirements dictate a greater amount speed and/or capacity, distributed processors (e.g., Distributed EWCP), mainframe, multi-core, parallel, and/or super-computer architectures may similarly be employed. Alternatively, should deployment requirements dictate greater portability, smaller mobile devices (e.g., smartphones, Personal Digital Assistants (PDAs), etc.) may be employed.


Depending on the particular implementation, features of the EWCP may be achieved by implementing a microcontroller such as CAST's R8051XC2 microcontroller; Intel's MCS 51 (i.e., 8051 microcontroller); and/or the like. Also, to implement certain features of the EWCP, some feature implementations may rely on embedded components, such as: Application-Specific Integrated Circuit (“ASIC”), Digital Signal Processing (“DSP”), Field Programmable Gate Array (“FPGA”), and/or the like embedded technology. For example, any of the EWCP component collection (distributed or otherwise) and/or features may be implemented via the microprocessor and/or via embedded components; e.g., via ASIC, coprocessor, DSP, FPGA, and/or the like. Alternately, some implementations of the EWCP may be implemented with embedded components that are configured and used to achieve a variety of features or signal processing.


Depending on the particular implementation, the embedded components may include software solutions, hardware solutions, and/or some combination of both hardware/software solutions. For example, EWCP features discussed herein may be achieved through implementing FPGAs, which are a semiconductor devices containing programmable logic components called “logic blocks”, and programmable interconnects, such as the high performance FPGA Virtex series and/or the low cost Spartan series manufactured by Xilinx. Logic blocks and interconnects can be programmed by the customer or designer, after the FPGA is manufactured, to implement any of the EWCP features. A hierarchy of programmable interconnects allow logic blocks to be interconnected as needed by the EWCP system designer/administrator, somewhat like a one-chip programmable breadboard. An FPGA's logic blocks can be programmed to perform the operation of basic logic gates such as AND, and XOR, or more complex combinational operators such as decoders or simple mathematical operations. In most FPGAs, the logic blocks also include memory elements, which may be circuit flip-flops or more complete blocks of memory. In some circumstances, the EWCP may be developed on regular FPGAs and then migrated into a fixed version that more resembles ASIC implementations. Alternate or coordinating implementations may migrate EWCP controller features to a final ASIC instead of or in addition to FPGAs. Depending on the implementation all of the aforementioned embedded components and microprocessors may be considered the “CPU” and/or “processor” for the EWCP.


Power Source


The power source 2086 may be of any standard form for powering small electronic circuit board devices such as the following power cells: alkaline, lithium hydride, lithium ion, lithium polymer, nickel cadmium, solar cells, and/or the like. Other types of AC or DC power sources may be used as well. In the case of solar cells, in one embodiment, the case provides an aperture through which the solar cell may capture photonic energy. The power cell 2086 is connected to at least one of the interconnected subsequent components of the EWCP thereby providing an electric current to all the interconnected components. In one example, the power source 2086 is connected to the system bus component 2004. In an alternative embodiment, an outside power source 2086 is provided through a connection across the I/O 2008 interface. For example, a USB and/or IEEE 1394 connection carries both data and power across the connection and is therefore a suitable source of power.


Interface Adapters


Interface bus(ses) 2007 may accept, connect, and/or communicate to a number of interface adapters, frequently, although not necessarily in the form of adapter cards, such as but not limited to: input output interfaces (I/O) 2008, storage interfaces 2009, network interfaces 2010, and/or the like. Optionally, cryptographic processor interfaces 2027 similarly may be connected to the interface bus. The interface bus provides for the communications of interface adapters with one another as well as with other components of the computer systemization. Interface adapters are adapted for a compatible interface bus. Interface adapters may connect to the interface bus via expansion and/or slot architecture. Various expansion and/or slot architectures may be employed, such as, but not limited to: Accelerated Graphics Port (AGP), Card Bus, ExpressCard, (Extended) Industry Standard Architecture ((E)IS A), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), Thunderbolt, and/or the like.


Storage interfaces 2009 may accept, communicate, and/or connect to a number of storage devices such as, but not limited to: storage devices 2014, removable disc devices, and/or the like. Storage interfaces may employ connection protocols such as, but not limited to: (Ultra) (Serial) Advanced Technology Attachment (Packet Interface) ((Ultra) (Serial) ATA(PI)), (Enhanced) Integrated Drive Electronics ((E)IDE), Institute of Electrical and Electronics Engineers (IEEE) 1394, Ethernet, fiber channel, Small Computer Systems Interface (SCSI), Thunderbolt, Universal Serial Bus (USB), and/or the like.


Network interfaces 2010 may accept, communicate, and/or connect to a communications network 2013. Through a communications network 2013, the EWCP controller is accessible through remote clients 2033b (e.g., computers with web browsers) by users 2033a. Network interfaces may employ connection protocols such as, but not limited to: direct connect, Ethernet (thick, thin, twisted pair 10/100/1000 Base T, and/or the like), Token Ring, wireless connection such as IEEE 802.11a-x, and/or the like. Should processing requirements dictate a greater amount speed and/or capacity, distributed network controllers (e.g., Distributed EWCP), architectures may similarly be employed to pool, load balance, and/or otherwise increase the communicative bandwidth required by the EWCP controller. A communications network may be any one and/or the combination of the following: a direct interconnection; the Internet; a Local Area Network (LAN); a Metropolitan Area Network (MAN); an Operating Missions as Nodes on the Internet (OMNI); a secured custom connection; a Wide Area Network (WAN); a wireless network (e.g., employing protocols such as, but not limited to a Wireless Application Protocol (WAP), I-mode, and/or the like); and/or the like. A network interface may be regarded as a specialized form of an input output interface. Further, multiple network interfaces 2010 may be used to engage with various communications network types 2013. For example, multiple network interfaces may be employed to allow for the communication over broadcast, multicast, and/or unicast networks.


Input Output interfaces (I/O) 2008 may accept, communicate, and/or connect to user input devices 2011, peripheral devices 2012, cryptographic processor devices 2028, and/or the like. I/O may employ connection protocols such as, but not limited to: audio: analog, digital, monaural, RCA, stereo, and/or the like; data: Apple Desktop Bus (ADB), Bluetooth, IEEE 1394a-b, serial, universal serial bus (USB); infrared; joystick; keyboard; midi; optical; PC AT; PS/2; parallel; radio; video interface: Apple Desktop Connector (ADC), BNC, coaxial, component, composite, digital, DisplayPort, Digital Visual Interface (DVI), high-definition multimedia interface (HDMI), RCA, RF antennae, S-Video, VGA, and/or the like; wireless transceivers: 802.11a/b/g/n/x; Bluetooth; cellular (e.g., code division multiple access (CDMA), high speed packet access (HSPA(+)), high-speed downlink packet access (HSDPA), global system for mobile communications (GSM), long term evolution (LTE), WiMax, etc.); and/or the like. One output device may be a video display, which may take the form of a Cathode Ray Tube (CRT), Liquid Crystal Display (LCD), Light Emitting Diode (LED), Organic Light Emitting Diode (OLED), Plasma, and/or the like based monitor with an interface (e.g., VGA, DVI circuitry and cable) that accepts signals from a video interface. The video interface composites information generated by a computer systemization and generates video signals based on the composited information in a video memory frame. Another output device is a television set, which accepts signals from a video interface. Often, the video interface provides the composited video information through a video connection interface that accepts a video display interface (e.g., an RCA composite video connector accepting an RCA composite video cable; a DVI connector accepting a DVI display cable, HDMI, etc.).


User input devices 2011 often are a type of peripheral device 2012 (see below) and may include: card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, microphones, mouse (mice), remote controls, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors (e.g., accelerometers, ambient light, GPS, gyroscopes, proximity, etc.), styluses, and/or the like.


Peripheral devices 2012 may be connected and/or communicate to I/O and/or other facilities of the like such as network interfaces, storage interfaces, directly to the interface bus, system bus, the CPU, and/or the like. Peripheral devices may be external, internal and/or part of the EWCP controller. Peripheral devices may include: antenna, audio devices (e.g., line-in, line-out, microphone input, speakers, etc.), cameras (e.g., still, video, webcam, etc.), dongles (e.g., for copy protection, ensuring secure transactions with a digital signature, and/or the like), external processors (for added capabilities; e.g., crypto devices 2028), force-feedback devices (e.g., vibrating motors), near field communication (NFC) devices, network interfaces, printers, radio frequency identifiers (RFIDs), scanners, storage devices, transceivers (e.g., cellular, GPS, etc.), video devices (e.g., goggles, monitors, etc.), video sources, visors, and/or the like. Peripheral devices often include types of input devices (e.g., microphones, cameras, etc.).


It should be noted that although user input devices and peripheral devices may be employed, the EWCP controller may be embodied as an embedded, dedicated, and/or monitor-less (i.e., headless) device, wherein access would be provided over a network interface connection.


Cryptographic units such as, but not limited to, microcontrollers, processors 2026, interfaces 2027, and/or devices 2028 may be attached, and/or communicate with the EWCP controller. A MC68HC16 microcontroller, manufactured by Motorola Inc., may be used for and/or within cryptographic units. The MC68HC16 microcontroller utilizes a 16-bit multiply-and-accumulate instruction in the 16 MHz configuration and requires less than one second to perform a 512-bit RSA private key operation. Cryptographic units support the authentication of communications from interacting agents, as well as allowing for anonymous transactions. Cryptographic units may also be configured as part of the CPU. Equivalent microcontrollers and/or processors may also be used. Other commercially available specialized cryptographic processors include: the Broadcom's CryptoNetX and other Security Processors; nCipher's nShield (e.g., Solo, Connect, etc.), SafeNet's Luna PCI (e.g., 7100) series; Semaphore Communications' 40 MHz Roadrunner 184; sMIP's (e.g., 208956); Sun's Cryptographic Accelerators (e.g., Accelerator 6000 PCIe Board, Accelerator 500 Daughtercard); Via Nano Processor (e.g., L2100, L2200, U2400) line, which is capable of performing 500+MB/s of cryptographic instructions; VLSI Technology's 33 MHz 6868; and/or the like.


Memory


Generally, any mechanization and/or embodiment allowing a processor to affect the storage and/or retrieval of information is regarded as memory 2029. However, memory is a fungible technology and resource, thus, any number of memory embodiments may be employed in lieu of or in concert with one another. It is to be understood that the EWCP controller and/or a computer systemization may employ various forms of memory 2029. For example, a computer systemization may be configured wherein the operation of on-chip CPU memory (e.g., registers), RAM, ROM, and any other storage devices are provided by a paper punch tape or paper punch card mechanism; however, such an embodiment would result in an extremely slow rate of operation. In one configuration, memory 2029 may include ROM 2006, RAM 2005, and a storage device 2014. A storage device 2014 may employ any number of computer storage devices/systems. Storage devices may include a drum; a (fixed and/or removable) magnetic disk drive; a magneto-optical drive; an optical drive (i.e., Blueray, CD ROM/RAM/Recordable (R)/ReWritable (RW), DVD R/RW, HD DVD R/RW etc.); an array of devices (e.g., Redundant Array of Independent Disks (RAID)); solid state memory devices (USB memory, solid state drives (SSD), etc.); other processor-readable storage mediums; and/or other devices of the like. Thus, a computer systemization generally requires and makes use of memory.


Component Collection


The memory 2029 may contain a collection of program and/or database components and/or data such as, but not limited to: operating system component(s) 2015 (operating system); information server component(s) 2016 (information server); user interface component(s) 2017 (user interface); Web browser component(s) 2018 (Web browser); database(s) 2019; mail server component(s) 2021; mail client component(s) 2022; cryptographic server component(s) 2020 (cryptographic server); the EWCP component(s) 2035; and/or the like (i.e., collectively a component collection). These components may be stored and accessed from the storage devices and/or from storage devices accessible through an interface bus. Although non-conventional program components such as those in the component collection may be stored in a local storage device 2014, they may also be loaded and/or stored in memory such as: peripheral devices, RAM, remote storage facilities through a communications network, ROM, various forms of memory, and/or the like.


Operating System


The operating system component 2015 is an executable program component facilitating the operation of the EWCP controller. The operating system may facilitate access of I/O, network interfaces, peripheral devices, storage devices, and/or the like. The operating system may be a highly fault tolerant, scalable, and secure system such as: Apple Macintosh OS X (Server); AT&T Plan 9; Be OS; Unix and Unix-like system distributions (such as AT&T's UNIX; Berkley Software Distribution (BSD) variations such as FreeBSD, NetBSD, OpenBSD, and/or the like; Linux distributions such as Red Hat, Ubuntu, and/or the like); and/or the like operating systems. However, more limited and/or less secure operating systems also may be employed such as Apple Macintosh OS, IBM OS/2, Microsoft DOS, Microsoft Windows 2000/2003/3.1/95/98/CE/Millenium/NT/Vista/XP (Server), Palm OS, and/or the like. In addition, emobile operating systems such as Apple's iOS, Google's Android, Hewlett Packard's WebOS, Microsofts Windows Mobile, and/or the like may be employed. Any of these operating systems may be embedded within the hardware of the NICK controller, and/or stored/loaded into memory/storage. An operating system may communicate to and/or with other components in a component collection, including itself, and/or the like. Most frequently, the operating system communicates with other program components, user interfaces, and/or the like. For example, the operating system may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. The operating system, once executed by the CPU, may enable the interaction with communications networks, data, I/O, peripheral devices, program components, memory, user input devices, and/or the like. The operating system may provide communications protocols that allow the EWCP controller to communicate with other entities through a communications network 2013. Various communication protocols may be used by the EWCP controller as a subcarrier transport mechanism for interaction, such as, but not limited to: multicast, TCP/IP, UDP, unicast, and/or the like.


Information Server


An information server component 2016 is a stored program component that is executed by a CPU. The information server may be an Internet information server such as, but not limited to Apache Software Foundation's Apache, Microsoft's Internet Information Server, and/or the like. The information server may allow for the execution of program components through facilities such as Active Server Page (ASP), ActiveX, (ANSI) (Objective-) C (++), C # and/or .NET, Common Gateway Interface (CGI) scripts, dynamic (D) hypertext markup language (HTML), FLASH, Java, JavaScript, Practical Extraction Report Language (PERL), Hypertext Pre-Processor (PHP), pipes, Python, wireless application protocol (WAP), WebObjects, and/or the like. The information server may support secure communications protocols such as, but not limited to, File Transfer Protocol (FTP); HyperText Transfer Protocol (HTTP); Secure Hypertext Transfer Protocol (HTTPS), Secure Socket Layer (SSL), messaging protocols (e.g., America Online (AOL) Instant Messenger (AIM), Apple's iMessage, Application Exchange (APEX), ICQ, Internet Relay Chat (IRC), Microsoft Network (MSN) Messenger Service, Presence and Instant Messaging Protocol (PRIM), Internet Engineering Task Force's (IETF's) Session Initiation Protocol (SIP), SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE), open XML-based Extensible Messaging and Presence Protocol (XMPP) (i.e., Jabber or Open Mobile Alliance's (OMA's) Instant Messaging and Presence Service (IMPS)), Yahoo! Instant Messenger Service, and/or the like. The information server provides results in the form of Web pages to Web browsers, and allows for the manipulated generation of the Web pages through interaction with other program components. After a Domain Name System (DNS) resolution portion of an HTTP request is resolved to a particular information server, the information server resolves requests for information at specified locations on the EWCP controller based on the remainder of the HTTP request. For example, a request such as http://123.124.125.126/myInformation.html might have the IP portion of the request “123.124.125.126” resolved by a DNS server to an information server at that IP address; that information server might in turn further parse the http request for the “/myInformation.html” portion of the request and resolve it to a location in memory containing the information “myInformation.html.” Additionally, other information serving protocols may be employed across various ports, e.g., FTP communications across port 21, and/or the like. An information server may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the information server communicates with the EWCP database 2019, operating systems, other program components, user interfaces, Web browsers, and/or the like.


Access to the EWCP database may be achieved through a number of database bridge mechanisms such as through scripting languages as enumerated below (e.g., CGI) and through inter-application communication channels as enumerated below (e.g., CORBA, WebObjects, etc.). Any data requests through a Web browser are parsed through the bridge mechanism into appropriate grammars as required by the EWCP. In one embodiment, the information server would provide a Web form accessible by a Web browser. Entries made into supplied fields in the Web form are tagged as having been entered into the particular fields, and parsed as such. The entered terms are then passed along with the field tags, which act to instruct the parser to generate queries directed to appropriate tables and/or fields. In one embodiment, the parser may generate queries in standard SQL by instantiating a search string with the proper join/select commands based on the tagged text entries, wherein the resulting command is provided over the bridge mechanism to the EWCP as a query. Upon generating query results from the query, the results are passed over the bridge mechanism, and may be parsed for formatting and generation of a new results Web page by the bridge mechanism. Such a new results Web page is then provided to the information server, which may supply it to the requesting Web browser.


Also, an information server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.


User Interface


Computer interfaces in some respects are similar to automobile operation interfaces. Automobile operation interface elements such as steering wheels, gearshifts, and speedometers facilitate the access, operation, and display of automobile resources, and status. Computer interaction interface elements such as check boxes, cursors, menus, scrollers, and windows (collectively and commonly referred to as widgets) similarly facilitate the access, capabilities, operation, and display of data and computer hardware and operating system resources, and status. Operation interfaces are commonly called user interfaces. Graphical user interfaces (GUIs) such as the Apple Macintosh Operating System's Aqua and iOS's Cocoa Touch, IBM's OS/2, Google's Android Mobile UI, Microsoft's Windows 2000/2003/3.1/95/98/CE/Millenium/Mobile/NT/XP/Vista/7/8 (i.e., Aero, Metro), Unix's X-Windows (e.g., which may include additional Unix graphic interface libraries and layers such as K Desktop Environment (KDE), mythTV and GNU Network Object Model Environment (GNOME)), web interface libraries (e.g., ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, etc. interface libraries such as, but not limited to, Dojo, jQuery(UI), MooTools, Prototype, script.aculo.us, SWFObject, Yahoo! User Interface, any of which may be used and) provide a baseline and means of accessing and displaying information graphically to users.


A user interface component 2017 is a stored program component that is executed by a CPU. The user interface may be a graphic user interface as provided by, with, and/or atop operating systems and/or operating environments such as already discussed. The user interface may allow for the display, execution, interaction, manipulation, and/or operation of program components and/or system facilities through textual and/or graphical facilities. The user interface provides a facility through which users may affect, interact, and/or operate a computer system. A user interface may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the user interface communicates with operating systems, other program components, and/or the like. The user interface may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.


