The present invention relates to an electronically controlled blow-by gas returning apparatus used in an internal combustion engine, in which a correction value of a fuel injection amount is set such that when the actual air-fuel ratio deviates to the rich side with respect to a target air-fuel ratio, the actual air-fuel ratio approaches the target air-fuel ratio. More specifically, the present invention relates to a blow-by gas returning apparatus that has an electronically controlled ventilation valve for regulating the flow rate of blow-by gas fed into an intake passage from the inside of a crank chamber of the internal combustion engine.
Japanese Laid-Open Patent Publication No. 2006-52664 discloses a blow-by gas returning apparatus for an internal combustion engine. This blow-by gas returning apparatus is generally provided with a first ventilation passage that connects a portion of an intake passage that is downstream of a throttle valve to a crank chamber, thereby feeding blow-by gas in the crank chamber into the intake passage, a second ventilation passage that connects a portion of the intake passage that is upstream of the throttle valve to the crank chamber, thereby feeding intake air into the intake passage, and an electronically controlled ventilation valve for regulating the flow rate of blow-by gas passing through the first ventilation passage. A demand value of the flow rate of blow-by gas is set based on an engine operating state during operation of the internal combustion engine, and the opening degree of the ventilation valve is controlled such that the actual flow rate of blow-by gas becomes the demand value.
When diluted fuel evaporates from engine lubricant oil with a high fuel dilution ratio in the crank chamber, a large amount of fuel in the crank chamber is fed into the intake air passage together with blow-by gas, and therefore, the actual air-fuel ratio is excessively enriched with respect to the target air-fuel ratio. Thus, it is considered that when the fuel dilution ratio of the engine lubricant oil is high, the ventilation valve may be closed to stop the feed of blow-by gas into the intake air passage. However, since the crank chamber is not ventilated, this is not an effective method.
In the blow-by gas returning apparatus disclosed in the above publication, the actual injection time is fixed to the minimum injection time when a required injection time of an injector is below the minimum injection time, and the ventilation valve is controlled such that the actual air-fuel ratio approaches the target air-fuel ratio, whereby the air-fuel ratio is inhibited from remaining in the state of being excessively enriched. However, even when the air-fuel ratio is excessively enriched until the required injection time falls below the minimum injection time, the ventilation valve is not controlled.
An objective of the present invention is to provide an electronically controlled blow-by gas returning apparatus for an internal combustion engine, which can appropriately inhibit the occurrence of a state where an air-fuel ratio is excessively enriched, while ventilating the crank chamber.
To achieve the foregoing objective and in accordance with one aspect of the present invention, an electronically controlled blow-by gas returning apparatus for an internal combustion engine is provided. The engine corrects a fuel injection amount such that the fuel injection amount is reduced in accordance with a degree of enrichment of an actual air-fuel ratio in relation to a target air-fuel ratio. The apparatus includes an electronically controlled ventilation valve and a control unit. The electronically controlled ventilation valve regulates a flow rate of blow-by gas in a crank chamber of the engine fed into an intake passage. The control unit controls the ventilation valve. The control unit sets a demand value of an opening degree of the ventilation valve based on an engine operating state, and controls the opening degree of the ventilation valve such that the actual value of the opening degree of the ventilation valve is maintained at the demand value. The control unit corrects the demand value based on the degree of enrichment and an intake air amount, which is the amount of air fed into a combustion chamber of the internal combustion engine.
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
An electronically controlled blow-by gas returning apparatus for an internal combustion engine according to one embodiment of the present invention is described with reference to
As shown in
The engine body 20 is provided with a cylinder block 21, a crankcase 22, an oil pan 23, a cylinder head 24, and a head cover 25. The air-fuel mixture, which is composed of fuel directly injected into a combustion chamber 31 via an injector 27, and air fed into the combustion chamber 31 via the intake device 40, is combusted in the cylinder block 21. The crankcase 22 and the cylinder block 21 support the crankshaft 26. The oil pan 23 stores engine oil. The cylinder head 24 includes parts disposed therein which constitute a valve operating system. The head cover 25 inhibits the engine oil from being scattered to the outside. The crank chamber 32 is formed by the cylinder block 21 and the crankcase 22, and a valve operating chamber 33 is formed by the cylinder head 24 and the head cover 25. The crank chamber 32 and the valve operating chamber 33 are connected with each other through a communication chamber 34 formed in the cylinder block 21.
