The disclosed embodiments relate to an electrically activated access valve arrangement, and more particularly, to a male and female connection device that electrically activates an access valve, to be used in conjunction with fluid administration, such as intravenous fluid administration.
Luer connections are the typical way of attaching various medical devices such as syringes, catheters, and intravenous lines to one another. These lines are then generally connected to a patient via a catheter. In a typical luer connection, male and female connectors are mated together to form and secure the connection. Luer connections are widely used in the medical industry because they are quick and easy to assemble.
However, with this ease of use comes a high risk of error. For example, in high risk connections, such as epidural lines, the connection of an incorrect line can have serious consequences, including death, for the patient. There is a high risk of accidentally connecting the wrong lines because standard luer connectors are used for both intravenous fluid and epidural infusions. Also, additional lines are commonly found near bedsides of patients seeking medical care for a variety of ailments. Thus, a male connector intended for use with an intravenous line could be easily confused for one intended for use with an epidural line. This confusion can lead to a misconnection, resulting in medication or air erroneously being delivered into an unintended site, leading to serious complications.
Currently, precautions for misconnections include double-checking the connection prior to connecting the luers. Alternatively, the different connectors and their attached lines may be specially labeled. Labeling may be accomplished by placing colored tape on the tubing, or placing a color-coded marker on the connectors themselves.
While these precautionary measures attempt to solve the problems of misconnections, all of these precautions require an active, mitigating step. This can be problematic and unpractical for nurses and doctors who are often working in emergency situations and do not have the luxury of performing time-consuming cautionary steps.
Thus, there is a real need for a connection that ensures the line will remain closed until the correct connectors are connected. This will mitigate the risk of misconnecting male and female luers, and it requires no additional steps by hospital personnel to avoid misconnections.
The above and other needs are met by the disclosed embodiments which provide an electrically activated access valve arrangement comprising a male connector, which includes a body, a distal end, a proximal end, and a fluid passage. A conductive element is located on the body. The conductive element is located such that it is external of the path of the fluid passage. The electrically activated access valve arrangement further comprises a female connector, comprising a body, a distal end, a proximal end, and an opening. When the male connector is inserted into the female connector, the opening is in fluid communication with the fluid passage. The female connector further comprises contacts. The electrically activated access valve arrangement also comprises a valve connected to the opening of the female connector. Upon full insertion of the male connector to the female connector, the conductive element of the male connector physically contacts the contacts of the female connector. This provides an electrical pathway for an electrical signal to be sent to the valve to transition the valve from a normally closed position to an opened position.
The earlier stated needs and others are met by still other disclosed embodiments which provide an electrically activated access valve arrangement comprising a male connector. The male connector comprises a body, a distal end, a proximal end, and a fluid passage. The male connector includes at least one connection port. The electrically activated access valve arrangement further comprises a female connector comprising a body, a distal end, a proximal end, and an opening. The opening is in fluid communication with the fluid passage when the male connector is inserted into the female connector. The female connector further comprises at least one connection port and a valve. The valve is electrically controllable to transition from a normally closed position to an opened position.
The foregoing and other features, aspects and advantages of the disclosed embodiments will become more apparent from the following detailed description and accompanying drawings.
a is a cross-sectional view of one embodiment of male and female connectors with an electrically activated access valve, prior to connection;
b is a cross-sectional view of the male and female connectors of
a is a cross-sectional view of another embodiment of male and female connectors with an electrically activated access valve, prior to connection;
b is a cross-sectional view of the male and female connectors of
It is contemplated that the subject matter described herein may be embodied in many forms. Accordingly, the embodiments described in detail below are the presently preferred embodiments, and are not to be considered as limitations.
The disclosed embodiments address problems related to the misconnection of male and female luer connection devices and the dire consequences misconnections may cause in time-critical situations. The disclosed embodiments solve these problems, at least in part, by providing an electrically activated access valve arrangement comprising a male connector, which includes a body, a distal end, a proximal end, and a fluid passage. A conductive element is located on the body. The conductive element is located such that it is external of the path of the fluid passage. The electrically activated access valve arrangement further comprises a female connector, comprising a body, a distal end, a proximal end, and an opening. When the male connector is inserted into the female connector, the opening is in fluid communication with the fluid passage. The female connector further comprises contacts. The electrically activated access valve arrangement also comprises a valve connected to the opening of the female connector. Upon full insertion of the male connector to the female connector, the conductive element of the male connector physically contacts the contacts of the female connector. This provides an electrical pathway for an electrical signal to be sent to the valve to transition the valve from a normally closed position to an opened position.