Web Browser


A Web browser component 2018 is a stored program component that is executed by a CPU. The Web browser may be a hypertext viewing application such as Goofle's (Mobile) Chrome, Microsoft Internet Explorer, Netscape Navigator, Apple's (Mobile) Safari, embedded web browser objects such as through Apple's Cocoa (Touch) object class, and/or the like. Secure Web browsing may be supplied with 128 bit (or greater) encryption by way of HTTPS, SSL, and/or the like. Web browsers allowing for the execution of program components through facilities such as ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, web browser plug-in APIs (e.g., Chrome, FireFox, Internet Explorer, Safari Plug-in, and/or the like APIs), and/or the like. Web browsers and like information access tools may be integrated into PDAs, cellular telephones, smartphones, and/or other mobile devices. A Web browser may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the Web browser communicates with information servers, operating systems, integrated program components (e.g., plug-ins), and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. Also, in place of a Web browser and information server, a combined application may be developed to perform similar operations of both. The combined application would similarly effect the obtaining and the provision of information to users, user agents, and/or the like from the EWCP equipped nodes. The combined application may be nugatory on systems employing standard Web browsers.


Mail Server


A mail server component 2021 is a stored program component that is executed by a CPU 2003. The mail server may be an Internet mail server such as, but not limited to Apple's Mail Server (3), dovect, sendmail, Microsoft Exchange, and/or the like. The mail server may allow for the execution of program components through facilities such as ASP, ActiveX, (ANSI) (Objective-) C (++), C # and/or .NET, CGI scripts, Java, JavaScript, PERL, PHP, pipes, Python, WebObjects, and/or the like. The mail server may support communications protocols such as, but not limited to: Internet message access protocol (IMAP), Messaging Application Programming Interface (MAPI)/Microsoft Exchange, post office protocol (POP3), simple mail transfer protocol (SMTP), and/or the like. The mail server can route, forward, and process incoming and outgoing mail messages that have been sent, relayed and/or otherwise traversing through and/or to the EWCP.


Access to the EWCP mail may be achieved through a number of APIs offered by the individual Web server components and/or the operating system.


Also, a mail server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses.


Mail Client


A mail client component 2022 is a stored program component that is executed by a CPU 2003. The mail client may be a mail viewing application such as Apple (Mobile) Mail, Microsoft Entourage, Microsoft Outlook, Microsoft Outlook Express, Mozilla, Thunderbird, and/or the like. Mail clients may support a number of transfer protocols, such as: IMAP, Microsoft Exchange, POP3, SMTP, and/or the like. A mail client may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the mail client communicates with mail servers, operating systems, other mail clients, and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses. Generally, the mail client provides a facility to compose and transmit electronic mail messages.


Cryptographic Server


A cryptographic server component 2020 is a stored program component that is executed by a CPU 2003, cryptographic processor 2026, cryptographic processor interface 2027, cryptographic processor device 2028, and/or the like. Cryptographic processor interfaces will allow for expedition of encryption and/or decryption requests by the cryptographic component; however, the cryptographic component, alternatively, may run on a CPU. The cryptographic component allows for the encryption and/or decryption of provided data. The cryptographic component allows for both symmetric and asymmetric (e.g., Pretty Good Protection (PGP)) encryption and/or decryption. The cryptographic component may employ cryptographic techniques such as, but not limited to: digital certificates (e.g., X.509 authentication framework), digital signatures, dual signatures, enveloping, password access protection, public key management, and/or the like. The cryptographic component will facilitate numerous (encryption and/or decryption) security protocols such as, but not limited to: checksum, Data Encryption Standard (DES), Elliptical Curve Encryption (ECC), International Data Encryption Algorithm (IDEA), Message Digest 5 (MD5, which is a one way hash operation), passwords, Rivest Cipher (RC5), Rijndael, RSA (which is an Internet encryption and authentication system that uses an algorithm developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman), Secure Hash Algorithm (SHA), Secure Socket Layer (SSL), Secure Hypertext Transfer Protocol (HTTPS), and/or the like. Employing such encryption security protocols, the EWCP may encrypt all incoming and/or outgoing communications and may serve as node within a virtual private network (VPN) with a wider communications network. The cryptographic component facilitates the process of “security authorization” whereby access to a resource is inhibited by a security protocol wherein the cryptographic component effects authorized access to the secured resource. In addition, the cryptographic component may provide unique identifiers of content, e.g., employing and MD5 hash to obtain a unique signature for an digital audio file. A cryptographic component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. The cryptographic component supports encryption schemes allowing for the secure transmission of information across a communications network to enable the EWCP component to engage in secure transactions if so desired. The cryptographic component facilitates the secure accessing of resources on the EWCP and facilitates the access of secured resources on remote systems; i.e., it may act as a client and/or server of secured resources. Most frequently, the cryptographic component communicates with information servers, operating systems, other program components, and/or the like. The cryptographic component may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.


The EWCP Database


The EWCP database component 2019 may be embodied in a database and its stored data. The database is a stored program component, which is executed by the CPU; the stored program component portion configuring the CPU to process the stored data. The database may be any of a number of fault tolerant, relational, scalable, secure databases, such as DB2, MySQL, Oracle, Sybase, and/or the like. Relational databases are an extension of a flat file. Relational databases consist of a series of related tables. The tables are interconnected via a key field. Use of the key field allows the combination of the tables by indexing against the key field; i.e., the key fields act as dimensional pivot points for combining information from various tables. Relationships generally identify links maintained between tables by matching primary keys. Primary keys represent fields that uniquely identify the rows of a table in a relational database. More precisely, they uniquely identify rows of a table on the “one” side of a one-to-many relationship.


Alternatively, the EWCP database may be implemented using various standard data-structures, such as an array, hash, (linked) list, struct, structured text file (e.g., XML), table, and/or the like. Such data-structures may be stored in memory and/or in (structured) files. In another alternative, an object-oriented database may be used, such as Frontier, ObjectStore, Poet, Zope, and/or the like. Object databases can include a number of object collections that are grouped and/or linked together by common attributes; they may be related to other object collections by some common attributes. Object-oriented databases perform similarly to relational databases with the exception that objects are not just pieces of data but may have other types of capabilities encapsulated within a given object. If the EWCP database is implemented as a data-structure, the use of the EWCP database 2019 may be integrated into another component such as the EWCP component 2035. Also, the database may be implemented as a mix of data structures, objects, and relational structures. Databases may be consolidated and/or distributed in countless variations through standard data processing techniques. Portions of databases, e.g., tables, may be exported and/or imported and thus decentralized and/or integrated.


In one embodiment, the database component 2019 includes several tables 2019a-p. A Users table 2019a may include fields such as, but not limited to: user_id, ssn, dob, first_name, last_name, age, state, address_firstline, address_secondline, zipcode, devices_list, contact_info, contact_type, alt_contact_info, alt_contact_type, and/or the like. The Users table may support and/or track multiple entity accounts on a EWCP. A Devices table 2019b may include fields such as, but not limited to: device_ID, device_name, device_IP, device_GPS, device_MAC, device_serial, device_ECID, device_UDID, device_browser, device_type, device_model, device_version, device_OS, device_apps_list, device_securekey, wallet_app_installed_flag, and/or the like. An Apps table 2019c may include fields such as, but not limited to: app_ID, app_name, app_type, app_dependencies, app_access_code, user_pin, and/or the like. An Accounts table 2019d may include fields such as, but not limited to: account_number, account_security_code, account_name, issuer_acquirer_flag, issuer_name, acquirer_name, account_address, routing_number, access_API_call, linked_wallets_list, and/or the like. A Merchants table 2019e may include fields such as, but not limited to: merchant_id, merchant_name, merchant_address, store_id, ip_address, mac_address, auth_key, port_num, security_settings_list, and/or the like. An Issuers table 2019f may include fields such as, but not limited to: issuer_id, issuer_name, issuer_address, ip_address, mac_address, auth_key, port_num, security_settings_list, and/or the like. An Acquirers table 2019g may include fields such as, but not limited to: account_firstname, account_lastname, account_type, account_num, account_balance_list, billingaddress_line1, billingaddress_line2, billing_zipcode, billing_state, shipping_preferences, shippingaddress)line1, shippingaddress_line2, shipping_zipcode, shipping_state, and/or the like. A Pay Gateways table 2019h may include fields such as, but not limited to: gateway_ID, gateway_IP, gateway_MAC, gateway_secure_key, gateway_access_list, gateway_API_call_list, gateway_services_list, and/or the like. A Shop Sessions table 2019i may include fields such as, but not limited to: user_id, session_id, alerts_URL, timestamp, expiry Japse, merchant_id, store_id, device_type, device_ID, device_IP, device_MAC, device_browser, device_serial, device_ECID, device_model, device_OS, wallet_app_installed, total_cost, cart_ID_list, product_params_list, social_flag, social_message, social_networks_list, coupon_lists, accounts_list, CVV2_lists, charge_ratio_list, charge_priority_list, value_exchange_symbols_list, bill_address, ship_address, cloak_flag, pay_mode, alerts_rules_list, and/or the like. A Transactions table 2019j may include fields such as, but not limited to: order_id, user_id, timestamp, transaction_cost, purchase_details_list, num_products, products_list, product_type, product_params_list, product_title, product_summary, quantity, user_id, client_id, client_ip, client_type, client_model, operating_system, os_version, app_installed_flag, user_id, account_firstname, account_lastname, account_type, account_num, account_priority_account_ratio, billingaddress_line1, billingaddress_line2, billing_zipcode, billing_state, shipping_preferences, shippingaddress_line1, shippingaddress_line2, shipping_zipcode, shipping_state, merchant_id, merchant_name, merchant_auth_key, and/or the like. A Batches table 2019k may include fields such as, but not limited to: batch_id, transaction_id_list, timestamp_list, cleared_flag_list, clearance_trigger_settings, and/or the like. A Ledgers table 2019l may include fields such as, but not limited to: request_id, timestamp, deposit_amount, batch_id, transaction_id, clear_flag, deposit_account, transaction_summary, payor_name, payor_account, and/or the like. A Products table 2019m may include fields such as, but not limited to: product_ID, product_title, product_attributes_list, product_price, tax_info_list, related_products_list, offers_list, discounts_list, rewards_list, merchants_list, merchant_availability_list, and/or the like. An Offers table 2019n may include fields such as, but not limited to: offer_ID, offer_title, offer_attributes_list, offer_price, offer_expiry, related_products_list, discounts_list, rewards_list, merchants_list, merchant_availability_list, and/or the like. A Behavior Data table 20190 may include fields such as, but not limited to: user_id, timestamp, activity_type, activity_location, activity_attribute_list, activity_attribute_values_list, and/or the like. An Analytics table 2019p may include fields such as, but not limited to: report_id, user_id, report_type, report_algorithm_id, report_destination_address, and/or the like. In one embodiment, the EWCP database may interact with other database systems. For example, employing a distributed database system, queries and data access by search EWCP component may treat the combination of the EWCP database, an integrated data security layer database as a single database entity.


In one embodiment, user programs may contain various user interface primitives, which may serve to update the EWCP. Also, various accounts may require custom database tables depending upon the environments and the types of clients the EWCP may need to serve. It should be noted that any unique fields may be designated as a key field throughout. In an alternative embodiment, these tables have been decentralized into their own databases and their respective database controllers (i.e., individual database controllers for each of the above tables). Employing standard data processing techniques, one may further distribute the databases over several computer systemizations and/or storage devices. Similarly, configurations of the decentralized database controllers may be varied by consolidating and/or distributing the various database components 2019a-p. The EWCP may be configured to keep track of various settings, inputs, and parameters via database controllers.


The EWCP database may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the EWCP database communicates with the EWCP component, other program components, and/or the like. The database may contain, retain, and provide information regarding other nodes and data.


The EWCPs


The EWCP component 2035 is a stored program component that is executed by a CPU. In one embodiment, the EWCP component incorporates any and/or all combinations of the aspects of the EWCP discussed in the previous figures. As such, the EWCP affects accessing, obtaining and the provision of information, services, transactions, and/or the like across various communications networks. The features and embodiments of the EWCP discussed herein increase network efficiency by reducing data transfer requirements the use of more efficient data structures and mechanisms for their transfer and storage. As a consequence, more data may be transferred in less time, and latencies with regard to transactions, are also reduced. In many cases, such reduction in storage, transfer time, bandwidth requirements, latencies, etc., will reduce the capacity and structural infrastructure requirements to support the EWCP's features and facilities, and in many cases reduce the costs, energy consumption/requirements, and extend the life of EWCP's underlying infrastructure; this has the added benefit of making the EWCP more reliable. Similarly, many of the features and mechanisms are designed to be easier for users to use and access, thereby broadening the audience that may enjoy/employ and exploit the feature sets of the EWCP; such ease of use also helps to increase the reliability of the EWCP. In addition, the feature sets include heightened security as noted via the Cryptographic components 2020, 2026, 2028 and throughout, making access to the features and data more reliable and secure.


The EWCP component may transform customer purchase requests triggering electronic wallet applications via EWCP components into electronic purchase confirmation and receipts, and/or the like and use of the EWCP. In one embodiment, the EWCP component 2035 takes inputs (e.g., customer purchase request 305; checkout request 711; product data 715; wallet access input 911; transaction authorization input 914; payment gateway address 918; payment network address 922; issuer server address(es) 925; funds authorization request(s) 926; user(s) account(s) data 928; batch data 1112; payment network address 1116; issuer server address(es) 1124; individual payment request 1125; payment ledger, merchant account data 1131; and/or the like) etc., and transforms the inputs via various components (e.g., UPC 2041; PTA 2042; PTC 2043; EWCPT 2044; EWCPA 2045; EWC 2046; and/or the like), into outputs (e.g., customer purchase response 350; payment confirmation 340; checkout request message 713; checkout data 717; card authorization request 916, 923; funds authorization response(s) 930; transaction authorization response 932; batch append data 934; purchase receipt 935; batch clearance request 1114; batch payment request 1118; transaction data 1120; individual payment confirmation 1128, 1129; updated payment ledger, merchant account data 1133; and/or the like).


The EWCP component enabling access of information between nodes may be developed by employing standard development tools and languages such as, but not limited to: Apache components, Assembly, ActiveX, binary executables, (ANSI) (Objective-) C (++), C # and/or .NET, database adapters, CGI scripts, Java, JavaScript, mapping tools, procedural and object oriented development tools, PERL, PHP, Python, shell scripts, SQL commands, web application server extensions, web development environments and libraries (e.g., Microsoft's ActiveX; Adobe AIR, FLEX & FLASH; AJAX; (D)HTML; Dojo, Java; JavaScript; jQuery(UI); MooTools; Prototype; script.aculo.us; Simple Object Access Protocol (SOAP); SWFObject; Yahoo! User Interface; and/or the like), WebObjects, and/or the like. In one embodiment, the EWCP server employs a cryptographic server to encrypt and decrypt communications. The EWCP component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the EWCP component communicates with the EWCP database, operating systems, other program components, and/or the like. The EWCP may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.


Distributed EWCPs


The structure and/or operation of any of the EWCP node controller components may be combined, consolidated, and/or distributed in any number of ways to facilitate development and/or deployment. Similarly, the component collection may be combined in any number of ways to facilitate deployment and/or development. To accomplish this, one may integrate the components into a common code base or in a facility that can dynamically load the components on demand in an integrated fashion.


The component collection may be consolidated and/or distributed in countless variations through standard data processing and/or development techniques. Multiple instances of any one of the program components in the program component collection may be instantiated on a single node, and/or across numerous nodes to improve performance through load-balancing and/or data-processing techniques. Furthermore, single instances may also be distributed across multiple controllers and/or storage devices; e.g., databases. All program component instances and controllers working in concert may do so through standard data processing communication techniques.


The configuration of the EWCP controller will depend on the context of system deployment. Factors such as, but not limited to, the budget, capacity, location, and/or use of the underlying hardware resources may affect deployment requirements and configuration. Regardless of if the configuration results in more consolidated and/or integrated program components, results in a more distributed series of program components, and/or results in some combination between a consolidated and distributed configuration, data may be communicated, obtained, and/or provided. Instances of components consolidated into a common code base from the program component collection may communicate, obtain, and/or provide data. This may be accomplished through intra-application data processing communication techniques such as, but not limited to: data referencing (e.g., pointers), internal messaging, object instance variable communication, shared memory space, variable passing, and/or the like.


If component collection components are discrete, separate, and/or external to one another, then communicating, obtaining, and/or providing data with and/or to other components may be accomplished through inter-application data processing communication techniques such as, but not limited to: Application Program Interfaces (API) information passage; (distributed) Component Object Model ((D)COM), (Distributed) Object Linking and Embedding ((D)OLE), and/or the like), Common Object Request Broker Architecture (CORBA), Jini local and remote application program interfaces, JavaScript Object Notation (JSON), Remote Method Invocation (RMI), SOAP, process pipes, shared files, and/or the like. Messages sent between discrete component components for inter-application communication or within memory spaces of a singular component for intra-application communication may be facilitated through the creation and parsing of a grammar. A grammar may be developed by using development tools such as lex, yacc, XML, and/or the like, which allow for grammar generation and parsing capabilities, which in turn may form the basis of communication messages within and between components.


For example, a grammar may be arranged to recognize the tokens of an HTTP post command, e.g.:

    • w3c-post http:// . . . Value1


where Value1 is discerned as being a parameter because “http://” is part of the grammar syntax, and what follows is considered part of the post value. Similarly, with such a grammar, a variable “Value1” may be inserted into an “http://” post command and then sent. The grammar syntax itself may be presented as structured data that is interpreted and/or otherwise used to generate the parsing mechanism (e.g., a syntax description text file as processed by lex, yacc, etc.). Also, once the parsing mechanism is generated and/or instantiated, it itself may process and/or parse structured data such as, but not limited to: character (e.g., tab) delineated text, HTML, structured text streams, XML, and/or the like structured data. In another embodiment, inter-application data processing protocols themselves may have integrated and/or readily available parsers (e.g., JSON, SOAP, and/or like parsers) that may be employed to parse (e.g., communications) data. Further, the parsing grammar may be used beyond message parsing, but may also be used to parse: databases, data collections, data stores, structured data, and/or the like. Again, the desired configuration will depend upon the context, environment, and requirements of system deployment.


For example, in some implementations, the EWCP controller may be executing a PHP script implementing a Secure Sockets Layer (“SSL”) socket server via the information server, which listens to incoming communications on a server port to which a client may send data, e.g., data encoded in JSON format. Upon identifying an incoming communication, the PHP script may read the incoming message from the client device, parse the received JSON-encoded text data to extract information from the JSON-encoded text data into PHP script variables, and store the data (e.g., client identifying information, etc.) and/or extracted information in a relational database accessible using the Structured Query Language (“SQL”). An exemplary listing, written substantially in the form of PHP/SQL commands, to accept JSON-encoded input data from a client device via a SSL connection, parse the data to extract variables, and store the data to a database, is provided below:

    • <?PHP
    • header(‘Content-Type: text/plain’);
    • //set ip address and port to listen to for incoming data
    • $address=‘192.168.0.100’;
    • $port=255;
    • //create a server-side SSL socket, listen for/accept incoming communication
    • $sock=socket_create(AF_INET, SOCK_STREAM, 0);
    • socket_bind($sock, $address, $port) or die(‘Could not bind to address’);
    • socket_listen($sock);
    • $client=socket_accept($sock);
    • //read input data from client device in 1024 byte blocks until end of message
    • do {
      • $input=“ ”,
      • $input=socket_read($client, 1024);
      • $data.=$input;
    • } while($input !=“ ”);
    • //parse data to extract variables
    • $obj=json_decode($data, true);
    • //store input data in a database
    • mysq1_connect(“201.408.185.132”,$DBserver,$password); //access database server
    • mysq1_select(“CLIENT_DB.SQL”); //select database to append
    • mysq1_query(“INSERT INTO UserTable (transmission)
    • VALUES ($data)”); //add data to UserTable table in a CLIENT database
    • mysq1_close(“CLIENT_DB.SQL”); //close connection to database
    • ?>


Also, the following resources may be used to provide example embodiments regarding SOAP parser implementation:

    • http://www.xay.com/perl/site/lib/SOAP/Parser.html
    • http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc/referenceguide295.htm


and other parser implementations:

    • http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc/referenceguide259.htm


all of which are hereby expressly incorporated by reference herein.