The intake device 40 is provided with an air intake 41, an air cleaner 42, an intake hose 43, a throttle body 44, and an intake manifold 46. The air intake 41 takes external air into the intake device 40. The air cleaner 42 captures foreign substances in the air (hereinafter referred to as “intake air”) taken through the air intake 41. The throttle body 44 regulates the flow rate of the intake air through the opening and closing of the throttle valve 45. The intake hose 43 connects a portion of the intake downstream of the air cleaner 42 to a portion of the intake upstream of the throttle body 44. The intake manifold 46 connects a portion of the intake downstream side of the throttle body 44 to a portion of the intake upstream of the cylinder head 24. The intake manifold 46 has a surge tank 47 in which the intake air passing through the throttle body 44 is accumulated and a plurality of sub pipes 48 through which the intake air in the surge tank 47 is fed into each of a plurality of intake ports of the cylinder head 24. That is, in the intake device 40, an intake passage 49 through which the intake air is fed into the engine body 20 is constituted of a passage in the air intake 41, a passage in the air cleaner 42, a passage in the intake hose 43, a passage in the throttle body 44, and a passage in the intake manifold 46.
The blow-by gas returning apparatus 50 has the following three functions: (1) feeding blow-by gas, flowing out of the combustion chamber 31 to flow into the crank chamber 32, to the intake downstream side of the throttle valve 45 in the intake device 40; (2) feeding intake air, cleaned by the air cleaner 42, from the intake upstream side of the throttle valve 45 in the intake device 40 to the inside of the crank chamber 32; and (3) regulating the flow rate of blow-by gas in the engine body 20 fed into the intake device 40.
Specifically, the blow-by gas returning apparatus 50 is provided with a first ventilation passage 51 which is a passage for feeding blow-by gas in the crank chamber 32 from the inside of the valve operating chamber 33 to the inside of the surge tank 47 and is formed so as to connect the head cover 25 to the surge tank 47. The blow-by gas returning apparatus 50 is further provided with a second ventilation passage 52 through which the intake air in the intake hose 43 is fed into the valve operating chamber 33 and the intake air is fed from the inside of the valve operating chamber 33 to the inside of the intake hose 43. The second ventilation passage 52 is formed so as to connect the head cover 25 to the intake hose 43. The blow-by gas returning apparatus 50 is further provided with a PCV valve 53 for regulating the flow rate of blow-by gas flowing from the inside of the valve operating chamber 33 toward the inside of the surge tank 47. The PCV valve 53 is provided in the head cover 25 and changes the cross-sectional area of the flow passage of the first ventilation passage 51. When the opening degree of the PCV valve 53 (hereinafter referred to as a PCV opening degree TB) increases under the same engine operating conditions, the flow rate of blow-by gas fed from the inside of the valve operating chamber 33 to the inside of the surge tank 47 also increases.
As shown in
As shown in
As shown in
The electronic control unit 60 acquires a request from a driver and the engine operating state based on the detection results from the sensors 61 to 66 to perform various controls such as throttle control for regulating the intake air flow rate GF, injection control for regulating fuel injection amount (hereinafter referred to as an injection amount QI) from the injector 27, air-fuel ratio control for making the air-fuel ratio AF of air-fuel mixture approach a target value, and ventilation control for regulating the flow rate of blow-by gas (hereinafter referred to as PCV flow rate GB) in the engine body 20 fed into the intake device 40.
In the throttle control, the electronic control unit 60 acquires a demand value of the engine load based on the accelerator operation amount AC and the engine rotational speed NE, sets as a target value the intake air flow rate GF corresponding to this demand value, and controls the opening degree of the throttle valve 45 such that the intake air flow rate GF from the air flow meter 63 approaches this target value.
In the injection control, the electronic control unit 60 acquires the amount of air fed into the combustion chamber 31 (hereinafter referred to as an intake air amount GA) based on the intake air flow rate GF from the air flow meter 63 to set as a basic injection amount QIB the injection amount QI of fuel, in which the target value is the air-fuel ratio of air-fuel mixture, based on the intake air amount GA. The electronic control unit 60 sets a final demand value of the injection amount QI (hereinafter referred to as a demand value QIT of the injection amount) in which a corrected injection amount QIF which is set based on another control is reflected in the basic injection amount QIB and controls the injector 27 such that the actual injection amount QI (hereinafter referred to as the actual value QIR of the injection amount) becomes the demand value QIT.
In the ventilation control, the electronic control unit 60 sets the PCV flow rate GB required based on the engine load and the engine rotational speed NE (hereinafter referred to as a demand value GBT of the PCV flow rate). The electronic control unit 60 sets the PCV opening degree TB, with which the actual PCV flow rate GB (hereinafter referred to as an actual value GBR of the PCV flow rate) is estimated to be maintained at the demand value GBT, as the demand value of the PCV opening degree TB (hereinafter referred to as a demand value TBT of the PCV opening degree), and controls the opening degree of the PCV valve 53 such that the actual PCV opening degree TB (hereinafter referred to as an actual value TBR of the PCV opening degree) is maintained at the demand value TBT. The engine load can at any given time be acquired using as an index the ratio of the actual intake air amount to the maximum value of the intake air amount capable of being fed into the combustion chamber 31 or the ratio of the actual value of the injection amount QI (a demand value of the injection amount QI) to the maximum value of the injection value QI from the injector 27.
