The present invention relates to the field of electronic wind instruments which enable the production of musical notes by positioning the fingers of the hands on keys and by blowing into a mouthpiece. The main purpose of the invention is to improve the behaviour of the electronic wind instrument and to approach as close as possible to that of an acoustic wind instrument, in order to provide the same playing sensation, whereby the musician can continue working on his playing technique and thus progress on both types of instrument.
One of the advantages of electronic wind instruments is to allow musicians to practice a wind instrument under all circumstances, without causing discomfort to people in the vicinity. Indeed, acoustic wind instruments are loud by nature, which does not allow the musician to practise at home, at any time, without disturbing the other members of the family or neighbours. Unless a very expensive and not very comfortable soundproof booth is available. Using electronic wind instruments, musicians can practice silently at home under all circumstances by means of an audio headset, without any discomfort for the neighbours.
Another advantage of an electronic wind instrument is to allow the musician to play in an amplified manner, very simply, so as to integrate with other instruments in a controlled manner.
Another advantage of this type of instrument lies in the fact of being able to separate fingering technique from blowing technique, for learning purposes. Hence, the musician can concentrate on the notes without the need to master a nozzle or a mouthpiece.
Other advantages also exist, for example the possibility of changing the range of playable notes, tuning the instrument in a customised and reproducible manner, and playing different sounds on one and the same instrument.
In a first embodiment according to the prior art, the electronic wind instruments comprise a mouthpiece into which the musician blows. A pressure sensor is connected on this mouthpiece, the pressure sensor comprising a membrane which deforms when the musician blows into the mouthpiece. An electronic processing system is connected to the sensor for measuring deformations of the membrane. Keys are also arranged on the instrument and connected to the electronic processing system, said electronic processing system measuring contacts on these keys. The simultaneous action of blowing into the mouthpiece and manipulation of the keys by the musician enables the electronic processing system to produce musical notes. This design does not entirely reproduce the sensation of playing an acoustic wind instrument, given that the musician blows into the mouthpiece of a pipe, the end of which communicates directly with the pressure sensor, this mouthpiece being consequently blocked.
To overcome this disadvantage, an alternative embodiment includes the addition of means for discharging the blown air, which are configured on the mouthpiece or directly on the pressure sensor. This allows air to be exhausted when the musician blows into the mouthpiece and hence provides sensations a little closer to those of an acoustic wind instrument. By way of example, such an electronic wind instrument design appears in U.S. Pat. No. 5,170,003 where the mouthpiece comprises an air discharge hole. The same is found in U.S. Pat. No. 3,767,833 which provides a discharge hole with, in addition, an adjustable screw allowing regulation of the discharge of the air. When the air discharge means are provided directly on the pressure sensor, the pressure sensor comprises a discharge port, a pipe being connected to this discharge port and configured to open to the outside of the instrument, either close to the sensor or at the longitudinal end of the instrument. The results of this alternative embodiment remain insufficient however, since the flow of discharged air remains very severely limited. Hence, this type of instrument always requires an adaptation in the manner of playing for the musician who, consequently, cannot change from an electronic wind instrument to an acoustic wind instrument, and vice versa, while maintaining the same playing conditions.
Also known is U.S. Pat. No. 5,140,888, which describes an electronic wind instrument aimed at reproducing the sensations of an acoustic wind instrument. The musical instrument comprises a pipe which extends over the entire length of the instrument, said pipe having an inlet opening onto a mouthpiece (or nozzle) and an outlet allowing the blown air to be discharged. A pressure sensor is connected upstream of the pipe, close to the mouthpiece, and a chamber provided with a valve is arranged between two portions of the pipe, said chamber allowing the flow of air to be adjusted according to the pressure, when the musician blows into the instrument.
Also known is patent application JP 2008-268592A which discloses an electronic wind instrument consisting of a mouthpiece connected to a body of the instrument, said body being independent of the mouthpiece and including an electronic processing system and a keyboard provided with a note selection system. The musical notes are composed according to the breaths generated in the mouthpiece and the selection of notes on the body. The mouthpiece comprises a pressurisation chamber having an inlet, an outlet and a measuring port on which a pressure sensor is connected, disposed on the outside of said chamber and connected to an electronics card which communicates with the body of the instrument. The musician blows into the mouthpiece and manipulates the body independently in order to produce musical notes. Such an instrument does not allow autonomous production of sounds by using only the mouthpiece, because it is compulsory to attach a note selection system, which is implemented on the independent body. The musician cannot therefore experience the sensations of playing an acoustic wind instrument by practising with such an electronic wind instrument.