Non-limiting example embodiments highlighting numerous further advantageous aspects include:


1. An e-wallet checkout processor-implemented method embodiment, comprising:

    • receiving a merchant payment request;
    • determining a web-to-wallet transition payment protocol handler associated with the merchant payment request;
    • instantiating, via a processor, a wallet application via the payment protocol handler;
    • obtaining a payment method selection via the wallet application;
    • providing a transaction execution request for a transaction associated with the merchant payment request;
    • receiving a purchase response to the transaction execution request; and
    • outputting purchase response information derived from the received purchase response.


2. The method of embodiment 1, wherein the payment protocol handler includes a purchase transaction parameter.


3. The method of embodiment 2, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


4. The method of embodiment 1, further comprising:

    • receiving a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • transistioning to the wallet application from the initiating webpage.


5. The method of embodiment 1, wherein the payment method selection is obtained by determining a default payment method.


6. The method of embodiment 1, wherein the payment method selection is an electronic wallet.


7. The method of embodiment 1, wherein the payment method selection is one of a credit card, a debit card, a gift card.


8. The method of embodiment 1, further comprising:

    • obtaining an authorization to use the payment method selection for the transaction.


9. The method of embodiment 1, wherein the wallet application is one of: a Java applet; an HTML application; and a Javascript application.


10. The method of embodiment 1, wherein the purchase response information comprises a receipt.


11. The method of embodiment 1, further comprising:

    • determining a discount associated with the payment method selection; and
    • calculating a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


12. The method of embodiment 1, further comprising:

    • displaying a default redirect page.


13. The method of embodiment 1, further comprising:

    • displaying a redirect page specified by a merchant associated with the merchant payment request.


14. The method of embodiment 1, further comprising:

    • obtaining a virtual merchant store injection package;
    • instantiating the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


15. An e-wallet checkout means embodiment, comprising means for:

    • receiving a merchant payment request;
    • determining a web-to-wallet transition payment protocol handler associated with the merchant payment request;
    • instantiating, via a processor, a wallet application via the payment protocol handler;
    • obtaining a payment method selection via the wallet application;
    • providing a transaction execution request for a transaction associated with the merchant payment request;
    • receiving a purchase response to the transaction execution request; and
    • outputting purchase response information derived from the received purchase response.


16. The means of embodiment 15, wherein the payment protocol handler includes a purchase transaction parameter.


17. The means of embodiment 16, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


18. The means of embodiment 15, further comprising means for:

    • receiving a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • transistioning to the wallet application from the initiating webpage.


19. The means of embodiment 15, wherein the payment method selection is obtained by determining a default payment method.


20. The means of embodiment 15, wherein the payment method selection is an electronic wallet.


21. The means of embodiment 15, wherein the payment method selection is one of a credit card, a debit card, a gift card.


22. The means of embodiment 15, further comprising means for:

    • obtaining an authorization to use the payment method selection for the transaction.


23. The means of embodiment 15, wherein the wallet application is one of: a Java applet; an HTML application; and a Javascript application.


24. The means of embodiment 15, wherein the purchase response information comprises a receipt.


25. The means of embodiment 15, further comprising means for:

    • determining a discount associated with the payment method selection; and
    • calculating a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


26. The means of embodiment 15, further comprising means for:

    • displaying a default redirect page.


27. The means of embodiment 15, further comprising means for:

    • displaying a redirect page specified by a merchant associated with the merchant payment request.


28. The means of embodiment 15, further comprising means for:

    • obtaining a virtual merchant store injection package;
    • instantiating the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


29. An e-wallet checkout apparatus embodiment, comprising:

    • a processor; and
    • a memory disposed in communication with the processor and storing processor-issuable instructions to:
      • receive a merchant payment request;
      • determine a web-to-wallet transition payment protocol handler associated with the merchant payment request;
      • instantiate, via the processor, a wallet application via the payment protocol handler;
      • obtain a payment method selection via the wallet application;
      • provide a transaction execution request for a transaction associated with the merchant payment request;
      • receive a purchase response to the transaction execution request; and
      • output purchase response information derived from the received purchase response.


30. The apparatus of embodiment 29, wherein the payment protocol handler includes a purchase transaction parameter.


31. The apparatus of embodiment 30, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


32. The apparatus of embodiment 29, the memory further storing instructions to:

    • receive a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • transistion to the wallet application from the initiating webpage.


33. The apparatus of embodiment 29, wherein the payment method selection is obtained by determining a default payment method.


34. The apparatus of embodiment 29, wherein the payment method selection is an electronic wallet.


35. The apparatus of embodiment 29, wherein the payment method selection is one of a credit card, a debit card, a gift card.


36. The apparatus of embodiment 29, the memory further storing instructions to:

    • obtain an authorization to use the payment method selection for the transaction.


37. The apparatus of embodiment 29, wherein the wallet application is one of: a Java applet; an HTML application; and a Javascript application.


38. The apparatus of embodiment 29, wherein the purchase response information comprises a receipt.


39. The apparatus of embodiment 29, the memory further storing instructions to:

    • determine a discount associated with the payment method selection; and
    • calculate a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


40. The apparatus of embodiment 29, the memory further storing instructions to:

    • display a default redirect page.


41. The apparatus of embodiment 29, the memory further storing instructions to:

    • display a redirect page specified by a merchant associated with the merchant payment request.


42. The apparatus of embodiment 29, the memory further storing instructions to:

    • obtain a virtual merchant store injection package;
    • instantiate the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


43. A computer-readable tangible medium embodiment storing computer-executable e-wallet checkout instructions to:

    • receive a merchant payment request;
    • determine a web-to-wallet transition payment protocol handler associated with the merchant payment request;
    • instantiate a wallet application via the payment protocol handler;
    • obtain a payment method selection via the wallet application;
    • provide a transaction execution request for a transaction associated with the merchant payment request;
    • receive a purchase response to the transaction execution request; and
    • output purchase response information derived from the received purchase response.


44. The medium of embodiment 43, wherein the payment protocol handler includes a purchase transaction parameter.


45. The medium of embodiment 44, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


46. The medium of embodiment 43, further storing instructions to:

    • receive a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • transistion to the wallet application from the initiating webpage.


47. The medium of embodiment 43, wherein the payment method selection is obtained by determining a default payment method.


48. The medium of embodiment 43, wherein the payment method selection is an electronic wallet.


49. The medium of embodiment 43, wherein the payment method selection is one of a credit card, a debit card, a gift card.


50. The medium of embodiment 43, further storing instructions to:

    • obtain an authorization to use the payment method selection for the transaction.


51. The medium of embodiment 43, wherein the wallet application is one of: a Java applet; an HTML application; and a Javascript application.


52. The medium of embodiment 43, wherein the purchase response information comprises a receipt.


53. The medium of embodiment 43, further storing instructions to:

    • determine a discount associated with the payment method selection; and
    • calculate a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


54. The medium of embodiment 43, further storing instructions to:

    • display a default redirect page.


55. The medium of embodiment 43, further storing instructions to:

    • display a redirect page specified by a merchant associated with the merchant payment request.


56. The medium of embodiment 43, further storing instructions to:

    • obtain a virtual merchant store injection package;
    • instantiate the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


57. An e-wallet checkout platform processor-implemented method embodiment, comprising:

    • providing a webpage including a merchant payment request and a web-to-wallet transition payment protocol handler associated with the merchant payment request;
    • wherein the protocol handler is consumer-triggerable for instantiating a wallet application via the protocol handler;
    • obtaining a payment method selection in response to providing the webpage from an instantiated wallet application;
    • obtaining a transaction execution request for a transaction associated with the merchant payment request;
    • providing a purchase response to the transaction execution request.


58. The method of embodiment 57, wherein the transaction execution request is obtained at one of: a merchant server; an issuer server; an acquirer server; and a payment network server.


59. The method of embodiment 57, wherein the payment protocol handler includes a


60. The method of embodiment 59, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


61. The method of embodiment 57, further comprising:

    • providing a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • obtaining a response from a wallet application instantiated based on the provided webpage.


62. The method of embodiment 57, wherein the payment method selection is obtained by determining a default payment method.


63. The method of embodiment 57, wherein the payment method selection is an electronic wallet.


64. The method of embodiment 57, wherein the payment method selection is one of a credit card, a debit card, a gift card.


The method of embodiment 57, further comprising:

    • obtaining an authorization to use the payment method selection for the transaction.


66. The method of embodiment 57, wherein the provided purchase response to the transaction execution request includes a purchase receipt.


67. The method of embodiment 57, further comprising:

    • determining a discount associated with the payment method selection; and
    • calculating a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


68. The method of embodiment 57, further comprising:

    • providing a virtual merchant store injection package;
    • instantiating the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


69. An e-wallet checkout platform means embodiment, comprising means for:

    • providing a webpage including a merchant payment request and a web-to-wallet transition payment protocol handler associated with the merchant payment request;
    • wherein the protocol handler is consumer-triggerable for instantiating a wallet application via the protocol handler;
    • obtaining a payment method selection in response to providing the webpage from an instantiated wallet application;
    • obtaining a transaction execution request for a transaction associated with the merchant payment request;
    • providing a purchase response to the transaction execution request.


70. The means of embodiment 69, wherein the transaction execution request is obtained at one of: a merchant server; an issuer server; an acquirer server; and a payment network server.


71. The means of embodiment 69, wherein the payment protocol handler includes a purchase transaction parameter.


72. The means of embodiment 71, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


73. The means of embodiment 69, further comprising means for:

    • providing a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • obtaining a response from a wallet application instantiated based on the provided webpage.


74. The means of embodiment 69, wherein the payment method selection is obtained by determining a default payment method.


75. The means of embodiment 69, wherein the payment method selection is an electronic wallet.


76. The means of embodiment 69, wherein the payment method selection is one of a credit card, a debit card, a gift card.


77. The means of embodiment 69, further comprising means for:

    • obtaining an authorization to use the payment method selection for the transaction.


78. The means of embodiment 69, wherein the provided purchase response to the transaction execution request includes a purchase receipt.


79. The means of embodiment 69, further comprising means for:

    • determining a discount associated with the payment method selection; and
    • calculating a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


The means of embodiment 69, further comprising means for:

    • providing a virtual merchant store injection package;
    • instantiating the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


81. An e-wallet checkout platform system embodiment, comprising:

    • a processor; and
    • a memory disposed in communication with the processor and storing processor-issuable instructions to:
      • provide a webpage including a merchant payment request and a web-to-wallet transition payment protocol handler associated with the merchant payment request;
      • wherein the protocol handler is consumer-triggerable for instantiating a wallet application via the protocol handler;
      • obtain a payment method selection in response to providing the webpage from an instantiated wallet application;
      • obtain a transaction execution request for a transaction associated with the merchant payment request;
      • provide a purchase response to the transaction execution request.


82. The system of embodiment 81, wherein the transaction execution request is obtained at one of: a merchant server; an issuer server; an acquirer server; and a payment network server.


83. The system of embodiment 81, wherein the payment protocol handler includes a


84. The system of embodiment 83, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


85. The system of embodiment 81, the memory further storing instructions to:

    • provide a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • obtain a response from a wallet application instantiated based on the provided webpage.


86. The system of embodiment 81, wherein the payment method selection is obtained by determining a default payment method.


87. The system of embodiment 81, wherein the payment method selection is an electronic wallet.


88. The system of embodiment 81, wherein the payment method selection is one of a credit card, a debit card, a gift card.


89. The system of embodiment 81, the memory further storing instructions to:

    • obtain an authorization to use the payment method selection for the transaction.


90. The system of embodiment 81, wherein the provided purchase response to the transaction execution request includes a purchase receipt.


91. The system of embodiment 81, the memory further storing instructions to:

    • determine a discount associated with the payment method selection; and
    • calculate a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


92. The system of embodiment 81, the memory further storing instructions to:

    • provide a virtual merchant store injection package;
    • instantiate the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


93. A computer-readable tangible medium embodiment storing computer-executable e-wallet checkout platform instructions to:

    • provide a webpage including a merchant payment request and a web-to-wallet transition payment protocol handler associated with the merchant payment request;
    • wherein the protocol handler is consumer-triggerable for instantiating a wallet application via the protocol handler;
    • obtain a payment method selection in response to providing the webpage from an instantiated wallet application;
    • obtain a transaction execution request for a transaction associated with the merchant payment request;
    • provide a purchase response to the transaction execution request.


94. The medium of embodiment 93, wherein the transaction execution request is obtained at one of: a merchant server; an issuer server; an acquirer server; and a payment network server.


95. The medium of embodiment 93, wherein the payment protocol handler includes a purchase transaction parameter.


96. The medium of embodiment 95, wherein the purchase transaction parameter includes one of: a selected payment method; a user-selected merchandise; a merchandise price; an applicable discounts; and an offer.


97. The medium of embodiment 93, further storing instructions to:

    • provide a merchant payment request resulting from a transaction initiated from an initiating webpage; and
    • obtain a response from a wallet application instantiated based on the provided webpage.


98. The medium of embodiment 93, wherein the payment method selection is obtained by determining a default payment method.


99. The medium of embodiment 93, wherein the payment method selection is an electronic wallet.


100. The medium of embodiment 93, wherein the payment method selection is one of a credit card, a debit card, a gift card.


101. The medium of embodiment 93, further storing instructions to:

    • obtain an authorization to use the payment method selection for the transaction.


102. The medium of embodiment 93, wherein the provided purchase response to the transaction execution request includes a purchase receipt.


103. The medium of embodiment 93, further storing instructions to:

    • determine a discount associated with the payment method selection; and
    • calculate a purchase price for the transaction associated with the merchant payment request by applying the discount associated with the payment method selection.


104. The medium of embodiment 93, further storing instructions to:

    • provide a virtual merchant store injection package;
    • instantiate the virtual merchant store within the wallet application for display and interaction; and
    • wherein the transaction associated with the merchant payment request includes purchase of a merchandise displayed in the virtual merchant store.


In order to address various issues and advance the art, the entirety of this application for ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS (including the Cover Page, Title, Headings, Field, Background, Summary, Brief Description of the Drawings, Detailed Description, Claims, Abstract, FIGURES, Appendices and/or otherwise) shows by way of illustration various example embodiments in which the claimed innovations may be practiced. The advantages and features of the application are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed principles. It should be understood that they are not representative of all claimed innovations. As such, certain aspects of the disclosure have not been discussed herein. That alternate embodiments may not have been presented for a specific portion of the innovations or that further undescribed alternate embodiments may be available for a portion is not to be considered a disclaimer of those alternate embodiments. It will be appreciated that many of those undescribed embodiments incorporate the same principles of the innovations and others are equivalent. Thus, it is to be understood that other embodiments may be utilized and functional, logical, operational, organizational, structural and/or topological modifications may be made without departing from the scope and/or spirit of the disclosure. As such, all examples and/or embodiments are deemed to be non-limiting throughout this disclosure. Also, no inference should be drawn regarding those embodiments discussed herein relative to those not discussed herein other than it is as such for purposes of reducing space and repetition. For instance, it is to be understood that the logical and/or topological structure of any combination of any data flow sequence(s), program components (a component collection), other components and/or any present feature sets as described in the figures and/or throughout are not limited to a fixed operating order and/or arrangement, but rather, any disclosed order is exemplary and all equivalents, regardless of order, are contemplated by the disclosure. Furthermore, it is to be understood that such features are not limited to serial execution, but rather, any number of threads, processes, processors, services, servers, and/or the like that may execute asynchronously, concurrently, in parallel, simultaneously, synchronously, and/or the like are also contemplated by the disclosure. As such, some of these features may be mutually contradictory, in that they cannot be simultaneously present in a single embodiment. Similarly, some features are applicable to one aspect of the innovations, and inapplicable to others. In addition, the disclosure includes other innovations not presently claimed. Applicant reserves all rights in those presently unclaimed innovations, including the right to claim such innovations, file additional applications, continuations, continuations-in-part, divisions, and/or the like thereof. As such, it should be understood that advantages, embodiments, examples, functional, features, logical, operational, organizational, structural, topological, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims. It is to be understood that, depending on the particular needs and/or characteristics of a EWCP individual and/or enterprise user, database configuration and/or relational model, data type, data transmission and/or network framework, syntax structure, and/or the like, various embodiments of the EWCP may be implemented that allow a great deal of flexibility and customization. For example, aspects of the EWCP may be adapted for facilitating donations, creating web-based operating systems, and/or the like. While various embodiments and discussions of the EWCP have been directed to electronic purchase transactions, however, it is to be understood that the embodiments described herein may be readily configured and/or customized for a wide variety of other applications and/or implementations.

Claims
  • 1. An e-wallet checkout system, comprising: a memory storing processor-issuable instructions; anda server having a processor that is in communication with the memory, the processor executing the processor-issuable instructions to:receive, from a merchant server, a selection from a user device of an item for purchase from the merchant server;receive, from the merchant server, a merchant payment request for the item, wherein the merchant payment request comprises a payment protocol string;parse the merchant payment request to identify the payment protocol string within the payment request, wherein the payment protocol string comprises a plurality of payment protocol handlers, wherein at least one of the payment protocol handlers indicates the merchant server uses an electronic wallet checkout platform (EWCP) supported protocol;determine an appropriate payment protocol handler from the plurality of payment protocol handlers within the identified payment protocol string in the merchant payment request, wherein the plurality of protocol handlers comprises at least one of a customer type, device type, or operating system type, wherein the appropriate payment protocol handler is determined based on a ranking of the plurality of payment protocol handlers;process the merchant payment request using the appropriate payment protocol handler, wherein the payment protocol handler that indicates that the merchant server uses an EWCP supported protocol is used to transition from a web browser to an electronic wallet;in response to the payment protocol string indicating the merchant server uses an EWCP supported protocol, instantiate, on the user device, a wallet application, based on the appropriate payment protocol handler;obtain, from the user device, a payment method selection via the wallet application; provide a transaction execution request including the selected payment method to the merchant server to initiate payment to the merchant according to the merchant payment request, receive a purchase response to the transaction execution request from a checkout server, andoutput purchase response information derived from the received purchase response.
  • 2. The system of claim 1, wherein the appropriate payment protocol handler includes a purchase transaction parameter.
  • 3. The system of claim 2, wherein the purchase transaction parameter includes one of a selected payment method, a merchandise price, an applicable discount, and an offer.
  • 4. The system of claim 1, further including processor issuable instructions to: obtain security credentials to launch the wallet application wherein the wallet application is further instantiated in response to verification of the security credentials.
  • 5. The system of claim 1, wherein the payment method selection is obtained by determining a default payment method.
  • 6. The system of claim 1, wherein the payment method selection is an electronic wallet.
  • 7. The system of claim 1, wherein the payment method selection is one of a credit card, a debit card, and a gift card.
  • 8. The system of claim 1, further including processor-issuable instructions to: determine that a store injection package is available from the merchant server to inject into the wallet application after receipt of the merchant payment request; and in response to a determination that the store injection package is available, inject a store into the wallet application to allow selection of additional items for purchase from the store prior to obtaining the payment method.
  • 9. The system of claim 1, wherein the wallet application is one of a Java applet, an HTML application, and a Javascript application.
  • 10. The system of claim 1, further including processor-issuable instructions to: display a redirect page specified by a merchant associated with the merchant payment request.
PRIORITY CLAIM

This application is a continuation of U.S. patent application Ser. No. 16/140,879 filed Sep. 25, 2018, entitled “ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS,” which is a continuation of U.S. patent application Ser. No. 13/542,443 filed Jul. 5, 2012, entitled “ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS,” now U.S. Pat. No. 10,121,129, which claims priority under 35 USC § 119 to U.S. provisional patent application Ser. No. 61/504,348 filed Jul. 5, 2011, entitled “ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS.” The entire contents of the aforementioned applications are expressly incorporated by reference herein.