In the air-fuel ratio control, the electronic control unit 60 sets a correction factor for the basic injection amount QIB based on the deviation amount and the deviation tendency between a target air-fuel ratio AF (hereinafter referred to as a target value AFT of the air-fuel ratio) and the air-fuel ratio AF from the air-fuel ratio sensor 66 (hereinafter referred to as an actual value AFR of the air-fuel ratio). The basic injection amount QIB is corrected with the correction factor, whereby the correction injection amount QIF for making the actual value AFR of the air-fuel ratio approach the target value AFT is calculated.
Further, in the air-fuel ratio control, the electronic control unit 60 performs air-fuel ratio feedback control for calculating a correction factor (hereinafter referred to as an air-fuel ratio correction value FAF) for the injection amount QI, which is used for compensating for temporal deviation of the actual value AFR of the air-fuel ratio from the target value AFT of the air-fuel ratio. The electronic control unit 60 further performs air-fuel ratio learning control for calculating a correction factor for the injection amount QI (hereinafter referred to as an air-fuel ratio learning value FAG), which is used for compensating for steady deviation of the actual value AFR of the air-fuel ratio from the target value AFT of the air-fuel ratio.
The air-fuel ratio feedback control will now be described in detail with reference to
As shown in
Specifically, the air-fuel ratio correction value FAF is updated in the following manner.
In
Next, when the above change is detected through the air-fuel ratio sensor 66, a rapid change value FAR2 is added to the air-fuel ratio correction value FAF as shown in a section immediately after time 13 in
Next, as shown in
Next, when the above change is detected through the air-fuel ratio sensor 66, a rapid change value FAL2 is subtracted from the air-fuel ratio correction value FAF as shown in the section immediately after time t14 in
The air-fuel ratio learning control is performed in the following manner concurrently with the air-fuel ratio feedback control performed in the manner shown above.
When there is no tendency that the actual value AFR of the air-fuel ratio steadily deviates to any one of the rich side and the lean side with respect to the target value AFT of the air-fuel ratio, the air-fuel ratio correction value FAF fluctuates between the rich side and the lean side with respect to “1”; therefore, the average value of the air-fuel ratio correction value FAF in this case shows a value equal to “1” which is substantially a reference value. Meanwhile, due to, for example, the individual difference of the injector 27 or the aging degradation, when the actual value AFR of the air-fuel ratio tends to steadily deviate to any one of the rich side and the lean side with respect to the target value AFT of the air-fuel ratio, the air-fuel ratio correction value FAF fluctuates between the rich side and the lean side with respect to a value different from the reference value “1”, and therefore, the average value of the air-fuel ratio correction value FAF converges to a value different from the reference value “1”. As described above, there is a difference in the average value of the air-fuel ratio correction value FAF between when there is no steady deviation between the actual value AFR of the air-fuel ratio and the target value AFT of the air-fuel ratio and when the steady deviation occurs between the actual value AFR and the target value AFT. Thus, based on such a fact, it is found that the actual value AFR and the target value AFT tend to steadily deviate.
When the average value of the air-fuel ratio correction value FAF is less than a predetermined value α previously set to be smaller than the reference value “1”, the actual value AFR of the air-fuel ratio is determined to tend to steadily deviate to the rich side with respect to the target value AFT of the air-fuel ratio, and thus, in order to eliminate this tendency, the air-fuel ratio learning value FAG is updated. When the average value of the air-fuel ratio correction value FAF is not less than a predetermined value β previously set to be greater than the reference value “1”, the actual value AFR of the air-fuel ratio is determined to tend to steadily deviate to the lean side with respect to the target value AFT of the air-fuel ratio, and thus, in order to eliminate this tendency, the air-fuel ratio learning value FAG is updated. When the average value of the air-fuel ratio correction value FAF is within the range of not less than the predetermined value α and less than the predetermined value β, it is determined that there is no tendency that the actual value AFR of the air-fuel ratio steadily deviates to the rich side and the lean side with respect to the target value AFT of the air-fuel ratio, and thus, the air-fuel ratio learning value FAG at that time is maintained. The updating of the air-fuel ratio learning value FAG in the manner described above is performed for each of a plurality of learning regions set depending on the magnitude of the engine load. That is, when the actual engine load has a magnitude corresponding to a given learning region, the air-fuel ratio learning value FAG in the learning region is updated.