Also known is U.S. Pat. No. 3,429,986 A which discloses an acoustic instrument comprising a piezoelectric sensor close to the nozzle. This embodiment comprises an effects controller for processing the sounds produced by the acoustic instrument per se, with a view to amplifying same. Such an instrument cannot autonomously produce sounds by independently using the effects controller, because it is compulsory to attach an acoustic instrument. This type of instrument cannot produce the advantages which are mentioned above and sought for an electronic wind instrument.
Also known are patent applications EP 0 039 012 A1 and JP 2014 182277 A which relate to a breath controller designed to be independently connected to a keyboard in such a way as to modify the sound produced by the keyboard. In EP 0 039 012 A1, the breath controller comprises a unique membrane deformed by the action of the breath, and a system for processing the deformation of the membrane. Such breath controllers do not enable autonomous selection of musical notes.
The invention relates to an electronic wind instrument variant aimed at producing the sensations of an acoustic wind instrument, in other words blowing naturally into the mouthpiece while manipulating the keys in order to produce the notes, as a musician would do with an acoustic wind instrument.
To this end, the invention relates to an electronic wind instrument comprising a body equipped with keys configured to be manipulated with the fingers. Various embodiments are possible for the keys, for example mechanical keys or capacitive keys, the latter being preferred. The body preferably has an elongate ergonomic shape similar to that of acoustic wind instrument such as, for example, a clarinet, a trumpet or a saxophone. Other shapes are however possible.
In the rest of the description, the term instrument defines the electronic wind instrument according to the invention, unless indicated otherwise.
The instrument comprises a mouthpiece (or nozzle) into which the musician blows. This mouthpiece is configured to ensure appropriate holding in the mouth and comprises an inlet port, the cross-section of which is preferably of order 5 mm2 to 20 mm2, which is comparable to a mouthpiece of an acoustic instrument. A channel is arranged in the body, connected to the mouthpiece and leading to the outside of the instrument. Hence, the air blown into the mouthpiece can discharge from the instrument. In addition, at least one pressure sensor is configured on the channel, to be deformed under the action of the breath, and an electronic processing system is connected to the keys and to the pressure sensor. This electronic processing system is configured in order to produce musical notes depending on the contacts or signals generated by manipulation of the keys and by the at least one pressure sensor which deforms during a breath and provides a measurement of the intensity of the breath.
Remarkably, the channel also comprises an inlet tube on which the mouthpiece is connected, an outlet tube which leads to the outside of the instrument, and an intermediate chamber arranged between said inlet and outlet tubes. These three elements are configured to pressurise the chamber when the mouthpiece is blown into. In addition, the chamber comprises a first measuring port on its perimeter, on which the pressure sensor is connected, disposed outside of said chamber.
The above-mentioned features of the instrument enable the inlet tube to have a cross-section which corresponds to that of the tube or cone of an acoustic wind instrument, for example a clarinet, a saxophone or trumpet, which communicates with the inlet cross-section on the mouthpiece (or nozzle). For this purpose, the cross-section of the inlet tube has a diameter of preferably between 10 mm and 30 mm. This inlet tube opens into the chamber which has a cross-section greater than the inlet tube or, in the limit, is of identical cross-section. This avoids any detrimental influence of the chamber on the propagation of the volume of blown air, inside the channel. Due to the arrangement of the measuring chamber directly on the channel of the body of the instrument, and not on the mouthpiece, it is possible to size the chamber, in terms of cross-section and volume, in such a way as to obtain sensations close to the sensations experienced on an acoustic instrument. Furthermore, the architecture of the instrument according to the invention, having a body equipped with keys for producing notes and extended by a mouthpiece into which the musician blows, enables a normal posture of the thorax to be maintained during practice, in such a way as to blow under the same conditions as with an acoustic wind instrument. Hence, by utilising a pressurisation chamber and making measurements on the channel arranged on the body of the instrument, and by keeping the same architecture as an acoustic wind instrument, it is possible to reproduce the same sensation of blowing as with an acoustic instrument. Whereas electronic wind instruments of the prior art do not enable this blowing sensation to be experienced since the volume of blown air remains concentrated in the mouthpiece, optionally discharging via a discharge hole arranged on same, or via a discharge pipe with a very restricted cross-section of order 1 mm to 2 mm.