US Referenced Citations (1431)
Number Name Date Kind
789106 Seymour May 1905 A
4896363 Taylor Jan 1990 A
5177342 Adams Jan 1993 A
5221838 Gutman Jun 1993 A
5237164 Takada Aug 1993 A
5311594 Penzias May 1994 A
5383113 Kight Jan 1995 A
5384449 Peirce Jan 1995 A
5446890 Renslo Aug 1995 A
5459656 Fields Oct 1995 A
5500513 Langhans Mar 1996 A
5510777 Pilc Apr 1996 A
5521362 Powers May 1996 A
5526409 Conrow Jun 1996 A
5530438 Bickham Jun 1996 A
5536045 Adams Jul 1996 A
5590038 Pitroda Dec 1996 A
5613012 Hoffman Mar 1997 A
5615110 Wong Mar 1997 A
5615264 Kazmierczak Mar 1997 A
5621201 Langhans Apr 1997 A
5640193 Wellner Jun 1997 A
5649118 Carlisle Jul 1997 A
5655007 McAllister Aug 1997 A
5748737 Daggar May 1998 A
5781438 Lee Jul 1998 A
5796832 Kawan Aug 1998 A
5815657 Williams Sep 1998 A
5850446 Berger Dec 1998 A
5878337 Joao Mar 1999 A
5883810 Franklin Mar 1999 A
5884271 Pitroda Mar 1999 A
5892838 Brady Apr 1999 A
5903830 Joao May 1999 A
5914472 Foladare Jun 1999 A
5943624 Fox Aug 1999 A
5953710 Fleming Sep 1999 A
5956699 Wong Sep 1999 A
5963924 Williams Oct 1999 A
6000832 Franklin Dec 1999 A
6006200 Boies Dec 1999 A
6014635 Harris Jan 2000 A
6044360 Picciallo Mar 2000 A
6052675 Checchio Apr 2000 A
6064990 Goldsmith May 2000 A
6092053 Boesch Jul 2000 A
6160903 Hamid Dec 2000 A
6161130 Horvitz Dec 2000 A
6163771 Walker Dec 2000 A
6164533 Barton Dec 2000 A
6182894 Hackett Feb 2001 B1
6193155 Walker Feb 2001 B1
6195447 Ross Feb 2001 B1
6202052 Miller Mar 2001 B1
6202933 Poore Mar 2001 B1
6226624 Watson May 2001 B1
6227447 Campisano May 2001 B1
6236981 Hill May 2001 B1
6243688 Kalina Jun 2001 B1
6263447 French Jul 2001 B1
6267292 Walker Jul 2001 B1
6327578 Linehan Dec 2001 B1
6336099 Barnett Jan 2002 B1
6339766 Gephart Jan 2002 B1
6341724 Campisano Jan 2002 B2
6381584 Ogram Apr 2002 B1
6385596 Wiser May 2002 B1
6385655 Smith May 2002 B1
6422462 Cohen Jul 2002 B1
6425523 Shem-Ur Jul 2002 B1
6439345 Recktenwald Aug 2002 B1
6456984 Demoff Sep 2002 B1
6473500 Risafi Oct 2002 B1
6529725 Joao Mar 2003 B1
6535855 Cahill Mar 2003 B1
6560581 Fox May 2003 B1
6592044 Wong Jul 2003 B1
6601761 Katis Aug 2003 B1
6636833 Flitcroft Oct 2003 B1
6735572 Landesmann May 2004 B2
6748367 Lee Jun 2004 B1
6805287 Bishop Oct 2004 B2
6853982 Smith Feb 2005 B2
6857073 French Feb 2005 B2
6865522 Gastiger Mar 2005 B1
6873974 Schutzer Mar 2005 B1
6879965 Fung Apr 2005 B2
6891953 Demello May 2005 B1
6898598 Himmel May 2005 B2
6901387 Wells May 2005 B2
6925439 Pitroda Aug 2005 B1
6931382 Laage Aug 2005 B2
6934528 Loureiro Aug 2005 B2
6938019 Uzo Aug 2005 B1
6941285 Sarcanin Sep 2005 B2
6944595 Graser Sep 2005 B1
6980670 Hoffman Dec 2005 B1
6990470 Hogan Jan 2006 B2
6991157 Bishop Jan 2006 B2
6999943 Johnson Feb 2006 B1
7024383 Mancini Apr 2006 B1
7028052 Chapman Apr 2006 B2
7047041 Vanska May 2006 B2
7051002 Keresman, III May 2006 B2
7051929 Li May 2006 B2
7069249 Stolfo Jun 2006 B2
7089208 Levchin Aug 2006 B1
7096003 Joao Aug 2006 B2
7103576 Mann Sep 2006 B2
7111789 Rajasekaran Sep 2006 B2
7113930 Eccles Sep 2006 B2
7117172 Black Oct 2006 B1
7136835 Flitcroft Nov 2006 B1
7155411 Blinn Dec 2006 B1
7156311 Attia Jan 2007 B2
7167903 Percival Jan 2007 B2
7177835 Walker Feb 2007 B1
7177848 Hogan Feb 2007 B2
7180457 Trott Feb 2007 B2
7194437 Britto Mar 2007 B1
7206847 Alberth Apr 2007 B1
7209561 Shankar Apr 2007 B1
7212979 Matz May 2007 B1
7228011 Queeno Jun 2007 B1
RE39736 Morrill Jul 2007 E
7264154 Harris Sep 2007 B2
7266557 Aschen Sep 2007 B2
7268667 Beenau Sep 2007 B2
7268668 Beenau Sep 2007 B2
7287692 Patel Oct 2007 B1
7290704 Ball Nov 2007 B1
7292999 Hobson Nov 2007 B2
7313546 Alarcon-Luther Dec 2007 B2
7318049 Iannacci Jan 2008 B2
7337119 Geschwender Feb 2008 B1
7337144 Blinn Feb 2008 B1
7343149 Benco Mar 2008 B2
7343351 Bishop Mar 2008 B1
7349885 Gangi Mar 2008 B2
7350230 Forrest Mar 2008 B2
7353382 Labrou Apr 2008 B2
7356505 March Apr 2008 B2
7357310 Calabrese Apr 2008 B2
7359880 Abel Apr 2008 B2
7373669 Eisen May 2008 B2
7379899 Junger May 2008 B1
7379919 Hogan May 2008 B2
7392222 Hamilton Jun 2008 B1
RE40444 Linehan Jul 2008 E
7395242 Blinn Jul 2008 B2
7398250 Blinn Jul 2008 B2
7413113 Zhu Aug 2008 B1
7415443 Hobson Aug 2008 B2
7415469 Singh Aug 2008 B2
7427021 Kemper Sep 2008 B2
7444676 Asghari-Kamrani Oct 2008 B1
7450966 Vanska Nov 2008 B2
7469151 Khan Dec 2008 B2
7477780 Boncyk Jan 2009 B2
7499889 Golan Mar 2009 B2
7500607 Williams Mar 2009 B2
7505935 Mendiola Mar 2009 B2
7533064 Boesch May 2009 B1
7536318 Wolfe May 2009 B1
7536335 Weston May 2009 B1
7536360 Stolfo May 2009 B2
7540012 Herzberg May 2009 B1
7548889 Bhambri Jun 2009 B2
7567934 Flitcroft Jul 2009 B2
7567936 Peckover Jul 2009 B1
7571139 Giordano Aug 2009 B1
7571140 Weichert Aug 2009 B2
7571142 Flitcroft Aug 2009 B1
7580898 Brown Aug 2009 B2
7584153 Brown Sep 2009 B2
7593858 Matz Sep 2009 B2
7593896 Flitcroft Sep 2009 B1
7603311 Yadav-Ranjan Oct 2009 B1
7606560 Labrou Oct 2009 B2
7627531 Breck Dec 2009 B2
7627895 Gifford Dec 2009 B2
7630937 Mo Dec 2009 B1
7634295 Hayaashi Dec 2009 B2
7644037 Ostrovsky Jan 2010 B1
7644859 Zhu Jan 2010 B1
7650314 Saunders Jan 2010 B1
7660749 Koski Feb 2010 B2
7664733 Erol Feb 2010 B2
7668754 Bridgelall Feb 2010 B1
7669760 Zettner Mar 2010 B1
7676434 Evans Mar 2010 B2
7685037 Reiners Mar 2010 B2
7685067 Britto Mar 2010 B1
7698221 Blinn Apr 2010 B2
7702578 Fung Apr 2010 B2
7707113 Dimartino Apr 2010 B1
7707120 Dominguez Apr 2010 B2
7708194 Vawter May 2010 B2
7708198 Gangi May 2010 B2
7712655 Wong May 2010 B2
7712658 Gangi May 2010 B2
7720436 Hamynen May 2010 B2
7734527 Uzo Jun 2010 B2
7739194 Blinn Jun 2010 B2
7742984 Mohsenzadeh Jun 2010 B2
7753265 Harris Jul 2010 B2
7770789 Oder Aug 2010 B2
7774076 Skowronek Aug 2010 B2
7783569 Abel Aug 2010 B2
7784684 Labrou Aug 2010 B2
7784685 Hopkins Aug 2010 B1
7793851 Mullen Sep 2010 B2
7797215 Zerenner Sep 2010 B1
7801826 Labrou Sep 2010 B2
7801829 Gray Sep 2010 B2
7802719 Johnson Sep 2010 B2
7805376 Smith Sep 2010 B2
7805378 Berardi Sep 2010 B2
7810720 Lovett Oct 2010 B2
7818264 Hammad Oct 2010 B2
7819307 Lyons Oct 2010 B2
7827288 Da Nov 2010 B2
7828206 Hessburg Nov 2010 B2
7828220 Mullen Nov 2010 B2
7828992 Kilickiran Nov 2010 B2
7835960 Breck Nov 2010 B2
7837125 Biskupski Nov 2010 B2
7841523 Oder Nov 2010 B2
7841539 Hewton Nov 2010 B2
7844530 Ziade Nov 2010 B2
7844550 Walker Nov 2010 B2
7848980 Carlson Dec 2010 B2
7849014 Erikson Dec 2010 B2
7849020 Johnson Dec 2010 B2
7853529 Walker Dec 2010 B1
7853995 Chow Dec 2010 B2
7865414 Fung Jan 2011 B2
7870027 Tannenbaum Jan 2011 B1
7873579 Hobson Jan 2011 B2
7873580 Hobson Jan 2011 B2
7877299 Bui Jan 2011 B2
7878400 Harris Feb 2011 B2
7890370 Whitsitt Feb 2011 B2
7890393 Talbert Feb 2011 B2
7891563 Oder Feb 2011 B2
7895119 Praisner Feb 2011 B2
7896238 Fein Mar 2011 B2
7899744 Bishop Mar 2011 B2
7904360 Evans Mar 2011 B2
7908216 Davis Mar 2011 B1
7908227 Zizzimopoulos Mar 2011 B2
7922082 Muscato Apr 2011 B2
7926714 Zhu Apr 2011 B1
7931195 Mullen Apr 2011 B2
7933779 Rooks Apr 2011 B2
7937324 Patterson May 2011 B2
7938318 Fein May 2011 B2
7942337 Jain May 2011 B2
7954705 Mullen Jun 2011 B2
7959076 Hopkins Jun 2011 B1
7962418 Wei Jun 2011 B1
7963441 Emmons Jun 2011 B2
7967196 Bierbaum Jun 2011 B1
7971782 Shams Jul 2011 B1
7996259 Distefano, III Aug 2011 B1
7996288 Stolfo Aug 2011 B1
8016192 Messerges Sep 2011 B2
8020763 Kowalchyk Sep 2011 B1
8024260 Hogl Sep 2011 B1
8025223 Saunders Sep 2011 B2
8028041 Olliphant Sep 2011 B2
8032438 Barton Oct 2011 B1
8041338 Chen Oct 2011 B2
8046256 Chien Oct 2011 B2
8050997 Nosek Nov 2011 B1
8060413 Castell Nov 2011 B2
8060448 Jones Nov 2011 B2
8060449 Zhu Nov 2011 B1
8073565 Johnson Dec 2011 B2
8074876 Foss Dec 2011 B2
8074877 Mullen Dec 2011 B2
8074879 Harris Dec 2011 B2
8082210 Hansen Dec 2011 B2
8090351 Klein Jan 2012 B2
8095113 Kean Jan 2012 B2
8095602 Orbach Jan 2012 B1
8104679 Brown Jan 2012 B2
8108261 Carlier Jan 2012 B2
RE43157 Bishop Feb 2012 E
8109436 Hopkins Feb 2012 B1
8117127 Sanders Feb 2012 B1
8121942 Carlson Feb 2012 B2
8121956 Carlson Feb 2012 B2
8126449 Beenau Feb 2012 B2
8127982 Casey Mar 2012 B1
8131666 Obrien Mar 2012 B2
8140418 Casey Mar 2012 B1
8145188 Park Mar 2012 B2
8145561 Zhu Mar 2012 B1
8145566 Ahuja Mar 2012 B1
8145569 Gong Mar 2012 B2
8145898 Kamalakantha Mar 2012 B2
8150767 Wankmueller Apr 2012 B2
8150772 Mardikar Apr 2012 B2
8151328 Lundy Apr 2012 B1
8151330 Vishik Apr 2012 B2
8151336 Savoor Apr 2012 B2
8155999 De Boer Apr 2012 B2
8156000 Thompson Apr 2012 B1
8156026 Junger Apr 2012 B2
8156042 Winkleman, III Apr 2012 B2
8156549 Rice Apr 2012 B2
8157178 Dewan Apr 2012 B2
8157181 Bates Apr 2012 B2
8160935 Bui Apr 2012 B2
8160959 Rackley, III Apr 2012 B2
8165961 Dimartino Apr 2012 B1
8166068 Stevens Apr 2012 B2
RE43351 Jordan May 2012 E
8170921 Stocker May 2012 B2
8171525 Pelly May 2012 B1
8175235 Mumford May 2012 B2
8175965 Moore May 2012 B2
8175967 Oleary May 2012 B2
8175968 Oleary May 2012 B2
8175973 Davis May 2012 B2
8175975 Cai May 2012 B2
8175979 Baentsch May 2012 B2
8176416 Williams May 2012 B1
8176554 Kennedy May 2012 B1
8179563 King May 2012 B2
8180289 Glickman May 2012 B1
8180705 Kowalchyk May 2012 B2
8180804 Narayanan May 2012 B1
8190513 Felger May 2012 B2
8190523 Patterson May 2012 B2
8191775 Hildred Jun 2012 B2
8195233 Morikuni Jun 2012 B2
8195544 Horsfall Jun 2012 B2
8195547 Aaltonen Jun 2012 B2
8195565 Bishop Jun 2012 B2
8195576 Grigg Jun 2012 B1
8196131 Von Behren Jun 2012 B1
8196813 Vadhri Jun 2012 B2
8200582 Zhu Jun 2012 B1
8200868 Maarten Jun 2012 B1
8204774 Chwast Jun 2012 B2
8204829 Alvarez Jun 2012 B2
8205791 Randazza Jun 2012 B2
8209245 Dennes Jun 2012 B2
8209744 Zhu Jun 2012 B2
8214288 Olliphant Jul 2012 B2
8214289 Scipioni Jul 2012 B2
8214291 Pelegero Jul 2012 B2
8214292 Duggal Jul 2012 B2
8214293 Powell Jul 2012 B2
8214886 Foley Jul 2012 B2
8215546 Lin Jul 2012 B2
8219411 Matz Jul 2012 B2
8219474 Sutton Jul 2012 B2
8219489 Patterson Jul 2012 B2
8219490 Hammad Jul 2012 B2
8220047 Soghoian Jul 2012 B1
8224702 Mangerink Jul 2012 B2
8224754 Pastusiak Jul 2012 B2
8224773 Spiegel Jul 2012 B2
8225385 Chow Jul 2012 B2
8225997 Bierbaum Jul 2012 B1
8227936 Folk Jul 2012 B1
8229354 Sklovsky Jul 2012 B2
8229808 Heit Jul 2012 B1
8229844 Felger Jul 2012 B2
8229851 Doran Jul 2012 B2
8229852 Carlson Jul 2012 B2
8229854 Stephen Jul 2012 B2
8233841 Griffin Jul 2012 B2
8234183 Smith Jul 2012 B2
8239276 Lin Aug 2012 B2
8244580 Mankoff Aug 2012 B2
8245139 Michelman Aug 2012 B2
8249925 Broms Aug 2012 B2
8249965 Tumminaro Aug 2012 B2
8255278 Young Aug 2012 B1
8255323 Casey Aug 2012 B1
8255324 Bercy Aug 2012 B2
8265993 Chien Sep 2012 B2
8275704 Bishop Sep 2012 B2
8280777 Mengerink Oct 2012 B2
8281991 Wentker Oct 2012 B2
8281998 Tang Oct 2012 B2
8282002 Shams Oct 2012 B2
8285640 Scipioni Oct 2012 B2
8285820 Olliphant Oct 2012 B2
8285832 Schwab Oct 2012 B2
8286875 Tang Oct 2012 B2
8290433 Fisher Oct 2012 B2
8290819 Bawcutt Oct 2012 B2
8290829 Katz Oct 2012 B1
8295898 Ashfield Oct 2012 B2
8296187 Light Oct 2012 B2
8296204 Templeton Oct 2012 B2
8296228 Kloor Oct 2012 B1
8296231 Britto Oct 2012 B2
8301500 Pharris Oct 2012 B2
8301510 Boesch Oct 2012 B2
8301556 Hogl Oct 2012 B2
8311520 Choi Nov 2012 B2
8312096 Cohen Nov 2012 B2
8321267 Hoerenz Nov 2012 B2
8321294 Carlier Nov 2012 B2
8321315 Abel Nov 2012 B2
8321338 Baumgart Nov 2012 B2
8321343 Ramavarjula Nov 2012 B2
8321364 Gharpure Nov 2012 B1
8326756 Egendorf Dec 2012 B2
8326769 Weisman Dec 2012 B1
8326770 Weisman Dec 2012 B1
8327450 Clement Dec 2012 B2
8328095 Oder Dec 2012 B2
8332272 Fisher Dec 2012 B2
8332275 Poon Dec 2012 B2
8332323 Stals Dec 2012 B2
8335720 Juang Dec 2012 B2
8335726 Ling Dec 2012 B1
8335822 Ahmed Dec 2012 B2
8335921 Von Behren Dec 2012 B2
8335932 Von Behren Dec 2012 B2
8336088 Raj Dec 2012 B2
8340666 Ramer Dec 2012 B2
8341029 Ramalingam Dec 2012 B1
8346643 Boyer Jan 2013 B2
8346659 Mohsenzadeh Jan 2013 B1
8346663 Kawan Jan 2013 B2
8346666 Lindelsee Jan 2013 B2
8352323 Fisher Jan 2013 B2
8352362 Mohsenzadeh Jan 2013 B2
8352499 Bharat Jan 2013 B2
8352749 Von Behren Jan 2013 B2
8355987 Hirson Jan 2013 B2
8359070 Zhu Jan 2013 B1
8364587 Nuzum Jan 2013 B2
8364590 Casey Jan 2013 B1
8370264 Wei Feb 2013 B1
8376225 Hopkins Feb 2013 B1
8380177 Laracey Feb 2013 B2
8380349 Hickman Feb 2013 B1
8386078 Hickman Feb 2013 B1
8387873 Saunders Mar 2013 B2
8396750 Hariharan Mar 2013 B1
8396810 Cook Mar 2013 B1
8401539 Beenau Mar 2013 B2
8401898 Chien Mar 2013 B2
8401904 Simakov Mar 2013 B1
8402555 Grecia Mar 2013 B2
8403211 Brooks Mar 2013 B2
8412586 Foulser Apr 2013 B1
8412623 Moon Apr 2013 B2
8412630 Ross Apr 2013 B2
8412837 Emigh Apr 2013 B1
8417633 Chmara Apr 2013 B1
8417642 Oren Apr 2013 B2
8423462 Amacker Apr 2013 B1
8429521 Lloyd Apr 2013 B2
8437633 Chmara Apr 2013 B2
8447699 Batada May 2013 B2
8453223 Svigals May 2013 B2
8453925 Fisher Jun 2013 B2
8458487 Palgon Jun 2013 B1
8484134 Hobson Jul 2013 B2
8485437 Mullen Jul 2013 B2
8494959 Hathaway Jul 2013 B2
8498908 Mengerink Jul 2013 B2
8504475 Brand Aug 2013 B2
8504478 Saunders Aug 2013 B2
8510816 Quach Aug 2013 B2
8433116 Davis Sep 2013 B2
8527360 Groat Sep 2013 B2
8533860 Grecia Sep 2013 B1
8538845 Liberty Sep 2013 B2
8555079 Shablygin Oct 2013 B2
8560004 Tsvetkov Oct 2013 B1
8566168 Bierbaum Oct 2013 B1
8567670 Stanfield Oct 2013 B2
8571937 Rose Oct 2013 B2
8571939 Lindsey Oct 2013 B2
8577336 Mechaley Nov 2013 B2
8577803 Chatterjee Nov 2013 B2
8577813 Weiss Nov 2013 B2
8578176 Mattsson Nov 2013 B2
8583494 Fisher Nov 2013 B2
8584251 Mcguire Nov 2013 B2