The air-fuel ratio correction value FAF and the air-fuel ratio learning value FAG, calculated in the above manner, are reflected, as the correction injection amount QIF, in the basic injection amount QIB in the injection control above. Since the air-fuel ratio correction value FAF and the air-fuel ratio learning value FAG are set as a correction factor for the basic injection amount QIB, a single correction factor (hereinafter referred to as an air-fuel ratio correction factor kFA) in which the air-fuel ratio correction value FAF and the air-fuel ratio learning value FAG are integrated with each other is reflected, as the correction injection amount QIF, in the basic injection amount QIB. That is, when the air-fuel ratio correction factor kFA based on the air-fuel ratio correction value FAF and the air-fuel ratio learning value FAG is a value for making the actual value AFR of the air-fuel ratio, deviating to the rich side with respect to the target value AFT of the air-fuel ratio, approach the target value AFT, the air-fuel ratio correction factor kFA as the correction injection amount QIF is reflected in the basic injection amount QIB, whereby the basic injection amount QIB is corrected to the reduction side. Meanwhile, the air-fuel ratio correction factor kFA based on the air-fuel ratio correction value FAF and the air-fuel ratio learning value FAG is a value for making the actual value AFR of the air-fuel ratio, deviating to the lean side with respect to the target value AFT of the air-fuel ratio, approach the target value AFT, the air-fuel ratio correction factor kFA as the correction injection amount QIF is reflected in the basic injection amount QIB, whereby the basic injection amount QIB is corrected to the increasing side.
With reference to
Under these conditions, the amount of fuel fed into the combustion chamber 31 (hereinafter referred to as an in-chamber fuel amount QZ) is a combination of the actual value QIR of the injection amount from the injector 27 and the amount of returned fuel fed into the intake passage 49 together with the blow-by gas, and therefore, the actual value AFR of the air-fuel ratio basically deviates to the rich side with respect to the target value AFT of the air-fuel ratio. The air-fuel ratio correction factor kFA is calculated in this manner that the deviation to the rich side is eliminated in the air-fuel ratio control, and the air-fuel ratio correction factor kFA reflects in the basic injection amount QIB in the injection control, whereby the actual value AFR of the air-fuel ratio approaches the target value AFT of the air-fuel ratio.
However, when the actual value AFR of the air-fuel ratio excessively deviates to the rich side with respect to the target value AFT of the air-fuel ratio due to an excessively large returned fuel amount QR, the air-fuel ratio correction factor kFA is calculated through the air-fuel ratio control in order to eliminate the deviation as described above. However, due to the inability of the correction value FAF of the air-fuel ratio to correspond to the change in the actual value AFR of the air-fuel ratio, the actual value AFR of the air-fuel ratio cannot properly approach the target value AFT of the air-fuel ratio, that is, the air-fuel ratio control is not executed properly. In the following description, a state where the actual value AFR of the air-fuel ratio enriches to such an extent that the air-fuel ratio control is not executed properly due to returned fuel contained in blow-by gas will be referred to as “over enrichment”. Even if the actual value AFR of the air-fuel ratio does not enrich to such an extent that the air-fuel ratio control is not performed properly, a state may be regarded as “over enrichment” when the degree of enrichment of the actual value AFR in relation to the target value AFT exceeds a previously set allowable range.
In the blow-by gas returning apparatus 50 in the present embodiment, the possibility of occurrence of over enrichment of the air-fuel ratio depends mainly on the intake air amount GA and the degree of enrichment of the air-fuel ratio (the degree of deviation in relation to the rich side of the actual value AFR of the air-fuel ratio in relation to the target value AFT of the air-fuel ratio). Focusing on the dependency, the PCV opening degree TB is corrected based on the intake air amount GA and the degree of enrichment, whereby the occurrence of over enrichment of the air-fuel ratio is inhibited.
The air-fuel ratio correction factor kFA calculated as a value for reducing the injection amount QI by the air-fuel ratio control (hereinafter referred to as a reduction side correction factor kFL) reflects the degree of enrichment of the air-fuel ratio. Focusing on that, the PCV opening degree TB is corrected based on the intake air amount GA and the degree of enrichment, using the reduction side correction factor kFL as an index of the degree of enrichment of the air-fuel ratio.
The proportion of returned fuel to a air-fuel mixture increases as the intake air amount GA is reduced. Therefore, the influence of returned fuel on the actual value AFR of the air-fuel ratio, that is, the degree by which returned fuel makes the actual value AFR of the air-fuel ratio deviate to the rich side with respect to the target value AFT of the air-fuel ratio (hereinafter referred to as the promoted degree of enrichment) also increases in accordance with the increasing of the proportion of the returned fuel to the air-fuel mixture.
As shown in
Meanwhile, when returned fuel is fed into the intake passage 49 while the actual value AFR of the air-fuel ratio deviates to the rich side relative to the target value AFT of the air-fuel ratio, the actual value AFR of the air-fuel ratio is further enriched. Therefore, the possibility that over enrichment of the air-fuel ratio occurs due to returned fuel (hereinafter referred to as likelihood of occurrence of over enrichment) increases in accordance with the degree of enrichment of the air-fuel ratio.
