1. Technical Field
The present invention relates to an electronic musical instrument.
2. Background Art
In conventional acoustic wind instruments (single-reed woodwind instruments such as the saxophone and the clarinet), changes in the positioning and pressure of the lips and tongue on the reed cause variation in the tones of the musical notes produced, thereby allowing for a rich repertoire of musical expressions.
Meanwhile, there are also electronic wind instruments that electronically synthesize and output musical notes. In such electronic wind instruments, pressure-sensitive lip detectors (pressure-sensitive sensors) are arranged in a matrix on the reed and detect the positioning of the lips and tongue to control the musical notes (Japanese Patent Application Laid-Open Publication No. H7-72853).
In acoustic wind instruments, the musical notes can be controlled using very slight adjustments in the contact force and positioning of the lips and tongue. In the electronic wind instrument disclosed in Patent Document 1, however, response time is poor due to the pressure-sensitive sensors, thereby making it impossible to achieve a satisfactory musical performance on par with that of an acoustic wind instrument.
The problem to solve in the present invention is how to produce satisfactory musical notes. Accordingly, the present invention is directed to a scheme that substantially obviates one or more of the above-discussed and other problems due to limitations and disadvantages of the related art.
Additional or separate features and advantages of the invention will be set forth in the descriptions that follow and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims thereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, in one aspect, the present disclosure provides an electronic musical instrument, including: a contact sensor that generates lip detection information from an operation by a performer; and a controller that derives a lip contact area from the lip detection information generated by the contact sensor, and performs musical note control of an electronic sound source in accordance with the derived lip contact area.
In another aspect, the present disclosure provides an electronic musical instrument, including: a contact sensor having a capacitive touch sensor; and a controller that performs musical note control of an electronic sound source in accordance with information detected by the capacitive touch sensor.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory, and are intended to provide further explanation of the invention as claimed.
Embodiments 1 to 3 of the present invention will be described in detail below with reference to the attached drawings.
It should be noted that the present invention is not limited to the examples illustrated in the drawings.
Embodiment 1 of the present invention will be described with reference to
The electronic musical instrument 100 of the present embodiment makes it possible to realize musical performance techniques used when playing an acoustic wind instrument (a single-reed woodwind instrument, for example) such as pitch bending and vibrato. The present embodiment will be described with the electronic musical instrument 100 being a saxophone as an example. However, the present invention is not limited to saxophones and may be applied to electronic versions of other single-reed wind instruments such as clarinets.
As illustrated in
The body 100a is shaped like the main body of a saxophone. The controls 1 can be operated by the fingers of the performer (user) and include performance keys that determine pitch as well as settings keys for setting the type of wind instrument to emulate (saxophone, trumpet, synth lead, oboe, clarinet, flute, or the like), for changing the pitch according to the key of a song, for fine-tuning pitch, and the like. The mouthpiece 10 is operated by the performer's mouth and will be described in more detail later. The sound system 9 includes speakers or the like and outputs musical notes.
As illustrated in the partial through-view of the electronic musical instrument 100 in
The air stream pressure detector 2 detects the pressure of the stream of air blown into the mouthpiece 10 by the performer. The sound source 8 is a circuit that generates musical notes.
Next, the functional configuration of the electronic musical instrument 100 will be described with reference to
As illustrated in
The controls 1 which include the performance keys, the settings keys, and the like receive key operations from the performer, and the resulting operation information is output to the CPU 5. In addition to setting the type of wind instrument to emulate, changing the pitch according to the key of a song, and fine-tuning pitch, the settings keys can also be used to pre-select a fine-tuning mode in which the tone, the volume, or the pitch of musical notes is fine-tuned according to the lip contact position and the lip contact area as detected by the lip detector 3. The air stream pressure detector 2 detects the pressure of the stream of air blown into the mouthpiece 10 by the performer and outputs the resulting pressure information to the CPU 5.