Other disclosed embodiments provide an electrically activated access valve arrangement comprising a male connector. The male connector comprises a body, a distal end, a proximal end, and a fluid passage. The male connector includes at least one connection port. The electrically activated access valve arrangement further comprises a female connector comprising a body, a distal end, a proximal end, and an opening. The opening is in fluid communication with the fluid passage when the male connector is inserted into the female connector. The female connector further comprises at least one connection port and a valve. The valve is electrically controllable to transition from a normally closed position to an opened position.
a shows an electrically activated access valve arrangement 10, comprising a male connector 12, a female connector 24, and a valve 36. The male connector 12 comprises a body 14, a distal end 16, a proximal end 18, and a fluid passage 20. It should be noted that “distal” refers to the direction toward the patient. “Proximal” refers to the direction away from the patient, or toward the syringe or other collection or dispensing device, such as an intravenous (IV) bag. The body 14 is generally frustoconically shaped. A conductive element 22 is located on the body 14. The position of the conductive element 22 on the body 14, shown in
a also shows the female connector 24, comprising a body 26, a distal end 28, a proximal end 30, and an opening 32. The body 26 of the female connector 24 may be generally shaped to receive the frustoconical body 14 of the male connector 12. When the male connector 12 is inserted into the female connector 24, the opening 32 of the female connector 24 is in fluid communication with the fluid passage 20 of the male connector 12. The female connector 24 further comprises contacts 34, which may be located on the exterior of the body 26. The contacts 34 of the female connector 24 engage the conductive element 22 when the male connector 12 is fully inserted into the female connector 24, as depicted in
The valve 36, as seen in
The electric activation of the valve 36 ensures that only the dedicated male connector 12, including the conductive element 22, can be connected to the female connector 24, in a manner that permits fluid flow, as this is the only connection that will cause the circuit to be completed and the valve 36 to open. Thus, as the female connector 24 is closer to the patient and likely connected to a patient catheter, the risk of connecting the wrong male connector 12 and wrong line is mitigated or eliminated. However, the male connector 12 may be used in connection with typical female luer connectors as well as the dedicated female connector 24.
The contacts 34 of the female connector 24 may be located radially, around the circumference of the body 26, as seen in
In another embodiment, as shown in
Shown in the embodiment of
The male connector 12 in the embodiment of
The solutions presented above may also be embodied in the following method. A method of controlling fluid flow from a fluid source to a patient includes a first step of connecting the male connector 12 and the female connector 24. When physically connected, the male and female connectors 12, 24 together form an electrical connection. A second step includes opening the electrically activated valve 36. This allows for fluid flow from the fluid source 58 to the patient only upon the connection of the male and the female connectors 12, 24, of the formation of the electrical connection. It would be apparent to one skilled in the art that this method provides another solution to the problem of misconnection of male and female luer connectors.
In sum, the present disclosure provides for an electrically activated access valve arrangement, comprising a male connector, a female connector, and a valve. In one embodiment, the male connector includes a conductive element, and the female connector includes contacts. Insertion of the male into the female connector completes a circuit, enabling an electrical signal to be sent to the valve. The electrical signal transitions the valve from the normally closed position to the opened position. In another embodiment, the male connector has a connection port which connects to a connection port of the female connector. A pump, such as an infusion pump, sends an electrical signal through the connection ports, which causes the valve to transition from the normally closed position to the opened position. As such, the connectors of the present disclosure will not function with typical male and female luer connectors. This prevents misconnection of the wrong line to a patient, while requiring no additional precautionary steps from busy medical personnel.
Although the present invention has been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation.
This application is a divisional of U.S. patent application Ser. No. 11/796,219 filed on Apr. 27, 2007 and now issued as U.S. Pat. No. 7,922,148, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1890290 | Hargreaves | Dec 1932 | A |
2492449 | Tuller et al. | Dec 1949 | A |
3253245 | Brandt | May 1966 | A |
3321177 | Fendel et al. | May 1967 | A |
3339632 | Lewis | Sep 1967 | A |
3649949 | McCarthy et al. | Mar 1972 | A |
3773186 | Reno et al. | Nov 1973 | A |
3992565 | Gatfield | Nov 1976 | A |
4032821 | Keiser | Jun 1977 | A |
4094567 | Karcher et al. | Jun 1978 | A |
4302064 | Spinner | Nov 1981 | A |
4438996 | Zehren | Mar 1984 | A |
4605268 | Meador | Aug 1986 | A |
4913657 | Naito et al. | Apr 1990 | A |
5156180 | Sturgis | Oct 1992 | A |
5365984 | Simpson et al. | Nov 1994 | A |
5683118 | Slocum | Nov 1997 | A |
6089539 | Kouda | Jul 2000 | A |
6464520 | Saba | Oct 2002 | B2 |
6510608 | Marshall et al. | Jan 2003 | B1 |
6671898 | Eggenberger et al. | Jan 2004 | B1 |
6717501 | Hall et al. | Apr 2004 | B2 |
6783379 | Kerscher et al. | Aug 2004 | B2 |
6899132 | Mikiya et al. | May 2005 | B2 |
6973867 | Frisch et al. | Dec 2005 | B2 |
20060219970 | Budde | Oct 2006 | A1 |
20080216907 | Smith, III | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20110186139 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11796219 | Apr 2007 | US |
Child | 13081418 | US |