1. Field of the Invention
The disclosures relate to security and locking mechanisms of residential and commercial trash containers.
2. Description of Prior Art
Commercial and residential trash containers that are designed to be used by garbage collection agencies are usually large containers, which are covered by a lid. There are reasons to lock this lid securely including dispersion of trash due to wind, break-in by animals, and unauthorized access by individuals. Therefore, provisions are often made to lock the lid of a trash container.
In its most basic form, the weight of the lid itself can prevent access to the trash container. This can be combined with a hinge or a sliding mechanism to ensure proper enclosure. When the weight is not sufficient to securely lock the trash can a mechanical latch and/or a lock is usually added that can only be opened by a key.
Such measures can be ineffective or difficult to use as far as the collection process is concerned. A mechanical key usually requires that the operator exit the collection truck to open the container. The operator must also carry and keep track of a large number of keys which can be difficult to manage. Inventions such as U.S. Pat. No. 4,155,584 and U.S. Pat. No. 4,182,530 have been disclosed that take advantage of the mechanical movement of the trash container during the collection process, the weight of the content, the force of gravity, or a combination of these, to unlock upon collection and relock after the container returns to the upright position.
Attempts have been made to refine and improve variants of the mechanical arrangement described above (U.S. Pat. No. 5,015,021, U.S. Pat. No. 7,597,365, U.S. Pat. No. 6,666,485, U.S. Pat. No. 5,085,341, and U.S. Pat. No. 5,213,382.) However, most of the above solutions require complex mechanical parts, which are difficult to retrofit into existing trash and recycling containers. Also, most of these solutions are designed for heavy-duty commercial or bulk trash containers instead of common residential containers, which are usually made of a light material such as plastic or aluminum. Gravity operated mechanisms work for commercial and bulk containers because it is difficult for an individual to pick up and tilt them upside down to circumvent the locking mechanism. Most residential containers, however, can be easily flipped over, compromising the lock. Therefore, such gravity operated locks for residential trash containers are not practical. This invention substantially addresses these issues and others.
The proposed invention employs a multi step electronically augmented smart locking mechanism for trash containers. The smart lock is attached to the trash container and, in accordance with several embodiments disclosed herein, can be locked and unlocked using electrical, mechanical or a combination of electro-mechanical stimuli.
The lock described herein accomplishes two purposes. First, it allows the owner of the container to unlock it to deposit trash and securely lock it again. Secondly, the locking mechanism correctly recognizes the presence of the collection vehicle and unlocks the container without requiring the operators to employ any additional manipulation other than the ones employed in the daily process of garbage collection.
In one aspect of the present invention, a smart lock locks a trash container in a manner, which prevents the container from being unlocked by tilting and other methods that might be employed to force open the container.
In several embodiments related to this aspect, the smart lock assembly includes one part that can be mounted onto the lid of the trash container and another part that can be mounted onto the trash can. These two parts will interlock through mechanisms to be described below. The top and the bottom parts of the lock may or may not be interchangeable as far as the assembly on the trash container is concerned. Such a smart lock can either retrofit onto existing trash and recycling containers or it can be incorporated into new constructions of such containers.
In several of the embodiments related to this aspect, the smart lock assembly consists of at least two locks referred to herein as the primary lock and the secondary lock.
In at least one of the embodiments, the primary lock is a small but precise contraption that only opens and/or closes upon the correct detection of the presence of an authorized signal. This signal can be applied by the owner or can be generated by the presence of an authorized collection vehicle. Because of the precision of the primary lock it may have fine features such as small size or low consumption of electricity and, therefore, it may be insufficient to prevent forceful opening of the trash container. The secondary lock is a stronger and larger lock that can be opened by a much coarser mechanism, for example when the owner twists a handle or when the truck lifts the container and the acceleration or the force of gravity is applied to the lock, or a certain movement signature is detected. The secondary lock only opens if the primary lock has already opened and, therefore, the primary lock acts as an enabling agent for the second lock.
In another aspect of the invention, the smart lock includes mechanisms to correctly recognize authorized conditions for unlocking the container by the owner of the container. In at least one of the embodiments, the owner unlocks the primary lock using electrical or mechanical stimuli, which also opens the secondary lock, and allows the owner to open the trash container.
Another aspect of the invention relates to the unlocking of the smart lock by collection vehicle operators without requiring the vehicle operators to employ any additional manipulation, which would interrupt the daily collection process. In at least one of the embodiments, a device, such as a remote key, uses electrical stimuli to unlock the primary lock. In at least one embodiment, the unlocking of the primary lock in combination with another electrical or mechanical stimulus, such as the collection vehicle lifting the trash container or the force of gravity, opens the trash container during collection.
As such, the owner of the container can use a signal to lock it when it is placed on the curb on collection day. When the collection vehicle arrives a transmitter on the truck can unlock the primary lock on the container. When the container is picked up or turned upside down the motion can open the secondary lock, which opens the container. After the container is placed back the owner can use the remote controller to lock the container again.