The lip detector 3 is formed on the mouthpiece 10 and is a capacitive touch sensor that detects contact between the performer's lips and a contact sensor 11. The capacitance of the touch sensor changes according to changes in the lip contact position and the lip contact area and is output to the CPU 5 as lip detection information. The tongue detector 4 is also formed on the mouthpiece 10 and is a capacitive touch sensor that detects contact between the performer's tongue and the contact sensor 11. The capacitance of the touch sensor changes according to changes in the contact area of the tongue and is output to the CPU 5 as tongue detection information.
The CPU 5 controls the components of the electronic musical instrument 100. The CPU 5 loads a specified program from the ROM 6 and runs it using the RAM 7. The CPU 5 uses the running program to execute the various processes used. More specifically, the CPU 5 sends musical note generation instructions to the sound source 8 on the basis of the operation information from the controls 1, the pressure information from the air stream pressure detector 2, the lip detection information from the lip detector 3, and the tongue detection information from the tongue detector 4. The CPU 5 sets the pitch of the musical note according to the pitch by the operation information from the controls 1 and also sets the volume of the musical note according to the pressure information from the air stream pressure detector 2. The CPU 5 fine-tunes at least one of the tone, volume, and pitch of the musical note according to the lip contact position and the lip contact area specified by the lip detection information from the lip detector 3. The CPU 5 also sets whether the musical note is on or off according to the tongue detection information from the tongue detector 4.
The ROM 6 is a read-only semiconductor memory and stores various types of data and programs. The RAM 7 is a volatile semiconductor memory and has a working area that temporarily stores data and programs.
The sound source 8 is a synthesizer that generates a musical note according to a musical note generation instruction (musical note control) generated by the CPU 5 on the basis of the operation information from the controls 1, the lip detection information from the lip detector 3, and the tongue detection information from the tongue detector 4. The sound source 8 then outputs the resulting musical note signal to the sound system 9. The sound source 8 includes an LPF that filters the musical note signal. However, the LPF may also be provided between the sound source 8 and the sound system 9 or as part of the sound system 9. The sound system 9 performs amplification and the like on the musical note signal from the sound source 8 and outputs the resulting signal as a musical note from a built-in speaker.
Next, the configuration of the mouthpiece 10 will be described with reference to
As illustrated in
Note that in
Next, the capacitive touch sensor S used for the lip detector 3 and the tongue detector 4 will be described with reference to
As illustrated in
Patent Document 1 (listed in the Background Art section) discloses a pressure-sensitive sensor. In this pressure-sensitive sensor, a pressure-sensitive device is sandwiched between two resin sheets arranged facing one another. A first electrode is arranged on the first (the lower) resin sheet, and a pressure-sensitive material is arranged covering the first electrode. The pressure-sensitive material is a coating that deforms when pressure is applied thereto and exhibits a decrease in electrical resistance according to the magnitude of the applied pressure. A second electrode is arranged on the second (the upper) resin sheet, which is arranged facing the first (lower) electrode. A spacer prevents the second electrode from contacting the pressure-sensitive material when no external force is applied to the assembly. When using a pressure-sensitive sensor, the resolution that can be achieved for parameters such as contact position and contact area is extremely low, which makes it difficult to fine-tune output according to the pressure applied.
In contrast, the touch sensor S can be mounted without the need to maintain a space as is needed with the pressure-sensitive sensor. This is because the only sensing element of the touch sensor S is the electrostatic pad 22, which makes it possible for the structure of the touch sensor S to be simpler and thinner than that of a pressure-sensitive sensor.
Moreover, the touch sensor S exhibits better detection precision than a pressure-sensitive sensor. This is because a pressure-sensitive sensor has a minimum detectable load, and a force on the order of 0.2N must be applied to register a reading. In contrast, the touch sensor S detects changes in capacitance and can detect even the small changes in capacitance that occur before contact is actually made with the sensor. No physical pressure needs to be applied, which makes it possible to achieve a far higher contact detection precision than when using a pressure-sensitive sensor.