As shown in
The correction of the PCV opening degree TB based on the intake air amount GA and the degree of enrichment, described above, is performed by virtue of the correction factor for the PCV opening degree TB calculated based on the tendency of the change in the promoted degree of enrichment in relation to the intake air amount GA, shown in
A concrete example of control of the PCV valve 53 performed by the electronic control unit 60 will now be described with reference to
As shown in
The above described map used for the calculation of the demand value GBT of the PCV flow rate is configured as shown in
GBT1>GBT2>GBT3>GBT4>GBT5 (1)
Further, the demand value GBT of the PCV flow rate is set between two adjacent curves with different demand values GBT of the PCV flow rate, for example, between the curve GBT1 and the curve GBT2 so as to be gradually reduced from the curve with a large demand value GBT (curve GBT1) to the curve with a small demand value GBT (curve GBT2). Instead of this setting, for example, between two adjacent curves with different demand values GBT of the PCV flow rate, the demand value GBT of the PCV flow rate may be a value on one of these two adjacent curves.
Further, on the map shown in
As shown in
In the determination process in step S120, when the fuel dilution ratio is determined to be higher than the reference dilution ratio, whether the coolant temperature THW from the coolant temperature sensor 65 is higher than a reference temperature is determined (step S130). When the coolant temperature THW is lower than the reference temperature, the diluted fuel does not evaporate from the engine oil. Under the conditions, it is predicted that over enrichment of the actual value AFR of the air-fuel ratio due to the feed of blow-by gas into the intake passage 49 will not occur. That is, it is predicted that there is no particular problem in the subsequent process even if the correction for reducing the PCV opening degree TB is not performed. Thus, in the determination process in step S130, in order to avoid the unnecessary correction of the PCV opening degree TB, the necessity of the correction of the PCV opening degree TB is determined based on the coolant temperature THW. That is, the reference temperature is previously set as a value for determining whether the diluted fuel evaporates.
When each of conditions in the determination process in steps S120 and S130 is established, the correction factor for the basic value of the PCV opening degree TB (hereinafter referred to as an opening degree correction factor kTB) is calculated through process in steps S140 to S180, and a value calculated based on the opening degree correction factor kTB and the basic value of the PCV opening degree TB (hereinafter referred to as a changed value of the PCV opening degree TB) is set as the demand value TBT of the PCV opening degree. Meanwhile, when it is determined that either of the conditions in the determination process in steps S120 or S130 is not established, the basic value of the PCV opening degree is set as the demand value TBT of the PCV opening degree, through the process in step S190.
After the process in step S180 or S190, control is executed on the PCV valve 53 such that the actual value TBR of the PCV opening degree is maintained at the demand value set in step S180 or step S190 (step S200).
Hereinafter, the process from steps S140 to S180 is described in detail.
First, an intake air correction factor kGA as the correction factor for the PCV opening degree TB is calculated based on the intake air amount GA obtained based on a value detected by the air flow meter 63 (step S140). Specifically, the intake air amount GA is applied to a map which is previously stored in the electronic control unit 60 and is used for calculation of the intake air correction factor kGA, and the intake air correction factor kGA is calculated based on this map.
The above described map for the calculation of the intake air correction factor kGA may be configured, for example, as shown in
In the region where the intake air amount GA is less than the first reference amount GA1, the promoted degree of enrichment degree caused by returned fuel is very large. In the region where the intake air amount GA is less than the first reference amount GA1, regarding a requirement for reducing the possibility of occurrence of over enrichment of the air-fuel ratio and a requirement for promoting ventilation of the inside of the crank chamber 32, it is considered that the former requirement is required to be prioritized. Therefore, it can be said that the degree of correction toward the valve closing side of the PCV opening degree TB based on the intake air amount GA is preferably rendered sufficiently large. Thus, the intake air correction factor kGA corresponding to the region where the intake air amount GA is less than the first reference amount GA1 is greater than the intake air correction factor kGA corresponding to a region where the intake air amount GA is not less than the first reference amount GA1 and less than the second reference amount GA2 and a region where the intake air amount GA is not less than the second reference amount GA2, such that the degree of correction toward the valve closing side of the PCV opening degree TB becomes large. That is, when the intake air correction factor kGA is set within a range between “0” and “1”, in the region where the intake air amount GA is less than the first reference amount GA1, the intake air correction factor kGA is set to “1”, which is the maximum value, such that the degree of correction in relation to the valve closing side of the PCV opening degree TB becomes large. The upper limit of the intake air correction factor kGA can be set to a value greater than “1”. In this case, in the region where the intake air amount GA is less than the first reference amount GA1, the intake air correction factor kGA is set to be a value greater than “1”.