Furthermore, according to the invention, the intermediate chamber leads to the outlet tube having a smaller cross-section, preferably between 5 mm and 15 mm. This reduction in outlet cross-section ensures a pressure build-up inside the chamber, which enables a significant increase in pressure at the first measuring port on which the pressure sensor is held. Thus, the pressure sensor can easily measure variations in breath in the mouthpiece despite the use of a normal inlet tube cross-section, of order 10 mm to 30 mm, in other words comparable to that of an acoustic instrument. The musician can therefore reproduce a breath similar to that practised on an acoustic wind instrument. In addition, the measurements of breath variations enable the electronic processing system to produce a variable sound once the note is triggered, said processing system being configured for this purpose. The length of the chamber is preferably between 20 cm and 50 cm, and the diameter of the chamber cross-section is between 15 mm et 30 mm, which avoids any influence of the reduction in cross-section on the outlet tube when the musician blows and fills the chamber volume and, thus, makes it possible to have playing sensations which approach as far as possible those of an acoustic wind instrument. These dimensions are provided by way of an example and will be adjusted for each embodiment.
In a preferred embodiment of the instrument, the first measuring port is positioned close to the inlet tube. This makes it possible to improve the response time during a measurement by the pressure sensor.
In a preferred embodiment of the instrument, the first measurement port is positioned on the top of the chamber. This avoids build-up of humidity and condensation by the first measuring port to which the pressure sensor is connected, which reduces the risk of damage to this pressure sensor.
The pressure sensor is connected on the first measuring port arranged on the wall of the chamber, by means of a connection pipe which is arranged perpendicular to the flow of air. The pressure build-up in the chamber advantageously allows the use of a simple or differential pressure sensor. The simple pressure sensor measures the pressure directly at the first measuring port. The differential pressure sensor measures the difference between the pressure at the first measuring port and the outside pressure, allowing the influence of outside conditions to be limited.
In an alternative embodiment, the instrument comprises a second measuring port, the first measuring port and the second measuring port being positioned on two portions of the channel having different cross-sections. In addition, the pressure sensor is a differential pressure sensor which measures the difference between the pressures at the two measuring ports. This design advantageously allows measuring of the pressure difference between two points of the channel, and deducing of a piece of airflow velocity information. In addition, according to this alternative embodiment, the assessment can comprise a third measuring port arranged on a portion of the channel, similar to that of the first and second measuring port, a second differential pressure sensor being connected to this third measuring port and allowing measurement of the difference between the pressure at the third port and the outside pressure. This third measuring port can optionally be combined with the first or second measuring port. Thus, this design allows measuring of the airflow by pressure difference between two measuring points situated at the different cross-sections of the channel, and the addition of the second sensor additionally enables the pressure measurement to be obtained at one of these two points or close by, these two pieces of information being used in order to generate control signals of the sound. A pressure measurement is therefore obtained which is free from the influence of outside conditions and which is completed by an airflow measuring device produced using a differential sensor.
In the case where a differential pressure sensor is connected to the first measuring port in order to measure the difference between the pressure at the first measuring port and the outside pressure, the instrument can comprise, in one embodiment, a second measuring port and a second differential pressure sensor which is arranged at the second measuring port. This second differential pressure sensor measures the difference between the pressure at the second measuring port and the outside pressure. The first and second measuring ports are positioned on two portions of the channel having different cross-sections. This design also enables measuring of the pressure difference between two points of the channel and deduction therefrom of information on the airflow velocity, the processing system retrieving the differential pressure measurements with respect to the outside at the two measuring ports, then calculating the differential pressure between said two ports. This device also enables freedom from the influence of outside conditions on the pressure information measurement.
In an embodiment, the instrument comprises a system for varying the cross-section of the outlet tube, configured in order to vary the flow at the outlet of the channel. In addition, the electronic processing system is configured to adapt according to the adjustment of the said system for varying the cross-section of the outlet tube. This enables the instrument to be adapted as well as possible to the acoustic wind instrument used by the musician, so as to enable the musician to progress as if practising on his own acoustic instrument. In a preferred embodiment, this system for varying the cross-section of the outlet tube consists of a range of inserts, said inserts comprising outlet holes of different diameters. These inserts will constitute the outlet tube once they are mounted by slotting into the chamber.