The electrode matrix that includes the electrodes 41, 31, 32, 33, 34, and 35 functions as a uniaxial slider and can detect the contact state of the lip L and the tongue (T1: tongue in contact, T2: tongue not in contact) and then output the resulting detection information. Furthermore, the CPU 5 calculates the lip contact position and contact area using the detection information from the electrodes 31, 32, 33, 34, and 35 contacted by the lip. The CPU 5 can determine that a higher contact pressure is being applied when the lip contact area is larger, thereby making it possible to detect the contact pressure applied by the lips as well. Similarly, the CPU 5 uses the detection information output by the electrode 41 to determine whether the tongue is in contact with the contact sensor 11.
Note that although in the example described above the six electrodes 41, 31, 32, 33, 34, and 35 are used as the electrodes for the touch sensor S of the lip detector 3 and the tongue detector 4, the present invention is not limited to this configuration. The number, arrangement, and shape of the electrodes of the touch sensors S for the lip detector 3 and the tongue detector 4 may be configured as appropriate according to the design requirements at hand.
Next, the output strength of the touch sensor S used for the lip detector 3 and the tongue detector 4 will be described with reference to
The graphs of the output strength of the touch sensor S in
In this way, electrodes adjacent to the electrodes contacted by the lip in the lip contact region also register changes in the capacitance of the capacitive touch sensor S. The CPU 5 assigns the lip contact position to the center of the lip contact region (such as C1 or C2) in which the output of the touch sensor S (which is used as the detection information for the lip detector 3) is strongest. It is preferable that the CPU 5 calculate the total lip contact area using the output values from each of the electrodes 31, 32, 33, 34, and 35 of the touch sensor S. However, the present invention is not limited to this scheme, and the lip contact area may be calculated using only the strongest output value from the electrodes 31, 32, 33, 34, and 35 of the touch sensor S.
As illustrated in
The output distributions described above are only examples corresponding to when six electrodes are used. Different output distributions can be obtained when different electrode configurations are used. For example, a larger number of finer electrodes can be used to increase the output resolution.
Next, control of musical notes according to the detection information from the lip detector 3 will be described with reference to
Three factors that determine the properties of a sound are tone, volume, and pitch. The CPU 5 controls what types of musical notes are generated by adjusting these three factors according to the lip contact position and the lip contact area specified by the detection information from the lip detector 3 and performing musical note control with respect to the sound source 8. As illustrated in
As illustrated in
As illustrated in
Similarly, as illustrated in
As illustrated in
As illustrated in
Moreover, it is preferable that one of the LPF cutoff frequency, the volume, and the pitch be set as a musical note control factor (a first musical note control factor) to be adjusted according to lip contact position as illustrated in
Of the three factors, volume and pitch are the most important. Therefore, it is particularly preferable that the first musical note control factor be set to one of volume or pitch and that the second musical note control factor be set to the other of pitch and volume (that is, to the factor different than the first musical note control factor), such that the performer can control the musical notes according to two different and important control factors.
It should be noted that the combinations of musical note control schemes (of those illustrated in
Next, control of musical notes according to the detection information from the tongue detector 4 will be described with reference to
The tongue detector 4 detects the contact state of the tongue. The CPU 5 controls what types of musical notes are generated by turning the notes ON and OFF according to whether the detection information from the tongue detector 4 indicates that tongue contact has been made. The CPU 5 then performs musical note control for turning the note ON and OFF according to the use of the tonguing technique to the sound source 8. Here, “tonguing technique” refers to a technique employed when playing acoustic wind instruments in which the tongue is brought into contact with the vibrating reed to stop that vibration, thereby preventing generation of sound.