8589237 Fisher Nov 2013 B2
8589271 Evans Nov 2013 B2
8589291 Carlson Nov 2013 B2
8595098 Starai Nov 2013 B2
8595812 Bomar Nov 2013 B2
8595850 Spies Nov 2013 B2
8606638 Dragt Dec 2013 B2
8606700 Carlson Dec 2013 B2
8606720 Baker Dec 2013 B1
8612325 Stacy Dec 2013 B2
8615468 Varadarajan Dec 2013 B2
8620754 Fisher Dec 2013 B2
8627420 Furlan Jan 2014 B2
8635157 Smith Jan 2014 B2
8639621 Ellis Jan 2014 B1
8646059 Von Behren Feb 2014 B1
8651374 Brabson Feb 2014 B2
8656180 Shablygin Feb 2014 B2
8661495 Reisman Feb 2014 B2
8662384 Dodin Mar 2014 B2
8739016 Goldman May 2014 B1
8751391 Freund Jun 2014 B2
8762263 Gauthier Jun 2014 B2
8762288 Dill Jun 2014 B2
8793186 Patterson Jul 2014 B2
8838982 Carlson Sep 2014 B2
8856539 Weiss Oct 2014 B2
8887308 Grecia Nov 2014 B2
8893009 Raleigh Nov 2014 B2
9008616 Wall Apr 2015 B2
9065643 Hurry Jun 2015 B2
9070129 Sheets Jun 2015 B2
9082119 Ortiz Jul 2015 B2
9100826 Weiss Aug 2015 B2
9105050 Tietzen Aug 2015 B2
9160741 Wentker Oct 2015 B2
9195750 Hayden Nov 2015 B2
9229964 Stevelinck Jan 2016 B2
9245267 Singh Jan 2016 B2
9249241 Dai Feb 2016 B2
9256871 Anderson Feb 2016 B2
9280765 Hammad Mar 2016 B2
9307342 Sojoodi Apr 2016 B2
9324098 Agrawal Apr 2016 B1
9355393 Purves May 2016 B2
9448972 Greenberg Sep 2016 B2
9524089 Ghosh Dec 2016 B1
9530137 Weiss Dec 2016 B2
9582598 Kalgi Feb 2017 B2
9626351 Davis Apr 2017 B2
9710807 Theurer Jul 2017 B2
9772987 Davis Sep 2017 B2
9804834 Lopyrev Oct 2017 B1
9830590 Grigg Nov 2017 B2
9846863 Grossi Dec 2017 B2
9904537 Lopyrev Feb 2018 B2
9959531 Purves May 2018 B2
10121129 Kalgi Nov 2018 B2
10154084 Kalgi Dec 2018 B2
10223691 Katzin Mar 2019 B2
10360561 Poon Jul 2019 B2
10586227 Makhdumi Mar 2020 B2
10699290 Varadarajan Jun 2020 B1
10825001 Purves Nov 2020 B2
11144905 Wilkinson Oct 2021 B1
20010029485 Brody Oct 2001 A1
20010034720 Armes Oct 2001 A1
20010037297 McNair Nov 2001 A1
20010049635 Chung Dec 2001 A1
20010054003 Chien Dec 2001 A1
20010056359 Abreu Dec 2001 A1
20010056409 Bellovin Dec 2001 A1
20020002522 Clift Jan 2002 A1
20020004783 Paltenghe Jan 2002 A1
20020007320 Hogan Jan 2002 A1
20020016749 Borecki Feb 2002 A1
20020026575 Wheeler Feb 2002 A1
20020029193 Ranjan Mar 2002 A1
20020035548 Hogan Mar 2002 A1
20020040325 Takae Apr 2002 A1
20020046184 Villaret Apr 2002 A1
20020052778 Murphy May 2002 A1
20020069122 Yun Jun 2002 A1
20020073045 Rubin Jun 2002 A1
20020077976 Meyer Jun 2002 A1
20020077978 Oleary Jun 2002 A1
20020087894 Foley Jul 2002 A1
20020099642 Schwanki Jul 2002 A1
20020099647 Howorka Jul 2002 A1
20020099656 Poh Wong Jul 2002 A1
20020107755 Steed Aug 2002 A1
20020111919 Weller Aug 2002 A1
20020112014 Bennett Aug 2002 A1
20020116271 Mankoff Aug 2002 A1
20020116341 Hogan Aug 2002 A1
20020120864 Wu Aug 2002 A1
20020128977 Nambiar Sep 2002 A1
20020133467 Hobson Sep 2002 A1
20020138290 Metcalfe Sep 2002 A1
20020138445 Laage Sep 2002 A1
20020141575 Hird Oct 2002 A1
20020143614 Maclean Oct 2002 A1
20020147913 Lun Yip Oct 2002 A1
20020174030 Praisner Nov 2002 A1
20020178370 Gurevich Nov 2002 A1
20020194081 Perkowski Dec 2002 A1
20030014307 Heng Jan 2003 A1
20030018524 Fishman Jan 2003 A1
20030026404 Joyce Feb 2003 A1
20030028451 Ananian Feb 2003 A1
20030028481 Flitcroft Feb 2003 A1
20030055785 Lahiri Mar 2003 A1
20030080185 Werther May 2003 A1
20030097318 Yu May 2003 A1
20030101134 Liu May 2003 A1
20030126076 Kwok Jul 2003 A1
20030130955 Hawthorne Jul 2003 A1
20030144935 Sobek Jul 2003 A1
20030174823 Justice Sep 2003 A1
20030177361 Wheeler Sep 2003 A1
20030179230 Seidman Sep 2003 A1
20030191709 Elston Oct 2003 A1
20030191711 Jamison Oct 2003 A1
20030191945 Keech Oct 2003 A1
20030195659 Kasuga Oct 2003 A1
20030200142 Hicks Oct 2003 A1
20030200184 Dominguez Oct 2003 A1
20030212589 Kish Nov 2003 A1
20030212642 Weller Nov 2003 A1
20030216996 Cummings Nov 2003 A1
20030220835 Barnes Nov 2003 A1
20040010462 Moon Jan 2004 A1
20040030601 Pond Feb 2004 A1
20040050928 Bishop Mar 2004 A1
20040059682 Hasumi Mar 2004 A1
20040068443 Hopson Apr 2004 A1
20040078332 Ferguson Apr 2004 A1
20040093281 Silverstein May 2004 A1
20040103037 Wetmore May 2004 A1
20040103063 Takayama May 2004 A1
20040111698 Soong Jun 2004 A1
20040128197 Bam Jul 2004 A1
20040138999 Friedman Jul 2004 A1
20040139008 Mascavage Jul 2004 A1
20040143532 Lee Jul 2004 A1
20040148255 Beck Jul 2004 A1
20040158532 Breck Aug 2004 A1
20040204128 Zakharia Oct 2004 A1
20040210449 Breck Oct 2004 A1
20040210498 Freund Oct 2004 A1
20040215560 Amalraj Oct 2004 A1
20040215963 Kaplan Oct 2004 A1
20040230536 Fung Nov 2004 A1
20040232225 Bishop Nov 2004 A1
20040236646 Wu Nov 2004 A1
20040236819 Anati Nov 2004 A1
20040243520 Bishop Dec 2004 A1
20040254891 Blinn Dec 2004 A1
20040260646 Berardi Dec 2004 A1
20040267608 Mansfield Dec 2004 A1
20040267655 Davidowitz Dec 2004 A1
20040267878 Osias Dec 2004 A1
20050010483 Ling Jan 2005 A1
20050037735 Courts Feb 2005 A1
20050038724 Roever Feb 2005 A1
20050065819 Pamela Mar 2005 A1
20050080730 Sorrentino Apr 2005 A1
20050080732 Warin Apr 2005 A1
20050080747 Anderson Apr 2005 A1
20050080821 Breil Apr 2005 A1
20050097320 Golan May 2005 A1
20050101309 Croome May 2005 A1
20050102188 Hutchison May 2005 A1
20050108178 York May 2005 A1
20050114784 Spring May 2005 A1
20050137969 Shah Jun 2005 A1
20050144082 Coolman Jun 2005 A1
20050171894 Traynor Aug 2005 A1
20050171898 Bishop Aug 2005 A1
20050184145 Law Aug 2005 A1
20050187873 Labrou Aug 2005 A1
20050192893 Keeling Sep 2005 A1
20050192895 Rogers Sep 2005 A1
20050199709 Linlor Sep 2005 A1
20050220326 Sim Oct 2005 A1
20050234817 Vanfleet Oct 2005 A1
20050246278 Gerber Nov 2005 A1
20050246293 Ong Nov 2005 A1
20050251446 Jiang Nov 2005 A1
20050254714 Anne Nov 2005 A1
20050256802 Ammermann Nov 2005 A1
20050261967 Barry Nov 2005 A1
20050269401 Spitzer Dec 2005 A1
20050269402 Spitzer Dec 2005 A1
20050273462 Reed Dec 2005 A1
20060002607 Boncyk Jan 2006 A1
20060020542 Litle Jan 2006 A1
20060053056 Alspach-Goss Mar 2006 A1
20060059277 Zito Mar 2006 A1
20060069619 Walker Mar 2006 A1
20060075235 Renkis Apr 2006 A1
20060085328 Cohen Apr 2006 A1
20060085477 Phillips Apr 2006 A1
20060124729 Martin Jun 2006 A1
20060129427 Wennberg Jun 2006 A1
20060163349 Neugebauer Jul 2006 A1
20060178918 Mikurak Aug 2006 A1
20060178986 Giordano Aug 2006 A1
20060178994 Stolfo Aug 2006 A1
20060190332 Grider Aug 2006 A1
20060190347 Cuervo Aug 2006 A1
20060195598 Fujita Aug 2006 A1
20060208060 Mendelovich Sep 2006 A1
20060212434 Crawford Sep 2006 A1
20060226216 Keithley Oct 2006 A1
20060235795 Johnson Oct 2006 A1
20060237528 Bishop Oct 2006 A1
20060247982 Stolfo Nov 2006 A1
20060277143 Almonte Dec 2006 A1
20060278704 Saunders Dec 2006 A1
20060282332 Pfleging Dec 2006 A1
20060293947 Nicholson Dec 2006 A1
20070011025 Cracchiolo Jan 2007 A1
20070016523 Blair Jan 2007 A1
20070022007 Lawe Jan 2007 A1
20070038515 Postrel Feb 2007 A1
20070038516 Apple Feb 2007 A1
20070055571 Fox Mar 2007 A1
20070063024 Guillot Mar 2007 A1
20070067215 Agarwal Mar 2007 A1
20070087820 Van Apr 2007 A1
20070094066 Kumar Apr 2007 A1
20070100691 Patterson May 2007 A1
20070100728 Rotman May 2007 A1
20070106504 Deng May 2007 A1
20070106607 Seib May 2007 A1
20070106627 Srivastava May 2007 A1
20070107044 Yuen May 2007 A1
20070113289 Blumenau May 2007 A1
20070125840 Law Jun 2007 A1
20070129955 Dalmia Jun 2007 A1
20070136193 Starr Jun 2007 A1
20070136211 Brown Jun 2007 A1
20070143204 Claus Jun 2007 A1
20070150413 Morgenstern Jun 2007 A1
20070156726 Levy Jul 2007 A1
20070162350 Friedman Jul 2007 A1
20070170247 Friedman Jul 2007 A1
20070179885 Bird Aug 2007 A1
20070180119 Khivesara Aug 2007 A1
20070198435 Siegal Aug 2007 A1
20070198587 Kobayasfii Aug 2007 A1
20070208662 Jeronimus Sep 2007 A1
20070208671 Brown Sep 2007 A1
20070214078 Coppinger Sep 2007 A1
20070214250 Ahmed Sep 2007 A1
20070226152 Jones Sep 2007 A1
20070233590 Hardison Oct 2007 A1
20070233615 Tumminaro Oct 2007 A1
20070239502 Babu Oct 2007 A1
20070245414 Chan Oct 2007 A1
20070276765 Hazel Nov 2007 A1
20070288377 Shaked Dec 2007 A1
20070291995 Rivera Dec 2007 A1
20080004116 Van Jan 2008 A1
20080004952 Koli Jan 2008 A1
20080010096 Patterson Jan 2008 A1
20080013335 Tsutsumi Jan 2008 A1
20080015988 Brown Jan 2008 A1
20080021829 Kranzley Jan 2008 A1
20080027218 Daugs Jan 2008 A1
20080027850 Brittan Jan 2008 A1
20080029607 Mullen Feb 2008 A1
20080035738 Mullen Feb 2008 A1
20080048022 Vawter Feb 2008 A1
20080052226 Agarwal Feb 2008 A1
20080054068 Mullen Mar 2008 A1
20080054079 Mullen Mar 2008 A1
20080054081 Mullen Mar 2008 A1
20080059370 Sada Mar 2008 A1
20080065554 Hogan Mar 2008 A1
20080065555 Mullen Mar 2008 A1
20080077489 Gilley Mar 2008 A1
20080082424 Walton Apr 2008 A1
20080086365 Zollino Apr 2008 A1
20080090513 Collins Apr 2008 A1
20080091553 Koski Apr 2008 A1
20080091616 Helwin Apr 2008 A1
20080097856 Blagg Apr 2008 A1
20080103795 Jakubowski May 2008 A1
20080114639 Meek May 2008 A1
20080114737 Neely May 2008 A1
20080126145 Racklet, III May 2008 A1
20080133351 White Jun 2008 A1
20080133403 Hamzeh Jun 2008 A1
20080140568 Henry Jun 2008 A1
20080140684 Oreilly Jun 2008 A1
20080147883 Philyaw Jun 2008 A1
20080154623 Derker Jun 2008 A1
20080162361 Sklovsky Jul 2008 A1
20080167965 Von Jul 2008 A1
20080172274 Hurowitz Jul 2008 A1
20080172331 Graves Jul 2008 A1
20080177574 Marcos Jul 2008 A1
20080177672 Brunner Jul 2008 A1
20080201232 Walker Aug 2008 A1
20080201264 Brown Aug 2008 A1
20080201265 Hewton Aug 2008 A1
20080221945 Pace Sep 2008 A1
20080223918 Williams Sep 2008 A1
20080228646 Myers Sep 2008 A1
20080229217 Kembel Sep 2008 A1
20080235261 Malek Sep 2008 A1
20080024561 Maeda Oct 2008 A1
20080243305 Lee Oct 2008 A1
20080243702 Hart Oct 2008 A1
20080245855 Fein Oct 2008 A1
20080245861 Fein Oct 2008 A1
20080270300 Jones Oct 2008 A1
20080272188 Keithley Nov 2008 A1
20080283591 Oder Nov 2008 A1
20080288376 Panthaki Nov 2008 A1
20080288889 Hunt Nov 2008 A1
20080300980 Benjamin Dec 2008 A1
20080301055 Borgs Dec 2008 A1
20080302869 Mullen Dec 2008 A1
20080302876 Mullen Dec 2008 A1
20080313264 Pestoni Dec 2008 A1
20080319905 Carlson Dec 2008 A1
20090006181 Ghosh Jan 2009 A1
20090006262 Brown Jan 2009 A1
20090010488 Matsuoka Jan 2009 A1
20090013266 Gandhi Jan 2009 A1
20090018895 Weinblatt Jan 2009 A1
20090024527 Sellen Jan 2009 A1
20090024636 Shiloh Jan 2009 A1
20090037255 Chiu Feb 2009 A1
20090037326 Chitti Feb 2009 A1
20090037333 Flitcroft Feb 2009 A1
20090037388 Cooper Feb 2009 A1
20090043702 Bennett Feb 2009 A1
20090048934 Haddad Feb 2009 A1
20090048971 Hathaway Feb 2009 A1
20090061884 Rajan Mar 2009 A1
20090063261 Scribner Mar 2009 A1
20090064056 Anderson Mar 2009 A1
20090076953 Saville Mar 2009 A1
20090076966 Bishop Mar 2009 A1
20090083065 Unland Mar 2009 A1
20090089176 McCabe Apr 2009 A1
20090089193 Paintin Apr 2009 A1
20090104888 Cox Apr 2009 A1
20090106112 Dalmia Apr 2009 A1
20090106151 Nelsen Apr 2009 A1
20090106160 Skowronek Apr 2009 A1
20090106234 Siedlecki Apr 2009 A1
20090108080 Meyer Apr 2009 A1
20090112775 Chiulli Apr 2009 A1
20090119176 Johnson May 2009 A1
20090119190 Realini May 2009 A1
20090119211 Johnson May 2009 A1
20090125429 Takayama May 2009 A1
20090132347 Anderson May 2009 A1
20090132366 Lam May 2009 A1
20090132395 Lam May 2009 A1
20090134217 Flitcroft May 2009 A1
20090144104 Johnson Jun 2009 A1
20090144201 Gierkink Jun 2009 A1
20090157555 Biffle Jun 2009 A1
20090159673 Mullen Jun 2009 A1
20090159700 Mullen Jun 2009 A1
20090159707 Mullen Jun 2009 A1
20090164344 Shiftan Jun 2009 A1
20090170608 Herrmann Jul 2009 A1
20090171778 Powell Jul 2009 A1
20090173782 Muscato Jul 2009 A1
20090182664 Trombley Jul 2009 A1
20090187492 Hammad Jul 2009 A1
20090200371 Kean Aug 2009 A1
20090210300 Cansler Aug 2009 A1
20090216910 Duchesneau Aug 2009 A1
20090222347 Whitten Sep 2009 A1
20090228211 Rasanen Sep 2009 A1
20090233579 Castell Sep 2009 A1
20090234751 Chan Sep 2009 A1
20090240620 Kendrick Sep 2009 A1
20090241159 Campagna Sep 2009 A1
20090248583 Chhabra Oct 2009 A1
20090248738 Martinez Oct 2009 A1
20090254471 Seidel Oct 2009 A1
20090254479 Pharris Oct 2009 A1
20090254535 Eickelmann Oct 2009 A1
20090265274 Hahn-Carlson Oct 2009 A1
20090271246 Alvarez Oct 2009 A1
20090271265 Lay Oct 2009 A1
20090271635 Liu Oct 2009 A1
20090276347 Kargman Nov 2009 A1
20090281948 Carlson Nov 2009 A1
20090288012 Hertel Nov 2009 A1
20090294527 Brabson Dec 2009 A1
20090307060 Merz Dec 2009 A1
20090307135 Gupta Dec 2009 A1
20090307139 Mardikar Dec 2009 A1
20090308921 Mullen Dec 2009 A1
20090313132 Mckenna Dec 2009 A1
20090319638 Faith Dec 2009 A1
20090327045 Olives Dec 2009 A1
20090327088 Puthupparambil Dec 2009 A1
20090327131 Beenau Dec 2009 A1
20100004989 Bonalle Jan 2010 A1
20100005025 Kumar Jan 2010 A1
20100008535 Abulafia Jan 2010 A1
20100009663 Chang Jan 2010 A1
20100010964 Skowronek Jan 2010 A1
20100012728 Rosset Jan 2010 A1
20100021149 Mulder Jan 2010 A1
20100023386 Avisar Jan 2010 A1
20100023455 Dispensa Jan 2010 A1
20100023457 Riviere Jan 2010 A1
20100036741 Cleven Feb 2010 A1
20100036775 Edens Feb 2010 A1
20100036884 Brown Feb 2010 A1
20100042456 Stinchcombe Feb 2010 A1
20100042537 Smith Feb 2010 A1
20100042540 Graves Feb 2010 A1
20100049879 Leavitt Feb 2010 A1
20100057548 Edwards Mar 2010 A1
20100063903 Whipple Mar 2010 A1
20100070359 Heasley Mar 2010 A1
20100076873 Taylor Mar 2010 A1
20100076890 Low Mar 2010 A1
20100078471 Lin Apr 2010 A1
20100078472 Lin Apr 2010 A1
20100082444 Lin Apr 2010 A1
20100082445 Hodge Apr 2010 A1
20100082447 Lin Apr 2010 A1
20100082455 Rosenblatt Apr 2010 A1