In the region where the intake air amount GA is not less than the first reference amount GA1 and less than the second reference amount GA2, the promoted degree of enrichment caused by returned fuel shows a tendency to become gradually smaller as the intake air amount GA increases. In the region where the intake air amount GA is not less than the first reference amount GA1 and less than the second reference amount GA2, it is considered that the requirement for reducing the possibility of occurrence of over enrichment of the air-fuel ratio and the requirement for promoting ventilation of the inside of the crank chamber 32 can both be satisfied. Therefore, it can be said that the degree of correction toward the valve closing side of the PCV opening degree TB based on the intake air amount GA is preferably decreased as the increase of the intake air amount GA increases. Thus, the intake air correction factor kGA corresponding to the region where the intake air amount GA is not less than the first reference amount GA1 and less than the second reference amount GA2 is set so as to become gradually smaller as the intake air amount GA increases. That is, when the intake air correction factor kGA is set within the range between “0” and “1”, the intake air correction factor kGA is set so as to become gradually smaller from “1” to “0”, such that the degree of correction toward the valve closing side of the PCV opening degree TB becomes gradually small.
In the region where the intake air amount GA is not less than the second reference mount GA2, the promoted degree of enrichment caused by returned fuel is very small. That is, in the region where the intake air amount GA is not less than the second reference mount GA2, regarding the requirement for reducing the possibility of occurrence of over enrichment of the air-fuel ratio and the requirement for promoting ventilation of the inside of the crank chamber 32, it is considered that the latter requirement is required to be prioritized (because it is considered that it is unnecessary to satisfy the former requirement). Therefore, it can be said that the degree of correction toward the valve closing side of the PCV opening degree TB based on the intake air amount GA is preferably rendered sufficiently small. Thus, the intake air correction factor kGA corresponding to the region where the intake air amount GA is not less than the second reference amount GA2 is smaller than the intake air correction factor kGA corresponding to the region where the intake air amount GA is less than the first reference amount GA1 and the region where the intake air amount GA is not less than the first reference amount GA1 and less than the second reference amount GA2, such that the degree of correction toward the valve closing side of the PCV opening degree TB becomes small. That is, when the intake air correction factor kGA is set within a range between “0” and “1”, the intake air correction factor kGA is set to “0” in the region where the intake air amount GA is not less than the second reference amount GA2, such that the degree of correction toward the valve closing side of the PCV opening degree TB becomes minimum. The lower limit of the intake air correction factor kGA can be set to a value greater than “0”, and in this case, the intake air correction factor kGA is set to the value greater than “0” in the region where the intake air amount GA is not less than the second reference amount GA2, such that the degree of correction toward the valve closing side of the PCV opening degree TB becomes minimum.
In step S150, the reducing side correction factor kFL is multiplied by the intake air correction factor kGA, and the value obtained as the calculation result is set as an intermediate correction factor kTL. That is, the reducing side correction factor kFL reflecting the tendency of change of the promoted degree of enrichment in relation to the intake air amount GA (degree of enrichment) is set as the intermediate correction factor kTL. The smoothed reducing side correction factor kFL calculated by the air-fuel ratio control is used as the reducing side correction factor kFL on which the intake air correction factor kGA will be reflected. The smoothing of the reducing side correction factor kFL may be performed using, for example, the reducing side correction factor kFL in a previous calculation period and the reducing side correction factor kFL in a present calculation period, calculated in the air-fuel ratio control. Alternatively, the air-fuel ratio correction value FAF and the air-fuel ratio learning value FAG in a previous calculation period and these values in a present calculation period, calculated in the air-fuel ratio control, may be respectively smoothed to calculate the reducing side correction factor kFL on the basis thereof.
In step S160, the opening degree correction factor kTB which is the correction factor for the PCV opening degree TB is calculated based on the intermediate correction factor kTL calculated in step S150. Specifically, the intermediate correction factor kTL is applied to a map which is previously stored in the electronic control unit 60 and is used for calculation of the opening degree correction factor kTB, and the opening degree correction factor kTB is calculated based on this map.
The map for the calculation of the opening degree correction factor kTB may be configured, for example, as shown in
In a region where the intermediate correction factor kTL is less than the reference correction factor kFL1, the likelihood of occurrence of over enrichment caused by returned fuel is very small. That is, in the region where the intermediate correction factor kTL is less than the reference correction factor kFL1, regarding the requirement for reducing the possibility of occurrence of over enrichment of the air-fuel ratio and the requirement for promoting ventilation of the inside of the crank chamber 32, it is considered that the latter requirement is required to be prioritized. Therefore, it can be said that the degree of correction toward the valve closing side of the PCV opening degree TB based on the intermediate correction factor kTL is preferably rendered sufficiently small. Thus, the opening degree correction factor kTB corresponding to the region where the intermediate correction factor kTL is less than the reference correction factor kFL1 is larger than the opening degree correction factor kTB corresponding to the region where the intermediate correction factor kTL is not less than the reference correction factor kFL1. That is, when the opening degree correction factor kTB is set within a range between “0” and “1”, the degree of correction toward the valve closing side of the PCV opening degree TB is minimum, and the opening degree correction factor kTB is set to “1” in order to prevent the PCV opening degree TB from being corrected so as to approach the valve closing side. The upper limit of the opening degree correction factor kTB can be set to be greater than “1”. In this case, the opening degree correction factor kTB is set to a value larger than “1” such that the degree of correction toward the valve closing side of the PCV opening degree TB is minimum.