Furthermore, when the air stream pressure detector 2 detects the pressure of air blown by the performer, the CPU 5 performs musical note control for turning notes ON and OFF according to that detected signal with respect to the sound source 8. Therefore, as illustrated in
If, starting at time t1, the performer continuously blows air into the mouthpiece 10, the air stream pressure detector 2 detects the resulting pressure, and the CPU 5 performs musical note control to turn the note on and adjust the volume according to the detected pressure. Then, if from time t2 to time t3 the performer's tongue contacts and remains in contact with the electrode 41 of the contact sensor 11, the CPU 5 prioritizes the tongue contact signal from the tongue detector 4 over the pressure detected by the air stream pressure detector 2 and performs musical note control to turn the note off. Next, at time t3, the tongue detector 4 detects that the tonguing technique is no longer being used, and the CPU 5 performs musical note control to turn the note back on according to the pressure detected by the air stream pressure detector 2.
In the present embodiment as described above, the electronic musical instrument 100 includes the contact sensor 11 having the capacitive touch sensor S and the CPU 5 that performs musical note control with respect to the sound source 8 according to detection information from the touch sensor S. This makes it possible to detect contact of the lip and the tongue even when the performer does not actually apply a force to the mouthpiece 10 as well as to improve responsiveness, better emulate the performance of an acoustic wind instrument, and produce satisfactory musical notes.
Furthermore, the touch sensor S includes the electrodes 31, 32, 33, 34, and 35 and detects contact of the performer's lip with those electrodes 31, 32, 33, 34, and 35. The CPU 5 calculates the lip contact position and the lip contact area using the detected lip contact information and performs musical note control with respect the sound source 8 according to at least one of the lip contact position and the lip contact area. This makes it possible to easily determine the lip contact position and the lip contact area even if the performer does not actually apply a force to the mouthpiece 10.
Moreover, when the appropriate settings are configured, the CPU 5 performs musical note control to change the tone, volume, or pitch of the musical note according to the lip contact position to the sound source 8. This makes it possible to produce satisfactory musical notes according to the desired note control factors.
The electronic musical instrument 100 also detects the contact area of the lip with the contact sensor 11 and includes the touch sensor S and the CPU 5 that control the musical notes generated by the sound source 8 according to the detected lip contact area. This makes it possible to detect the lip contact area even when the performer does not actually apply a force to the mouthpiece 10 as well as to improve responsiveness, better emulate the performance of an acoustic wind instrument, and produce satisfactory musical notes.
Moreover, when the appropriate settings are configured, the CPU 5 performs musical note control for changing the tone, volume, or pitch of the musical note according to the lip contact area to the sound source 8. This makes it possible to produce satisfactory musical notes according to the desired note control factors.
Furthermore, the touch sensor S includes the electrode 41 and detects contact of the performer's tongue with that electrode 41. The CPU 5 performs musical note control of the sound source 8 to turn the note ON and OFF according to the detected tongue contact state. This makes it possible to easily determine the contact state of the tongue even if the performer does not actually apply a force to the mouthpiece 10.
Furthermore, the electronic musical instrument 100 includes the tongue detector 4 that detects the contact state of the performer's tongue, and the CPU 5 performs musical note control of the sound source 8 according to the detected tongue contact state. This makes it possible to produce satisfactory musical notes according to the contact state of the tongue.
The CPU 5 also performs musical note control of the sound source 8 according to the contact state of the tongue. This makes it possible to easily enable use of the tonguing technique employed when playing acoustic wind instruments.
Next, Embodiment 2 of the present invention will be described with reference to
In the present embodiment, the electronic musical instrument 100 is the same as in Embodiment 1 except in that the mouthpiece 10 is replaced with the mouthpiece 10A. The same reference characters are used to indicate components that are the same as the components used in the electronic musical instrument 100 of Embodiment 1, and descriptions of those components will be omitted here. Moreover, these components that are the same have the same functions as the components used in the electronic musical instrument 100, and descriptions of those functions will also be omitted here.