In an embodiment, the instrument comprises a system for varying the volume of the chamber. In addition, the electronic processing system is configured to adapt according to the adjustment of the said system for varying the volume of the chamber. This allows the playing sensation to be modified, which enables the instrument to behave as different types of acoustic instrument, for example a clarinet, a trumpet or a saxophone. In a preferred embodiment, the system for varying the volume of the chamber consists of a range of inserts, the inserts having an identical outlet hole, which enables a same outlet flow rate to be maintained. In addition, these inserts have different lengths, so as to fill the chamber to different degrees and hence modify the volume of same.
The features and advantages of the invention will become apparent on reading the following description of alternative embodiments based on the figures, among which:
The following description attempts, in particular, to describe the design of the channel and the realisation of the pressure sensor or sensors on this channel. In the rest of the description, the same references are used to describe the same elements or equivalents thereof according to the various embodiments.
In
The instrument 1 comprises a mouthpiece 4 (or nozzle) into which the musician blows. The shape of the mouthpiece 4 will correspond, for example, to that of the acoustic wind instrument also practised by the musician. Other types of mouthpiece are possible, optionally a mouthpiece offset from the body of the instrument and connected to same by means of a flexible or rigid pipe. This mouthpiece 4 comprises an inlet port 4a and is connected on a channel 5 which, preferably, extends over the length of the body 2 of the instrument 1, as illustrated in
As illustrated in
As illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
In the embodiment of
According to the embodiments illustrated in
An embodiment of the instrument 1 according to the invention comprises a system for varying the cross-section of the outlet tube 8, as illustrated in
An embodiment of the instrument 1 according to the invention comprises a system for varying the volume inside the chamber 7, as illustrated in
Also possible is an embodiment of instrument 1 combining the systems for varying the cross-section of the outlet tube 8 and the volume of the chamber 7, described above. For example, in the embodiment of
The detailed description above of the embodiments of instrument 1 is in no way limiting. On the contrary, it aims to remove any possible imprecision regarding its scope. Thus, many embodiments can be envisaged within the context of the invention, in particular regarding the position of the measuring ports 9 and 15. Their positioning upstream of the chamber 7, as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
15 54858 | May 2015 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2016/051278 | 5/28/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/193601 | 12/8/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3429976 | Tomcik | Feb 1969 | A |
3429986 | Rahenkamp | Feb 1969 | A |
3767833 | Noble et al. | Oct 1973 | A |
5140888 | Ito | Aug 1992 | A |
5170003 | Kawashima | Dec 1992 | A |
5286913 | Higashi | Feb 1994 | A |
5403966 | Kawashima | Apr 1995 | A |
5668340 | Hashizume | Sep 1997 | A |
5929361 | Tanaka | Jul 1999 | A |
6002080 | Tanaka | Dec 1999 | A |
6476310 | Baum | Nov 2002 | B1 |
9984669 | Toyama | May 2018 | B2 |
20070017352 | Masuda | Jan 2007 | A1 |
20070068372 | Masuda | Mar 2007 | A1 |
20080314226 | Shibata | Dec 2008 | A1 |
20090019999 | Onozawa | Jan 2009 | A1 |
20090020000 | Onozawa | Jan 2009 | A1 |
20090038463 | Fujii | Feb 2009 | A1 |
20120017749 | Hashimoto | Jan 2012 | A1 |
20120073424 | Hashimoto | Mar 2012 | A1 |
20130192446 | Read | Aug 2013 | A1 |
20160210949 | Kang | Jul 2016 | A1 |
20160275929 | Harada | Sep 2016 | A1 |
20160275930 | Harada | Sep 2016 | A1 |
20180075831 | Toyama | Mar 2018 | A1 |
20180082664 | Sasaki | Mar 2018 | A1 |
20180137846 | Pouillard | May 2018 | A1 |
Number | Date | Country |
---|---|---|
0 039 012 | Nov 1981 | EP |
2008-268592 | Nov 2008 | JP |
2014-182277 | Sep 2014 | JP |
Entry |
---|
International Search Report, dated Sep. 7, 2016, from corresponding PCT application No. PCT/FR2016/051278. |
Number | Date | Country | |
---|---|---|---|
20180137846 A1 | May 2018 | US |