Next, in the region where the intermediate correction factor kTL is not less than the reference correction factor kFL1, the likelihood of occurrence of over enrichment caused by returned fuel shows a tendency to become gradually larger as the intermediate correction factor kTL increases. That is, in the region where the intermediate correction factor kTL is not less than the reference correction factor kFL1, it is considered that both of the requirement for reducing the possibility of occurrence of over enrichment of the air-fuel ratio and the requirement for promoting ventilation of the inside of the crank chamber 32 can be satisfied. Therefore, it can be said that the degree of correction toward the valve closing side of the PCV opening degree TB based on the intermediate correction factor kTL is preferably rendered gradually larger as the intermediate correction factor kTL increases. Thus, the opening degree correction factor kTB corresponding to the region where the intermediate correction factor kTL is not less than the reference correction factor kFL1 is set so as to become gradually smaller as the intermediate correction factor kTL increases. That is, when the opening degree correction factor kTB is set within the range between “0” and “1”, the opening degree correction factor kTB is set so as to become gradually smaller from “1” to “0”, such that the degree of correction toward the valve closing side of the PCV opening degree TB becomes gradually large.
As described above, the opening degree correction factor kTB is set as a value for reducing the possibility of occurrence of over enrichment of the air-fuel ratio caused by returned fuel, and, at the same time, is set as a value causing no excessive correction toward the valve closing side of the PCV opening degree TB based on the engine operating state, that is, the basic value of the PCV opening degree TB. That is, while the occurrence of over enrichment of the air-fuel ratio is reliably inhibited through the correction toward the valve closing side of the PCV opening degree TB, the opening degree correction factor kTB is set such that the requirement for ventilation of the inside of the crank chamber 32 can be satisfied as much as possible. In other words, the opening degree correction factor kTB is set such that any of the minimum and the adjacent degrees allowing the reliable inhibition of the occurrence of over enrichment of the air-fuel ratio is ensured as the degree of correction toward the valve closing side of the PCV opening degree TB, whereby it is possible to inhibit as much as possible the degree of ventilation in the crank chamber 32 from decreasing due to the correction of the PCV opening degree TB.
The basic value of the PCV opening degree TB is multiplied by the opening degree correction factor kTB (step S170), and the value obtained as the calculation result is set as a changed value of the PCV opening degree TB. The changed value of the PCV opening degree TB is set as the demand value TBT of the PCV opening degree (step S180).
As described above, in the PCV opening degree changing process in the present embodiment, the opening correction factor kTB is calculated in the following manner. That is, the intake air correction factor kGA is calculated based on the intake air amount GA. The calculated intake air correction factor kGA is reflected in the reducing side correction factor kFL to calculate correction factor kTL. The opening degree correction factor kTB is calculated based on the calculated correction factor kTL.
The present embodiment has the following advantages.
(1) In the present embodiment, the basic value of the PCV opening degree TB is corrected based on the intake air amount GA and the reducing side correction factor kF (the degree of enrichment) such that the PCV opening degree TB decreases. Therefore, the occurrence of over enrichment of the air-fuel ratio is reliably inhibited. Further, the demand value of the PCV opening degree TB set based on the engine operating state, that is, the basic value of the PCV opening degree TB is corrected, whereby the inhibition of over enrichment is achieved. As a result, unlike the case where the PCV valve 53 is completely closed when the fuel dilution ratio of the engine oil is high, the occurrence of over enrichment of the air-fuel ratio is reliably inhibited while ventilating the inside of the crank chamber 32.
(2) In the present embodiment, the basic value of the PCV opening degree TB is corrected so as to further approach a value on the valve closing side as the intake air amount GA is reduced. That is, the returned fuel amount QR is reduced through the control of the PCV valve 53 as the promoted degree of enrichment of the air-fuel ratio caused by returned fuel becomes large. Thus, the occurrence of over enrichment of the actual value AFR of the air-fuel ratio is reliably inhibited.