As illustrated in
The load cell 14 is arranged on the inner side of the contact sensor 11, detects the force applied to the contact sensor 11, and outputs the detected load information to the CPU 5. The load cell 14 is connected to the bus 9a illustrated in
Next, control of musical notes according to the detection information from the load cell 14 will be described with reference to
As illustrated in
It is preferable that the musical note control factor corresponding to the force applied to the contact sensor 11 be different than the musical note control factors corresponding to the tongue contact position and the lip contact area. Moreover, the control characteristics shown in
In the present embodiment as described above, the electronic musical instrument 100 includes the load cell 14 which detects the force applied to the contact sensor 11, and the force applied to the contact sensor 11 as detected by the load cell 14 is used to control the musical notes generated by the sound source 8. This makes it possible to perform musical note control according not only to tongue and lip contact with the touch sensor S but also according to the force applied to the contact sensor 11 as detected by the load cell 14, thereby making it possible to produce a wider variety of satisfactory musical notes.
Moreover, the CPU 5 performs musical note control for changing the tone, volume, or pitch of the musical notes according to the detected force applied to the contact sensor 11 to the sound source 8. This makes it possible to produce satisfactory musical notes according to the desired note control factors.
Next, Embodiment 3 of the present invention will be described with reference to
In the present embodiment, the electronic musical instrument 100 is the same as in Embodiment 1 except in that the mouthpiece 10 is replaced with the mouthpiece 10B. The same reference characters are used to indicate components that are the same as the components used in the electronic musical instrument 100 of Embodiment 1, and descriptions of those components will be omitted here. Moreover, these components that are the same have the same functions as the components used in the electronic musical instrument 100, and descriptions of those functions will also be omitted here.
As illustrated in
The distance sensor 15 is arranged on the inner side of the contact sensor 11, detects the distance D between the distance sensor 15 and the contact sensor 11, and outputs the detected distance information to the CPU 5. The distance sensor 15 is connected to the bus 9a illustrated in
Next, control of musical notes according to the detection information from the distance sensor 15 will be described with reference to
As illustrated in
It is preferable that the musical note control factor corresponding to the distance between the contact sensor 11 and the distance sensor 15 be different than the musical note control factors corresponding to the tongue contact position and the lip contact area. Moreover, the control characteristics shown in
The present embodiment as described above includes the distance sensor 15 which detects the distance to the contact sensor 11 as the contact sensor 11 bends, and the CPU 5 uses the distance to the contact sensor 11 as detected by the distance sensor 15 to control the musical notes generated by the sound source 8. This makes it possible to perform musical note control according not only to tongue and lip contact with the touch sensor S but also according to the distance to the contact sensor 11 as detected by the distance sensor 15, thereby making it possible to produce satisfactory musical notes.
Moreover, when the appropriate settings are configured, the CPU 5 performs musical note control for changing the tone, volume, or pitch of the musical notes according to the detected distance to the contact sensor 11 to the sound source 8. This makes it possible to produce satisfactory musical notes according to the desired note control factors.
The embodiments described above are only examples of a suitable application of the present invention to an electronic musical instrument, and the present invention is not limited to these examples.
For example, a shield electrode may be formed on top of the electrodes 41, 31, 32, 33, 34, and 35 of the touch sensor of the embodiments described above in order to reduce erroneous detections due to water moisture or drops of water.
Moreover, the more detailed aspects of the configuration and functions of the components of the electronic musical instrument 100 in the embodiments described above may be modified as appropriate without departing from the spirit of the present invention.
Embodiments of the present invention were described above. However, the present invention is not limited to these embodiments, and any configurations included in the scope of the claims and their equivalents are also encompassed by the present invention.
It will be apparent to those skilled in the art that various modification and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover modifications and variations that come within the scope of the appended claims and their equivalents. In particular, it is explicitly contemplated that any part or whole of any two or more of the embodiments and their modifications described above can be combined and regarded within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2015-055531 | Mar 2015 | JP | national |