In one form of this invention when the primary lock opens it remains open for a certain preset period of time after which it automatically closes. The same applies to the second lock. This provides not only an automatic mechanism to relock the container after it is opened, it also provides an additional level of security. For example if the presence of the collection truck is sensed but the trash is not collected, and the primary lock is left open indefinitely, the secondary lock may be compromised by intruders if they apply the coarse mechanical motion or electric stimulus that is needed to open the secondary lock. This will also minimize the effort on the side of the container owner to keep it locked.
In one variation of this scheme, one or both of the timers can be programmed to open the locks at predefined times. This can be useful if the collection schedule is known and also if the trucks cannot be equipped with the transmitters needed to send the signal to the smart lock.
This invention can include a fault detection module that can detect conditions in which the lock is not operating properly, such as low battery which by default unlocks or locks the smart lock according to a predefined setting.
Another aspect of this invention is the way energy is supplied to the lock. In one embodiment, where the energy consumption of the lock is low, a solar panel can be attached or built into the surface of the trash container to obtain solar energy. In another embodiment, the lock can be energized by batteries that can be replaced or recharged. In yet another embodiment, energy can be harvested from the mechanical movement of the trash container. In an implementation of this embodiment the mechanical movement of the container, or of the moving parts of the collection truck, can compress a spring or similar energy storing mechanism.
The smart lock inventions and its embodiments disclosed herein are described as applied to a residential trash container. However, these inventions can be applied to a broad range of applications which require secure locking and unlocking mechanisms, for example, but without limitation, commercial trash containers, storage and construction containers, and gated fences.
In one embodiment, depicted in
The two parts can interlock in a variety of mechanical and electrical ways. In the exemplary depiction of
The implementation of the interlocking mechanism is shown in
The unlocking of the primary lock is initiated in one of two ways: either the presence of the collection vehicle is sensed by the smart lock or the owner issues an unlock signal in ways described below. Herein these are referred to as primary lock authentication scenarios.
There are many types of locks that can be employed to implement the primary lock. In one embodiment magnetic force can act on pieces of metal to keep them together until the force is removed by proper authentication, hence allowing the lock to open. A common example of this is an electromagnetically driven latch. Another embodiment of the primary lock takes advantage of the force of vacuum to bring separate parts together, thereby interlocking them. Yet another embodiment is to use a hydraulic mechanism in the primary lock to accomplish the same locking effect.
There are many ways to implement the unlocking aspect of the primary lock. To unlock the smart lock for the collection process, in one possible embodiment, the primary lock detects the presence of the collection vehicle through electrical signals. These electrical signals have unique patterns that can be applied to the lock via direct contact with parts of the collection vehicle.
In one embodiment of this aspect, the connection between 603 and 604 and the sides of the trash container 602 can be used as a conductive connection to transfer the signals. This provides a two-wire method for signal transmission from the truck to the trash container. This signal unlocks the primary lock.
In another embodiment of this aspect, the part of the mechanical arm 605 that faces the lock 601 includes the wires carrying the authorization signals. As shown in
In yet another embodiment of this aspect depicted in
In another embodiment shown in
In another embodiment, the lock is equipped with a magnetic card reader that can detect the presence of the authorized collection vehicle when a magnetic medium containing authentication information, such as a magnetic card, is swiped on or into it. This can open the primary lock.
In yet another embodiment, the lock is equipped with an image-processing device, such as, for example, a camera, that detects a certain visual signature of the truck. The visual signature can, for example, be the shape of the vehicle or a bar code printed on the side of it, or a visual signature of the operator, such as face recognition, finger print, etc., and opens the primary lock.
Another possible embodiment is one where the lock is equipped with an audio processing device such as a microphone that detects a unique audio signature of the vehicle or its operator and permits the primary lock to open.
Another possible embodiment is one where the lock is equipped with a proximity sensing device, such as a radar or sonar or infra red sensor that detects a certain distance from the vehicle, and permits the primary lock to open.
Several of the methods described above can be used to allow the owner of the trash container to unlock it. In particular, the RFID or magnetic cards are the most practical methods that can be used by the owner to unlock the trash container.
A variety of embodiments, which include all the abovementioned methods to implement the primary lock, can realize the secondary lock. An exemplary embodiment is shown in
In a different embodiment the secondary lock can be opened by use of mechanical and gravitational forces, gated by the primary lock.
In yet another embodiment, the secondary lock can be opened by the mechanical parts of the truck such as levers, lifting arms, etc.
Other embodiments of this secondary lock may include hydraulic action.
The preceding sections presented various embodiments of an electronically augmented mechanical trash container locking mechanism and applications thereof to securely lock a trash container and prevent unauthorized entry. As one of average skill in the art will appreciate, other embodiments may be derived from the teaching of the present invention without deviating from the scope of the claims.
This patent application claims priority to and the benefit of U.S. patent application Ser. No. 61/521,380, filed Aug. 9, 2011 and entitled “Electronically Augmented Mechanical Trash Container Locking Mechanism”, the entire content of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61521380 | Aug 2011 | US |