20100082480 Korosec Apr 2010 A1
20100082481 Lin Apr 2010 A1
20100082485 Lin Apr 2010 A1
20100082490 Rosenblatt Apr 2010 A1
20100082491 Rosenblatt Apr 2010 A1
20100088188 Kumar Apr 2010 A1
20100088237 Wankmueller Apr 2010 A1
20100094730 Koski Apr 2010 A1
20100094755 Kloster Apr 2010 A1
20100094878 Soroca Apr 2010 A1
20100100480 Altman Apr 2010 A1
20100106602 Fuzell-Casey Apr 2010 A1
20100106644 Annan Apr 2010 A1
20100114664 Jobin May 2010 A1
20100120408 Beenau May 2010 A1
20100121707 Goeldi May 2010 A1
20100125492 Lin May 2010 A1
20100125495 Smith May 2010 A1
20100125509 Kranzley May 2010 A1
20100125803 Johnson May 2010 A1
20100131347 Sarptipi May 2010 A1
20100131415 Sartipi May 2010 A1
20100133334 Vadhri Jun 2010 A1
20100133339 Gibson Jun 2010 A1
20100138026 Kaushal Jun 2010 A1
20100138347 Chen Jun 2010 A1
20100145860 Pelegero Jun 2010 A1
20100153865 Barnes Jun 2010 A1
20100155470 Woronec Jun 2010 A1
20100161433 White Jun 2010 A1
20100162126 Donaldson Jun 2010 A1
20100174599 Rosenblatt Jul 2010 A1
20100179855 Chen Jul 2010 A1
20100185505 Sprogoe Jul 2010 A1
20100185531 Van Jul 2010 A1
20100185545 Royyuru Jul 2010 A1
20100191578 Tran Jul 2010 A1
20100191622 Reiss Jul 2010 A1
20100191770 Cho Jul 2010 A1
20100198626 Cho Aug 2010 A1
20100211445 Bodington Aug 2010 A1
20100211452 D'Angelo et al. Aug 2010 A1
20100211469 Salmon Aug 2010 A1
20100211499 Zanzot Aug 2010 A1
20100211505 Saunders Aug 2010 A1
20100217613 Kelly Aug 2010 A1
20100217682 Chan Aug 2010 A1
20100223186 Hogan Sep 2010 A1
20100228668 Hogan Sep 2010 A1
20100235284 Moore Sep 2010 A1
20100243728 Wiesman Sep 2010 A1
20100250351 Gillenson Sep 2010 A1
20100250955 Trevithick Sep 2010 A1
20100256976 Atsmon Oct 2010 A1
20100258620 Torreyson Oct 2010 A1
20100268645 Martino Oct 2010 A1
20100276484 Banerjee Nov 2010 A1
20100287048 Ramer Nov 2010 A1
20100287229 Hauser Nov 2010 A1
20100291904 Musfeldt Nov 2010 A1
20100293032 Engelsma Nov 2010 A1
20100299267 Faith Nov 2010 A1
20100299292 Collazo Nov 2010 A1
20100305848 Stallman Dec 2010 A1
20100306075 Drance Dec 2010 A1
20100306076 Taveau Dec 2010 A1
20100306113 Grey Dec 2010 A1
20100312645 Niekadlik Dec 2010 A1
20100312676 Muthukumaran Dec 2010 A1
20100312724 Pinckney Dec 2010 A1
20100325041 Berardi Dec 2010 A1
20100332262 Horvitz Dec 2010 A1
20100332283 Ng Dec 2010 A1
20110004498 Readshaw Jan 2011 A1
20110010292 Giordano Jan 2011 A1
20110016047 Wu Jan 2011 A1
20110016320 Bergsten Jan 2011 A1
20110035273 Parikh Feb 2011 A1
20110040640 Erikson Feb 2011 A1
20110040655 Hendrickson Feb 2011 A1
20110047017 Lieblang Feb 2011 A1
20110047075 Fourez Feb 2011 A1
20110047076 Carlson Feb 2011 A1
20110078082 Gupta Mar 2011 A1
20110082789 Boyd Apr 2011 A1
20110083018 Kesanupalli Apr 2011 A1
20110087596 Dorsey Apr 2011 A1
20110087726 Shim Apr 2011 A1
20110093335 Fordyce Apr 2011 A1
20110093397 Carlson Apr 2011 A1
20110099057 Tenyer Apr 2011 A1
20110105183 Hsiao May 2011 A1
20110106698 Issacson May 2011 A1
20110109737 Aben May 2011 A1
20110119300 Marcade May 2011 A1
20110125597 Oder May 2011 A1
20110137740 Bhattacharya Jun 2011 A1
20110137742 Parikh Jun 2011 A1
20110153437 Archer Jun 2011 A1
20110153498 Makhotin Jun 2011 A1
20110154466 Harper Jun 2011 A1
20110161233 Tieken Jun 2011 A1
20110178896 Nakajima Jul 2011 A1
20110178926 Lindelsee Jul 2011 A1
20110180598 Morgan Jul 2011 A1
20110184827 Hubert Jul 2011 A1
20110191244 Dai Aug 2011 A1
20110208418 Looney Aug 2011 A1
20110215146 Shams Sep 2011 A1
20110218870 Shams Sep 2011 A1
20110221692 Seydoux Sep 2011 A1
20110238474 Carr Sep 2011 A1
20110238511 Park Sep 2011 A1
20110238573 Varadarajan Sep 2011 A1
20110246290 Howard Oct 2011 A1
20110246317 Coppinger Oct 2011 A1
20110251892 Laracey Oct 2011 A1
20110258049 Ramer Oct 2011 A1
20110258111 Raj Oct 2011 A1
20110258123 Dawkins Oct 2011 A1
20110270665 Kim Nov 2011 A1
20110272471 Mullen Nov 2011 A1
20110272478 Mullen Nov 2011 A1
20110276380 Mullen Nov 2011 A1
20110276381 Mullen Nov 2011 A1
20110276424 Mullen Nov 2011 A1
20110276425 Mullen Nov 2011 A1
20110282780 French Nov 2011 A1
20110288684 Farlow Nov 2011 A1
20110295745 White Dec 2011 A1
20110296508 Os Dec 2011 A1
20110302081 Saunders Dec 2011 A1
20110312423 Mosites Dec 2011 A1
20110320344 Faith Dec 2011 A1
20110320345 Taveau Dec 2011 A1
20120005026 Khan Jan 2012 A1
20120011009 Lindsey Jan 2012 A1
20120011063 Killian Jan 2012 A1
20120016731 Smith Jan 2012 A1
20120022943 Howard Jan 2012 A1
20120023026 Chen Jan 2012 A1
20120023417 Nesladek Jan 2012 A1
20120023567 Hammad Jan 2012 A1
20120028609 Hruska Feb 2012 A1
20120030047 Fuentes Feb 2012 A1
20120030101 Boyd Feb 2012 A1
20120035998 Chien Feb 2012 A1
20120036071 Fulton Feb 2012 A1
20120041881 Basu Feb 2012 A1
20120047237 Arvidsson Feb 2012 A1
20120066065 Switzer Mar 2012 A1
20120066078 Kingston Mar 2012 A1
20120072311 Khan Mar 2012 A1
20120072350 Goldthwaite Mar 2012 A1
20120078735 Bauer Mar 2012 A1
20120078798 Downing Mar 2012 A1
20120078799 Jackson Mar 2012 A1
20120084132 Khan Apr 2012 A1
20120084204 Castell Apr 2012 A1
20120095852 Bauer Apr 2012 A1
20120095865 Doherty Apr 2012 A1
20120095895 Aston Apr 2012 A1
20120101881 Taylor Apr 2012 A1
20120110044 Nagpal May 2012 A1
20120116902 Cardina May 2012 A1
20120116966 Tan May 2012 A1
20120118950 Belk May 2012 A1
20120123838 Sparks May 2012 A1
20120123882 Carlson May 2012 A1
20120123924 Rose May 2012 A1
20120123940 Killian May 2012 A1
20120124496 Rose May 2012 A1
20120129514 Beenau May 2012 A1
20120130794 Strieder May 2012 A1
20120136780 El-Awady May 2012 A1
20120143706 Crake Jun 2012 A1
20120143767 Abadir Jun 2012 A1
20120143772 Abadir Jun 2012 A1
20120150750 Law Jun 2012 A1
20120158580 Eram Jun 2012 A1
20120158589 Katzin Jun 2012 A1
20120158593 Garfinkle Jun 2012 A1
20120158792 Maclaurin Jun 2012 A1
20120158893 Boyns Jun 2012 A1
20120159163 Von Behren Jun 2012 A1
20120165978 Li Jun 2012 A1
20120166333 von Behren Jun 2012 A1
20120166655 Maddali Jun 2012 A1
20120173431 Ritchie Jul 2012 A1
20120173962 Oh Jul 2012 A1
20120185386 Salama Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120197691 Grigg Aug 2012 A1
20120197794 Grigg Aug 2012 A1
20120197807 Schlesser Aug 2012 A1
20120203662 Morgan Aug 2012 A1
20120203664 Torossian Aug 2012 A1
20120203665 Morgan Aug 2012 A1
20120203666 Torossian Aug 2012 A1
20120203673 Morgan Aug 2012 A1
20120209735 Subramanian Aug 2012 A1
20120209749 Hammad Aug 2012 A1
20120209773 Ranganathan Aug 2012 A1
20120215640 Ramer Aug 2012 A1
20120215648 Rose Aug 2012 A1
20120215650 Oba Aug 2012 A1
20120215684 Kidron Aug 2012 A1
20120215688 Musser Aug 2012 A1
20120215696 Salonen Aug 2012 A1
20120221421 Hammad Aug 2012 A1
20120221502 Jerram Aug 2012 A1
20120226582 Hammad Sep 2012 A1
20120231844 Coppinger Sep 2012 A1
20120233004 Bercaw Sep 2012 A1
20120233073 Salmon Sep 2012 A1
20120233170 Musgrove Sep 2012 A1
20120239417 Pourfallah Sep 2012 A1
20120239556 Magruder Sep 2012 A1
20120239560 Pourfallah Sep 2012 A1
20120246070 Vadhri Sep 2012 A1
20120246071 Jain Sep 2012 A1
20120246079 Wilson Sep 2012 A1
20120254108 Wedewer Oct 2012 A1
20120259763 Pessin Oct 2012 A1
20120265631 Cronic Oct 2012 A1
20120265685 Brudnicki Oct 2012 A1
20120271770 Harris Oct 2012 A1
20120284035 Gillin Nov 2012 A1
20120290472 Mullen Nov 2012 A1
20120297446 Webb Nov 2012 A1
20120300932 Cambridge Nov 2012 A1
20120303425 Katzin Nov 2012 A1
20120303503 Cambridge Nov 2012 A1
20120303736 Novotny Nov 2012 A1
20120303961 Kean Nov 2012 A1
20120304273 Bailey Nov 2012 A1
20120310725 Chien Dec 2012 A1
20120310826 Chatterjee Dec 2012 A1
20120310831 Harris Dec 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru Dec 2012 A1
20120317036 Bower Dec 2012 A1
20120317149 Jagota Dec 2012 A1
20120323664 Klems Dec 2012 A1
20120330874 Jerram Dec 2012 A1
20130013499 Kalgi Jan 2013 A1
20130017784 Fisher Jan 2013 A1
20130018757 Anderson Jan 2013 A1
20130019098 Gupta Jan 2013 A1
20130024364 Shrivastava Jan 2013 A1
20130024371 Hariramani Jan 2013 A1
20130024916 Evans Jan 2013 A1
20130030828 Pourfallah Jan 2013 A1
20130030964 Nuzzi Jan 2013 A1
20130031006 Mccullagh Jan 2013 A1
20130054337 Brendell Feb 2013 A1
20130054454 Purves Feb 2013 A1
20130054466 Muscato Feb 2013 A1
20130054470 Campos Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130080238 Kelly Mar 2013 A1
20130081122 Svigals Mar 2013 A1
20130085877 Andreas Apr 2013 A1
20130090750 Herrman Apr 2013 A1
20130091028 Oder Apr 2013 A1
20130097078 Wong Apr 2013 A1
20130103574 Conrad Apr 2013 A1
20130110658 Lyman May 2013 A1
20130110678 Vigier May 2013 A1
20130111599 Gargiulo May 2013 A1
20130117170 Coppinger May 2013 A1
20130117185 Collison May 2013 A1
20130124290 Fisher May 2013 A1
20130124291 Fisher May 2013 A1
20130124364 Mittal May 2013 A1
20130138525 Bercaw May 2013 A1
20130144785 Karpenko Jun 2013 A1
20130144888 Faith Jun 2013 A1
20130144957 Sherman Jun 2013 A1
20130145148 Shablygin Jun 2013 A1
20130145172 Shablygin Jun 2013 A1
20130151417 Gupta Jun 2013 A1
20130159081 Shastry Jun 2013 A1
20130159112 Schultz Jun 2013 A1
20130159154 Purves Jun 2013 A1
20130159178 Colon Jun 2013 A1
20130159184 Thaw Jun 2013 A1
20130159196 Dizoglio Jun 2013 A1
20130166332 Hammad Jun 2013 A1
20130166402 Parento Jun 2013 A1
20130166456 Zhang Jun 2013 A1
20130166621 Zhu Jun 2013 A1
20130173404 Scipioni Jul 2013 A1
20130173736 Krzeminski Jul 2013 A1
20130179340 Alba Jul 2013 A1
20130185202 Goldthwaite Jul 2013 A1
20130191286 Cronic Jul 2013 A1
20130191289 Cronic Jul 2013 A1
20130198071 Jurss Aug 2013 A1
20130198080 Anderson Aug 2013 A1
20130200146 Moghadam Aug 2013 A1
20130204776 King Aug 2013 A1
20130204787 Dubois Aug 2013 A1
20130204793 Kerridge Aug 2013 A1
20130204886 Faith Aug 2013 A1
20130204894 Faith Aug 2013 A1
20130212007 Mattsson Aug 2013 A1
20130212017 Bangia Aug 2013 A1
20130212019 Mattsson Aug 2013 A1
20130212024 Mattsson Aug 2013 A1
20130212026 Powell Aug 2013 A1
20130212399 Cairns Aug 2013 A1
20130212666 Mattsson Aug 2013 A1
20130218640 Kidder Aug 2013 A1
20130218657 Salmon Aug 2013 A1
20130218698 Moon Aug 2013 A1
20130218721 Borhan Aug 2013 A1
20130218765 Hammad Aug 2013 A1
20130218769 Pourfallah Aug 2013 A1
20130226799 Raj Aug 2013 A1
20130226813 Voltz Aug 2013 A1
20130246199 Carlson Sep 2013 A1
20130246202 Tobin Sep 2013 A1
20130246203 Laracey Sep 2013 A1
20130246215 Faith Sep 2013 A1
20130246258 Dessert Sep 2013 A1
20130246259 Dessert Sep 2013 A1
20130246261 Purves Sep 2013 A1
20130246267 Tobin Sep 2013 A1
20130246342 Faith Sep 2013 A1
20130254028 Salci Sep 2013 A1
20130254052 Royyuru Sep 2013 A1
20130254102 Royyuru Sep 2013 A1
20130254117 Von Mueller Sep 2013 A1
20130262296 Thomas Oct 2013 A1
20130262302 Lettow Oct 2013 A1
20130262315 Hruska Oct 2013 A1
20130262316 Hruska Oct 2013 A1
20130262317 Collinge Oct 2013 A1
20130268437 Desai Oct 2013 A1
20130275300 Killian Oct 2013 A1
20130275307 Khan Oct 2013 A1
20130275308 Paraskeva Oct 2013 A1
20130282502 Jooste Oct 2013 A1
20130282575 Mullen Oct 2013 A1
20130282588 Hruska Oct 2013 A1
20130290234 Harris Oct 2013 A1
20130297501 Monk Nov 2013 A1
20130297504 Nwokolo Nov 2013 A1
20130297508 Belamant Nov 2013 A1
20130304649 Cronic Nov 2013 A1
20130308778 Fosmark Nov 2013 A1
20130311382 Fosmark Nov 2013 A1
20130317982 Mengerink Nov 2013 A1
20130325579 Salmon Dec 2013 A1
20130332344 Weber Dec 2013 A1
20130339240 Anderson Dec 2013 A1
20130339253 Sincai Dec 2013 A1
20130346302 Purves Dec 2013 A1
20130346305 Mendes Dec 2013 A1
20130346314 Mogollon Dec 2013 A1
20140006195 Wilson Jan 2014 A1
20140006198 Daly Jan 2014 A1
20140006277 Rao Jan 2014 A1
20140006283 Hogg Jan 2014 A1
20140007213 Sanin Jan 2014 A1
20140013106 Path Jan 2014 A1
20140013114 Path Jan 2014 A1
20140013452 Aissi Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140020068 Desai Jan 2014 A1
20140025581 Caiman Jan 2014 A1
20140025585 Caiman Jan 2014 A1
20140025958 Caiman Jan 2014 A1
20140032417 Mattsson Jan 2014 A1
20140032418 Weber Jan 2014 A1
20140040001 Harvey Feb 2014 A1
20140040127 Chatterjee Feb 2014 A1
20140040137 Carlson Feb 2014 A1
20140040139 Brudnicki Feb 2014 A1
20140040144 Plomske Feb 2014 A1
20140040145 Ozvat Feb 2014 A1
20140040148 Ozvat Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140041018 Bomar Feb 2014 A1
20140046853 Spies Feb 2014 A1
20140047517 Ding Feb 2014 A1
20140047551 Nagasundaram Feb 2014 A1
20140052532 Tsai Feb 2014 A1
20140052620 Rogers Feb 2014 A1
20140052637 Jooste Feb 2014 A1
20140068706 Aissi Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140095589 Johnson Apr 2014 A1
20140108172 Weber Apr 2014 A1
20140108197 Smith Apr 2014 A1
20140114857 Griggs Apr 2014 A1
20140136945 Ligman May 2014 A1
20140143137 Carlson May 2014 A1
20140164176 Kitlyar Jun 2014 A1
20140164243 Aabye Jun 2014 A1
20140188586 Carpenter Jul 2014 A1
20140197234 Hammad Jul 2014 A1
20140279479 Maniar Sep 2014 A1
20140294701 Dai Oct 2014 A1
20140297534 Patterson Oct 2014 A1
20140310080 Salmon Oct 2014 A1
20140310183 Weber Oct 2014 A1
20140330721 Wang Nov 2014 A1
20140330722 Laxminarayanan Nov 2014 A1
20140331265 Mozell Nov 2014 A1
20140337175 Katzin Nov 2014 A1
20140337236 Wong Nov 2014 A1
20140344153 Raj Nov 2014 A1
20140365295 Postrel Dec 2014 A1
20140372308 Sheets Dec 2014 A1
20150019443 Sheets Jan 2015 A1
20150019944 Kalgi Jan 2015 A1
20150026049 Theurer Jan 2015 A1
20150032625 Dill Jan 2015 A1
20150032626 Dill Jan 2015 A1
20150032627 Dill Jan 2015 A1
20150039462 Shastry Feb 2015 A1
20150046241 Salmon Feb 2015 A1
20150046338 Laxminarayanan Feb 2015 A1
20150046339 Wong Feb 2015 A1
20150052064 Karpenko Feb 2015 A1
20150058162 Purves Feb 2015 A1
20150088756 Makhotin Mar 2015 A1
20150089350 Davis Mar 2015 A1
20150106239 Gaddam Apr 2015 A1
20150112870 Nagasundaram Apr 2015 A1
20150112871 Kumnick Apr 2015 A1
20150120472 Aabye Apr 2015 A1
20150127529 Makhotin May 2015 A1
20150127547 Powell May 2015 A1
20150140960 Powell May 2015 A1
20150142673 Nelsen May 2015 A1
20150154588 Purves Jun 2015 A1
20150161597 Subramanian Jun 2015 A1
20150178724 Ngo Jun 2015 A1
20150180836 Wong Jun 2015 A1
20150186864 Jones Jul 2015 A1
20150193222 Pirzadeh Jul 2015 A1
20150195133 Sheets Jul 2015 A1
20150199679 Palanisamy Jul 2015 A1
20150199689 Kumnick Jul 2015 A1
20150220917 Aabye Aug 2015 A1
20150242609 Zheng Aug 2015 A1
20150248664 Makhdumi Sep 2015 A1
20150269566 Gaddam Sep 2015 A1
20150302453 Tietzen Oct 2015 A1
20150312038 Palanisamy Oct 2015 A1
20150319158 Kumnick Nov 2015 A1
20150332262 Lingappa Nov 2015 A1
20150339767 Chen Nov 2015 A1
20150356560 Shastry Dec 2015 A1
20160028550 Gaddam Jan 2016 A1
20160042263 Gaddam Feb 2016 A1
20160063486 Purves Mar 2016 A1
20160065370 Le Saint Mar 2016 A1
20160092696 Guglani Mar 2016 A1
20160092872 Prakash Mar 2016 A1
20160103675 Aabye Apr 2016 A1
20160119296 Laxminarayanan Apr 2016 A1
20160224976 Basu Aug 2016 A1
20160283941 Andrade Sep 2016 A1
20160291920 Sirpal Oct 2016 A1
20160379192 Purves Dec 2016 A1
20170046696 Powell Feb 2017 A1
20170103387 Weber Apr 2017 A1
20170134479 Kalgi May 2017 A1
20170220818 Nagasundaram Aug 2017 A1
20170228723 Taylor Aug 2017 A1
20170235786 Faith Aug 2017 A9
20170235848 Van Dusen Aug 2017 A1
20170243199 Kalgi Aug 2017 A1
20170300314 Lopyrev Oct 2017 A1
20170346876 Lim Nov 2017 A1
20170372301 Theurer Dec 2017 A1
20180046623 Faith Feb 2018 A1
20180075081 Chipman Mar 2018 A1
20180108008 Chumbley Apr 2018 A1
20180189756 Purves Jul 2018 A1
20180341650 Faith Nov 2018 A1
20190026729 Kalgi Jan 2019 A1
20190034921 Hammad Jan 2019 A1
20190075156 Kalgi Mar 2019 A1
20190147523 Shastry May 2019 A1
20190188691 Purves Jun 2019 A1
20190188719 Das Jun 2019 A1
20190205288 Faith Jul 2019 A1
20190244192 Katzin Aug 2019 A1
20190266604 Desai Aug 2019 A1
20190295054 Purves Sep 2019 A1
20190361845 Faith Nov 2019 A1
20190385146 Priest Dec 2019 A1
20200013051 Kadiwala Jan 2020 A1
20210042726 Purves Feb 2021 A1
20210084024 Sadayoshi Mar 2021 A1
20210272102 Purves Sep 2021 A1
20220253832 Hammad Aug 2022 A1
20230044764 Purves Feb 2023 A1
Foreign Referenced Citations (65)
Number Date Country
1841425 Oct 2006 CN
1922623 Feb 2007 CN
1928907 Mar 2007 CN
1959727 May 2007 CN
101025806 Aug 2007 CN
101075316 Nov 2007 CN
101231727 Jul 2008 CN
101334876 Dec 2008 CN
101388125 Mar 2009 CN
101710407 May 2010 CN
101719255 Jun 2010 CN
101840550 Sep 2010 CN
101924690 Dec 2010 CN
101945127 Jan 2011 CN
101958025 Jan 2011 CN
102143290 Aug 2011 CN
102779304 Nov 2012 CN
102947847 Feb 2013 CN
103635920 Mar 2014 CN
105027153 Nov 2015 CN
0745961 Dec 1996 EP
0855659 Jul 1998 EP
1921578 May 2008 EP
2156397 Feb 2010 EP
2503496 Sep 2012 EP
2001344544 Dec 2001 JP
2005004621 Jan 2005 JP
2007328549 Dec 2007 JP
2008527495 Jul 2008 JP
2008545210 Dec 2008 JP
2009151730 Jul 2009 JP
2009176259 Aug 2009 JP
2011186660 Sep 2011 JP
2012027824 Feb 2012 JP
20000058839 Oct 2000 KR
20010055426 Jul 2001 KR
20030065920 May 2004 KR
20060117177 Nov 2006 KR
20070104087 Oct 2007 KR
2013069539 Oct 2013 SG
2000046769 Aug 2000 WO
2001035304 May 2001 WO
0165502 Sep 2001 WO
2003001866 Jan 2003 WO
03023674 Mar 2003 WO
2003046697 Jun 2003 WO
2003071386 Aug 2003 WO
2003083737 Oct 2003 WO
2004042536 May 2004 WO
2005079254 Sep 2005 WO
2006113834 Oct 2006 WO
2009032523 Mar 2009 WO
2010078522 Jul 2010 WO
2010148704 Dec 2010 WO
2010148737 Dec 2010 WO
2012068078 May 2012 WO
2012098556 Jul 2012 WO
2012112822 Aug 2012 WO
2012142370 Oct 2012 WO
2012167941 Dec 2012 WO
2013048538 Apr 2013 WO
2013056104 Apr 2013 WO
2013119914 Aug 2013 WO
2013179271 Dec 2013 WO
201505136 Jan 2015 WO
Non-Patent Literature Citations (201)
Entry
Ruiz-Martínez, A., Cánovas, Ó., & Gómez-Skarmeta, A.,F. (2009). Design and implementation of a generic per-fee-link framework. Internet Research, 19(3), 293-312. doi:https://doi.org/10.1108/10662240910965360 (Year: 2009).
A. Ruiz-Martinez, O. Canovas and A. F. Gomez-Skarmeta, “Towards a generic per-fee-link framework,” 2007 2nd International Conference on Digital Information Management, 2007, pp. 37-42, doi: 10.1109/ICDIM.2007.4444197. (Year: 2007).
Notice of Allowance dated Nov. 18, 2021 for U.S. Appl. No. 16/017,241 (pp. 1-9).
Office Action dated Oct. 27, 2021 for U.S. Appl. No. 17/064,832 (pp. 1-20).
Supplemental Notice of Allowability dated Dec. 3, 2021 for U.S. Appl. No. 16/017,241 (pp. 1-2).
Aissi et al., U.S. Appl. No. 61/738,832 (unpublished), Management of Sensitive Data filed Dec. 18, 2012.
Australian Examination Report for AU2017203295 dated Apr. 19, 2018, 4 pages.
Australian Patent Office, Patent Examination Report No. 2 in Australian Patent Application No. 2012217606, dated Jun. 15, 2016, 6 pages.
Brick-and-mortar retailers snatching customers away from E-tailers. (Feb. 16, 2012). PR Newswire Retrieved from https:// dialog.proguest.corn/professional/docview/1346330115?accountid=142257 (Year: 2012) 3 pages.
Business Wire, “New York State Department of Labor Selects JPMorgan Chase to Provide New Banking Services for Unemployment Insurance Benefits; JPMorgan Chase Electronic Services to Help Speed Benefit Payments”, Business Wire, New York, Aug. 4, 2006, 2 p.
Chandra, Shalini; Srivastava, Shirish C .; and Theng, Yin-Leng (2010) “Evaluating the Role ofTrust in Consumer Adoption of Mobile Payment Systems: An Empirical Analysis,” Communications of the Association for Information Systems: vol. 27, Article 29. http://aisel.aisnet.org/cais/vol27/iss1/29 (Year: 2010) 30 pages.
Charland et al., Mobile Application Development: Web vs. Native, Apr. 2011, 9 pages.
Chinese Office Action (including English translation) for Application No. CN201710037081.6, dated Feb. 5, 2021, 7 pages.
Chinese Office Action (with English language translation) dated Jan. 30, 2019 for Application No. 201280019629.X, 10 pages.
Chinese Office Action (with English language translation) dated Nov. 6, 2017 for CN Application No. 201280018719.7, 24 pages.
Chinese Office Action (with English language translation) for Application No. 201480023694.9 dated Dec. 3, 2018, 17 pages.
Chinese Office Action (with English language translation) for Application No. 201480023694.9, dated Jun. 26, 2019, 7 pages.
Chinese Office Action (with English language translation) for Application No. CN201480023694.9, dated Jan. 21, 2020, 12 pages.
Chinese Office Action (with English language translation) for Application No. CN201710037081.6, dated Mar. 17, 2020, 23 pages.
Chinese Office Action (with English language translation) for Application No. CN201710037081.6, dated Oct. 21, 2020, 11 pages.
Chinese Office Action dated Oct. 10, 2017 for CN Application No. 201280019629.X, 7 pages.
Chipman, et al., U.S. Appl. No. 15/265,282 (Unpublished), Self-Cleaning Token Vault, filed Sep. 14, 2016. 47 pages.
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. . sctn.312 and 37 C.F.R. sctn.42.104, dated Mar. 14, 2016, before the USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages.
David Breitkopf, “ACS to Take Over Mich. WC Distribution Program”, American Banker, New York, NY: Jul. 20, 2006, vol. 171. Issue 138, p. 6.
Dimmick, U.S. Appl. No. 14/952,444 (unpublished), Tokenization Request Via Access Device, filed Nov. 25, 2015, 78 pages.
Dimmick, U.S. Appl. No. 14/952,514 (unpublished), Systems Communications With Non-Sensitive Identifiers, filed Nov. 25, 2015, 72 pages.
Dizaj, Mohammad Vahid Alizadeh, Moghaddam, Rexa Askari, Momenebellah, Samad, New Mobile Payment Protocol: Mobile Pay Center Protocol 2 (MPCP2) By Using New Key Agreement Protocol: VAM, 3d International Conference on Electronics Computer Technology, vol. 2, Apr. 2011, pp. 12-18.
European Patent Office, Supplementary European Search Report and European Search Opinion, in EP Application No. 12749451.6, dated Apr. 20, 2015, 7 pages.
Ex Parte Quayle Action dated Jan. 18, 2019 for U.S. Appl. No. 16/182,288 (pp. 1-5).
Flurscheim et al., U.S. Appl. No. 62/108,403 (unpublished), Wearables With NFC HCE filed Jan. 27, 2015.
Gaddam et al., U.S. Appl. No. 62/053,736 (unpublished), Completing Transactions Without a User Payment Device, filed Sep. 22, 2014.
Galland et al., U.S. Appl. No. 62/128,709 (unpublished), Tokenizing Transaction Amounts, filed Mar. 5, 2015.
Gao et al., “A 2D Barcode-Based Mobile Payment System”, (2009), XP031561633 (10 pages).
Gao, Jerry, Kulkarni, Vijay, Ranavat, Himanshu, Chang, Lee, Mei, Hsing, A2D Barcode-Based Mobile Payment System, 3d International Conference on Multimedia and Ubiquitous Engineering, Jun. 2009, pp. 320-329.
Gopalan, NP & Selvan, B Siva. TCP/IP Illustrated. Prentice-Hall. 2008. pp. 101-102, 175-176 and 235. 7 pages.
Hoverson et al., U.S. Appl. No. 62/038,174 (unpublished), Customized Payment Gateway, filed Aug. 15, 2014.
I. Malavolta, Web-based hybrid mobile apps: state of the practice and research opportunities, 2 pages (Year: 2016).
Immaneni et al., Hybrid retrieval from the unified web, Mar. 2007, 5 pages.
Indian Examination Report for Application No. 8894/DELNP/2015, dated Oct. 21, 2019, 7 pages.
International Preliminary Report on Patentability dated Jan. 14, 2014 cited in related/corresponding International PCT Appl. No. PCT/US2012/045875 filed Jul. 7, 2012. (11 pages).
International Preliminary Report on Patentability dated Jan. 16, 2014 in related/corresponding PCT Patent Appl. No. PCT/US2012/045601 filed Jul. 5, 2012. (7 pages).
International Search Report and Writen Opinion for PCT/US09/54921 dated Oct. 21, 2009. (8 pages).
International Search Report and Written Opinion for PCT/US2010/033229 dated Dec. 29, 2010. (8 pages).
International Search Report and Written Opinion for PCT/US11/57173 dated Mar. 15, 2012. (11 pages).
International Search Report and Written Opinion for PCT/US11/57179 dated Jan. 5, 2012. (7 pages).
International Search Report and Written Opinion for PCT/US11/57180 dated Mar. 15, 2012 (11 pages).
International Search Report and Written Opinion for PCT/US12/37597 dated Sep. 21, 2012 (11 pages).
International Search Report and Written Opinion for PCT/US12/41437 dated Aug. 24, 2012. (20 pages).
International Search Report and Written Opinion for PCT/US12/47092 dated Nov. 26, 2012. 11 pages.
International Search Report and Written Opinion for PCT/US12/55636 dated Nov. 30, 2012. 9 pages.
International Search Report and Written Opinion for PCT/US12/56759 dated Feb. 25, 2013. 12 pages.
International Search Report and Written Opinion for PCT/US12/57528 dated Dec. 17, 2012. 8 pages.
International Search Report and Written Opinion for PCT/US12/65738 dated Apr. 19, 2013. 9 pages.
International Search Report and Written Opinion for PCT/US12/66898 dated Feb. 11, 2013. 14 pages.
International Search Report and Written Opinion for PCT/US13/46875, dated Oct. 24, 2013, 14 pages.
International Search Report and Written Opinion for PCT/US2010/033861 dated Dec. 9, 2010 (7 pages).
International Search Report and Written Opinion for PCT/US2010/041860 dated Feb. 1, 2011. (8 pages).
International Search Report and Written Opinion for PCT/US2010/046833 dated Apr. 26, 2011 (8 pages).
International Search Report and Written Opinion for PCT/US2010/048344 dated Nov. 15, 2010. (7 pages).
International Search Report and Written Opinion for PCT/US2011/024941 dated Apr. 19, 2011 (6 pages).
International Search Report and Written Opinion for PCT/US2011/032093 dated Aug. 24, 2011 (11 pages).
International Search Report and Written Opinion for PCT/US2011/26734 dated Apr. 29, 2011 (7 pages).
International Search Report and Written Opinion for PCT/US2011/29790 dated May 19, 2011 (6 pages).
International Search Report and Written Opinion for PCT/US2012/026205, dated May 29, 2012. 12 pages.
International Search Report and Written Opinion for PCT/US2012/027043 dated Jul. 13, 2012. 15 pages.
International Search Report and Written Opinion for PCT/US2012/045601 dated Feb. 1, 2013. 11 pages.
International Search Report and Written Opinion for PCT/US2012/057528, dated May 29, 2012. (8 pages).
International Search Report and Written Opinion for PCT/US2012/069557 dated Feb. 22, 2013. 8 pages.
International Search Report and Written Opinion for PCT/US2013/020411 dated May 21, 2013. 18 pages.
International Search Report and Written Opinion for PCT/US2013/024538, dated May 31, 2013. 15 pages.
International Search Report and Written Opinion for PCT/US2013/031084, dated Jun. 4, 2013. 9 pages.
International Search Report and Written Opinion for PCT/US2014/030517, dated Aug. 18, 2014. (9 pages).
International Search Report and Written Opinion issued in connection with PCT/US11/42062 dated Sep. 29, 2011 (8 pages).
International Search Report and Writtten Opinion for PCT/US2011/039178 dated Sep. 16, 2011 (7 pages).
International Search Report for PCT/US11/49393 dated Dec. 5, 2011. (2 pages).
International Search Report for PCT/US11/65305 dated Apr. 16, 2012. 2 pages.
International Search Report for PCT/US12/21000 dated May 15, 2012. 2 pages.
International Search Report for PCT/US12/23856 dated Jun. 6, 2012. 3 pages.
International Search Report for PCT/US12/24772 dated Jul. 24, 2012. 3 pages.
International Search Report for PCT/US12/25530 dated Aug. 7, 2012. 4 pages.
International Search Report for PCT/US12/39638 dated Sep. 24, 2012. 4 pages.
International Search Report for PCT/US12/45875 dated Nov. 16, 2012. 4 pages.
International Search Report for PCT/US12/57577 dated Nov. 29, 2012. 2 pages.
International Search Report for PCT/US2010/033229 dated Dec. 29, 2010, 3 pages.
International Search Report for PCT/US2010/033547 dated Dec. 14, 2010 (3 pages).
International Search Report for PCT/US2010/045445 dated Feb. 24, 2011 (3 pages).
International Search Report for PCT/US2010/045500 dated Mar. 29, 2011 (3 pages).
International Search Report for PCT/US2011/035268 dated Aug. 5, 2011 (3 pages).
International Search Report PCT/US12/27620 dated Aug. 10, 2012. 3 pages.
IP Australia, Patent Examination Report No. 1, Australian Application No. 2012220669, dated Sep. 8, 2014, 6 pages.
IP Australia, Patent Examination Report No. 2, Australian Application No. 2012220669, dated Jun. 8, 2016, 4 pages.
Jiang Hao, “Research on the discovery mechanism of relay node in the middle of the peer network”, the full-text database of excellent Master's degree thesis in China, (May 15, 2009).
Kalgi et al., U.S. Appl. No. 62/024,426 (unpublished), Secure Transactions Using Mobile Devices, filed Jul. 14, 2014.
Kinagi, U.S. Appl. No. 62/117,291 (unpublished), Token and Cryptogram Using Transaction Specific Information filed Feb. 17, 2015.
Le Saint et al., U.S. Appl. No. 15/008,388 (unpublished), Methods for Secure Credential Provisioning, filed Jan. 27, 2016. 89 pages.
Lee et al., osgGap: scene graph library for mobile based on hybrid web app framework, Nov. 2013, 4 pages.
Li, U.S. Appl. No. 61/894,749 (unpublished), Methods and Systems for Authentication and Issuance of Tokens in a Secure Environment filed Oct. 23, 2013.
Liang, J., Shi, R., Liang, F., & Gao, Z. H. (2001). WAP clients & SET protocol. Dr.Dobb's Journal, 26(6), 85-91. Retrieved from http:/ /dialog.proquest.conn/professional/docview/202692023?accountid=131444 (Year: 2001) (5 pages).
Lowry P B XML data mediation and collaboration: a proposed comprehensive architecture and query requirements for using XML to mediate heterogeneous data sources and targets, Proceedings of the 34th Hawaii International Conference on System Sciences—2001, Jan. 3, 2001; Jan. 3, 2001-Jan. 6, 2001, IEEE, pp. 1-9.
McCarney et al., “Tapas: Design, Implementation, and Usability Evaluation of a Password Manager,” Copyright 2012, ACM 978 1-4503-1312-4/12/12 (10 pages).
McGuire, U.S. Appl. No. 14/600,523 (unpublished), Secure Payment Processing Usnig Authorization Request, filed Jan. 20, 2015. 42 pages.
Notice of Allowance dated Oct. 10, 2018 for U.S. Appl. No. 14/242,403 (pp. 1-11).
Notice of Allowance dated Apr. 12, 2019 for U.S. Appl. No. 16/182,288 (pp. 1-8).
Notice of Allowance dated Feb. 10, 2021 for U.S. Appl. No. 15/627,085 (pp. 1-15).
Notice of Allowance dated Feb. 27, 2019 for U.S. Appl. No. 15/839,493 (pp. 1-9).
Notice of Allowance dated Jan. 14, 2021 for U.S. Appl. No. 16/140,879 (pp. 1-9).
Notice of Allowance dated Jan. 19, 2021 for U.S. Appl. No. 16/283,251 (pp. 1-5).
Notice of Allowance dated Jan. 22, 2021 for U.S. Appl. No. 16/532,095 (pp. 1-10).
Notice of Allowance dated Jan. 27, 2021 for U.S. Appl. No. 16/273,976 (pp. 1-9).
Notice of Allowance dated Jan. 29, 2021 for U.S. Appl. No. 15/988,485 (pp. 1-7).
Notice of Allowance dated Jul. 23, 2018 for U.S. Appl. No. 15/406,325 (pp. 1-9).
Notice of Allowance dated Jun. 10, 2020 for U.S. Appl. No. 15/494,294 (pp. 1-10).
Notice of Allowance dated Jun. 15, 2020 for U.S. Appl. No. 16/440,486 (pp. 1-8).
Notice of Allowance dated Jun. 27, 2018 for U.S. Appl. No. 13/542,443 (pp. 1-13).
Notice of Allowance dated Mar. 31, 2021 for U.S. Appl. No. 16/294,676 (pp. 1-9).
Notice of Allowance dated May 30, 2019 for U.S. Appl. No. 13/758,472 (pp. 1-10).
Notice of Allowance dated Nov. 8, 2019 for U.S. Appl. No. 14/698,317 (pp. 1-10).
Notice of Allowance dated Nov. 30, 2018 for U.S. Appl. No. 15/717,409 (pp. 1-8).
Notice of Allowance dated Oct. 11, 2018 for U.S. Appl. No. 13/520,481 (pp. 1-9).
Office Action dated Feb. 28, 2018 for U.S. Appl. No. 14/242,403 (pp. 1-11).
Office Action dated Apr. 1, 2020 for U.S. Appl. No. 16/140,879 (pp. 1-17).
Office Action dated Apr. 12, 2018 for U.S. Appl. No. 13/520,481 (pp. 1-8).
Office Action dated Aug. 21, 2020 for U.S. Appl. No. 15/988,485 (pp. 1-10).
Office Action dated Dec. 12, 2019 for U.S. Appl. No. 14/935,122 (pp. 1-12).
Office Action dated Dec. 27, 2018 for U.S. Appl. No. 13/398,817 (pp. 1-10).
Office Action dated Dec. 3, 2018 for U.S. Appl. No. 14/935,122 (pp. 1-13).
Office Action dated Dec. 4, 2020 for U.S. Appl. No. 16/017,241 (pp. 1-10).
Office Action dated Feb. 4, 2020 for U.S. Appl. No. 13/629,006 (pp. 1-7).
Office Action dated Jan. 17, 2019 for U.S. Appl. No. 14/216,832 (pp. 1-7).
Office Action dated Jan. 7, 2021 for U.S. Appl. No. 16/245,777 (pp. 1-10).
Office Action dated Jul. 10, 2019 for U.S. Appl. No. 13/398,817 (pp. 1-8).
Office Action dated Jul. 10, 2020 for U.S. Appl. No. 16/017,241 (pp. 1-9).
Office Action dated Jul. 16, 2018 for U.S. Appl. No. 14/698,317 (pp. 1-13).
Office Action dated Jun. 21, 2018 for U.S. Appl. No. 14/216,351 (pp. 1-12).
Office Action dated Jun. 22, 2018 for U.S. Appl. No. 13/629,006 (pp. 1-8).
Office Action dated Jun. 27, 2018 for U.S. Appl. No. 15/717,409 (pp. 1-7).
Office Action dated Jun. 27, 2019 for U.S. Appl. No. 13/629,006 (pp. 1-7).
Office Action dated Mar. 1, 2019 for U.S. Appl. No. 14/698,317 (pp. 1-11).
Office Action dated Mar. 13, 2020 for U.S. Appl. No. 15/494,294 (pp. 1-8).
Office Action dated Mar. 6, 2020 for U.S. Appl. No. 16,017,241 (pp. 1-7).
Office Action dated Mar. 6, 2020 for U.S. Appl. No. 16/440,486 (pp. 1-8).
Office Action dated May 14, 2019 for U.S. Appl. No. 14/935,122 (pp. 1-11).
Office Action dated May 19, 2020 for U.S. Appl. No. 15/627,085 (pp. 1-11).
Office Action dated May 22, 2018 for U.S. Appl. No. 14/216,382 (pp. 1-8).
Office Action dated May 25, 2021 for U.S. Appl. No. 16/017,241 (pp. 1-13).
Office Action dated Nov. 12, 2020 for U.S. Appl. No. 16/273,976 (pp. 1-9).
Office Action dated Nov. 2, 2018 for U.S. Appl. No. 13/624,779 (pp. 1-18).
Office Action dated Oct. 22, 2020 for U.S. Appl. No. 14/244,488 (pp. 1-13).
Office Action dated Oct. 27, 2020 for U.S. Appl. No. 16/294,676 (pp. 1-9).
Office Action dated Oct. 29, 2019 for U.S. Appl. No. 14/216,382 (pp. 1-8).
Office Action dated Oct. 31, 2019 for U.S. Appl. No. 15/627,085 (pp. 1-9).
Office Action dated Oct. 4, 2018 for U.S. Appl. No. 13/758,472 (pp. 1-22).
Office Action dated Oct. 6, 2020 for U.S. Appl. No. 16/532,095 (pp. 1-13).
Office Action dated Oct. 9, 2020 for U.S. Appl. No. 16/283,251 (pp. 1-6).
Office Action dated Sep. 21, 2018 for U.S. Appl. No. 15/839,493 (pp. 1-21).
Office Action dated Sep. 4, 2020 for U.S. Appl. No. 15/627,085 (pp. 1-10).
Pan Kexian “Development of the Location-Based Service LBS Application of Intelligent Mobile Phone”, Information Technologies, Oct. 25, 2009, pp. 134-137, cited on Oct. 10, 2017 in CN201280019629.
Patterson, U.S. Appl. No. 15/019,157 (unpublished), Token Processing Utilizing Multiple Authorizations, filed Feb. 9, 2016. 62 pages.
Patterson, U.S. Appl. No. 62/054,346 (unpublished), Mirrored Token Vault, filed Sep. 23, 2014.
Petition for Inter Partes Review of U.S. Pat. No. 8,402,555 Challenging Claims 1-26 Under 35 U.S.C. 312 and 37 C.F.R. 42.104, dated Mar. 22, 2016, before the USPTO Patent Trial and Appeal Board, IPR 2016-00789, 65 pages.
Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. 312 and 37 C.F.R. 42.104, filed Feb. 17, 2016, Before the USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages.
Petition for Inter Partes Review of U.S. Pat. No. 8,887,308 Challenging Claim 1 Under 35 U.S.C. 312 and 37 C.F. R. 42.104, dated Mar. 3, 2016, before the USPTO Patent Trial and Appeal Board, IPR 2016-00602, 58 pages.
Powell, U.S. Appl. No. 61/892,407 (unpublished), Issuer Over-The-Air Update Method and System filed Oct. 17, 2013.
Powell, U.S. Appl. No. 61/926,236 (unpublished), Methods and Systems for Provisioning Mobile Devices With Payment Credentials and Payment Token Identifiers filed Jan. 10, 2014.
Prakash et al., U.S. Appl. No. 14/955,716 (unpublished), Provisioning Platform for Machine-To-Machine Devices, filed Dec. 1, 2015. 72 pages.
Prakash et al., U.S. Appl. No. 62/037,033 (unpublished), Sharing Payment Token, filed Aug. 13, 2014.
Rangarajan et al., U.S. Appl. No. 61/751,763 (unpublished), Payments Bridge filed Jan. 11, 2013.
Ratha, N., and Bolle, R., 1. History of Fingerprint Pattern Recognition- 1.1 Introduction; 1.2 The Development of Fingerprint Classification Systems “Automatic Fingerprint Recognition Systems,” Springer-Verlag, (2004) (466 pages).
Sabba et al., U.S. Appl. No. 15/011,366 (unpublished), Token Check Offline, filed Jan. 29, 2016. 60 pages.
Shadrach, D.C. “A Weighted Metric Based Adaptive Algorithm for Web Server Load Balancing.” 2009 Third International Symposium on Intelligent Information Technology Application, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?amumber=5369384, pp. 449-452.
Sharma et al., U.S. Appl. No. 62/003,717 (unpublished), Mobile Merchant Application filed May 28, 2014.
ShopSavvy Blog. Feb. 2012. Retrieved from https://web.archive.Org/web/20120212104611/http://shopsavvy.com/blog. pp. 1-13 (Year: 2012).
Smartphone e-payment and Google AD send blog, 'Google Wallet on Smartphone', <http://stockpedia.blogspot.kr/2011/06/google-wallet.html> Jun. 10, 2011, pp. 1-3.
Stack Exchange, Why aren't there automated translators from one programming language to another, 2010 (5 pages).
State Intellectual Property of the People's Republic of China, First Office Action in Chinese Application No. 201280019629.X, dated Aug. 1, 2016, 15 pages.
State Intellectual Property Office of the People's Republic of China, First Office Action in Chinese Application No. 201280018719.7, dated Jul. 4, 2016, 31 pages.
Stubbs et al., U.S. Appl. No. 62/103,522 (unpublished), Methods and Systems for Wallet Provider Provisioning filed Jan. 14, 2015.
U.S. Appl. No. 15/462,658 (Unpublished), Replacing Token on a Multi-Token User Device, filed Mar. 17, 2017. 53 pages.
U.S. Appl. No. 12/940,664 (unpublished), entitled “System and Method for Determining Transaction Distance” filed Nov. 5, 2010. (51 pages).
U.S. Appl. No. 61/250,440, filed Oct. 9, 2009, entitled “Systems and Methods To Provide Loyalty Programs”. 164 pages.
Vitt, Elizabeth et al. Data Integration Solutions for Master Data Management (Feb. 2006). https://technet.microsoft.com/en-us/library/aa964123(v=sql.90).aspx (19 pages).
Vitt, Elizabeth, et al. “Microsoft SQL Server 2005 Analysis Services Performance Guide.” White Paper, White Paper (2007). (116 pages).
Wang Lepeng et al. “Discuss of Foursquare Pattern and Its Deelopment Strategies in China” Scientific and Technological Information, Aug. 15, 2010, pp. 90-91, cited on Oct. 10, 2017 in CN201280019629.
Wang, U.S. Appl. No. 62/000,288 (unpublished), Payment System Canonical Address Format, filed May 19, 2014.
Wang, U.S. Appl. No. 62/042,050 (unpublished), Payment Device Authentication and Authorization System, filed Aug. 26, 2014.
Win Anyu, “A cluster based routing relay node selection algorithm”, 2010 Asia-Pacific Conference on Information Network and Digital Content Security (2010APCID), (Dec. 31, 2010).
Wong et al., U.S. Appl. No. 14/966,948 (unpublished), Automated Access Data Provisioning filed Dec. 11, 2015. 52 pages.
Wong et al., U.S. Appl. No. 61/879,362 (unpublished), Systems and Methods for Managing Mobile Cardholder Verification Methods filed Sep. 18, 2013.
Written Opinion for PCT/US12/27620 dated Aug. 10, 2012. 5 pages.
Xing Chang-you and Chen Ming; “Network distance prediction technology”, Journal of Software , (Sep. 30, 2009), vol. 20, No. 9, p. 2470-2482 http://www.jos.org.cn/josen/ch/reader/view_abstract.aspx?flag=1&file_no=3559&journal_id=jos.
Yang Jingjing “Help Web: Life Search Forerunner”Scientific and Technological Information, Aug. 5, 2010, pp. 36-37, cited on Oct. 10, 2017 in CN201280019629.
Office Action dated Jul. 23, 2021 for U.S. Appl. No. 16/245,777 (pp. 1-12).
Chinese Office Action (including English translation) issued in App. No. CN201810822482.7, dated Mar. 25, 2022, 15 pages.
Dragt, Bruce. “Universal Commerce: A Seamless, Personalized Purchase Experience for Today's Connected Consumers.” A First Data White Paper (2012). (Year: 2012) (pp. 1-17).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jan. 25, 2022 for U.S. Appl. No. 16/245,777 (pp. 1-11).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 8, 2022 for U.S. Appl. No. 17/064,832 (pp. 1-8).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Apr. 22, 2022 for U.S. Appl. No. 16/245,777 (pp. 1-9).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Apr. 27, 2022 for U.S. Appl. No. 17/064,832 (pp. 1-2).
Office Action (Non-Final Rejection) dated Sep. 28, 2022 for U.S. Appl. No. 17/321,143 (pp. 1-8).
Office Action (Final Rejection) dated Jan. 19, 2023 for U.S. Appl. No. 17/321,143 (pp. 1-9).
Office Action (Non-Final Rejection) dated Mar. 1, 2023 for U.S. Appl. No. 17/868,502 (pp. 1-7).
Related Publications (1)
Number Date Country
20210272101 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
61504348 Jul 2011 US
Continuations (2)
Number Date Country
Parent 16140879 Sep 2018 US
Child 17321773 US
Parent 13542443 Jul 2012 US
Child 16140879 US