(3) In the present embodiment, the tendency of change of the intake air correction factor kGA in relation to the intake air amount GA (the degree of correction toward the valve closing side of the PCV opening degree TB) is different between the region where the intake air amount GA is less than the first reference amount GA1 and the region where the intake air amount GA is not less than the first reference amount GA1. Thus, the PCV opening degree TB is corrected so as to be maintained at a level corresponding to the influence of returned fuel on the actual value AFR of the air-fuel ratio. Furthermore, it is possible to reliably inhibit the degree of ventilation of the inside of the crank chamber 32 from being unnecessarily reduced due to the excessive correction toward the valve closing side of the PCV opening degree TB.
(4) In the present embodiment, in the region where the intake air amount GA is less than the first reference amount GA1, the intake air correction factor kGA is set such that the degree of correction toward the valve closing side of the PCV opening degree TB is maximum. That is, the degree of correction toward the valve closing side of the PCV opening degree TB corresponding to the region where the intake air amount GA is less than the first reference amount GA1 is set to be greater than the degree of correction toward the valve closing side of the PCV opening degree TB corresponding to the region where the intake air amount GA is not less than the first reference amount GA1 and less than the second reference amount GA2, and the degree of correction toward the valve closing side of the PCV opening degree TB corresponding to the region where the intake air amount GA is not less than the second reference amount GA2. Thus, the occurrence of over enrichment of the actual value AFR of the air-fuel ratio is reliably inhibited.
(5) In the present embodiment, in the region where the intake air amount GA is not less than the first reference amount GA1, the degree of correction toward the valve closing side of the PCV opening degree TB based on the intake air correction factor kGA is decreased as the intake air amount GA increases. Thus, an unnecessary reduction in the amount of blow-by gas fed into the intake passage 49, that is, an unnecessary reduction in the degree of ventilation of the inside of the crank chamber 32 is reliably inhibited.
(6) In the present embodiment, in the region where the intake air amount GA is not less than the second reference amount GA2, the intake air correction factor kGA is set such that the degree of correction toward the valve closing side of the PCV opening degree TB is minimum. That is, the intake air correction factor kGA is set in order to prevent the basic value of the PCV opening degree TB from being corrected so as to approach the valve closing side. Thus, an unnecessary reduction in the amount of blow-by gas fed into the intake passage 49, that is, the unnecessary reduction in the degree of ventilation of the inside of the crank chamber 32 is reliably inhibited.
(7) In the present embodiment, the basic value of the PCV opening degree TB is corrected so as to further approach a value on the valve closing side as the intermediate correction factor kTL as the reducing side correction factor kFL (the degree of enrichment of the air-fuel ratio) increases. That is, the returned fuel amount QR is reduced through the control of the PCV valve 53 as the likelihood of occurrence of over enrichment of the air-fuel ratio caused by returned fuel becomes large. Thus, the occurrence of over enrichment of the actual value AFR of the air-fuel ratio is reliably inhibited.
(8) In the present embodiment, the tendency of change of the opening degree correction factor kTB (the degree of correction toward the valve closing side of the PCV opening degree TB) to the intermediate correction factor kTL as the reducing side correction factor kFL is different between the region where the intermediate correction factor kTL is less than the reference correction factor kFL1 and the region where the intermediate correction factor kTL is not less than the reference correction factor kFL1. Thus, the PCV opening degree TB is corrected so as to be maintained at a level corresponding to the influence of returned fuel on the actual value AFR of the air-fuel ratio. Furthermore, it is possible to reliably inhibit the degree of ventilation of the inside of the crank chamber 32 from being unnecessarily reduced due to the excessive correction toward the valve closing side of the PCV opening degree TB.
(9) In the present embodiment, in the region where the intermediate correction factor kTL as the reducing side correction factor kFL is less than the reference correction factor kFL1, the opening degree correction factor kTB is set such that the degree of correction toward the valve closing side of the PCV opening degree TB is minimum. That is, the opening degree correction factor kTB is set in order to prevent the basic value of the PCV opening degree TB from being corrected so as to approach the valve closing side. Thus, the unnecessary reduction in the amount of blow-by gas fed into the intake passage 49, that is, the unnecessary reduction in the degree of ventilation of the inside of the crank chamber 32 is reliably inhibited.
(10) In the present embodiment, in the region where the intermediate correction factor kTL as the reducing side correction factor kFL is not less than the reference correction factor kFL1, the degree of correction toward the valve closing side of the PCV opening degree TB based on the opening degree correction factor kTB is increased as the intermediate correction factor kTL increases. Thus, the occurrence of over enrichment of the actual value AFR of the air-fuel ratio is reliably inhibited.
(11) Under the conditions where the intake air amount GA is sufficiently small and the reducing side correction factor kFL is sufficiently large, the possibility of occurrence of over enrichment of the air-fuel ratio is very large. However, in the present embodiment, when the intake air amount GA is sufficiently small, that is, when the intake air amount GA is less than the first reference amount GA1, the degree of correction toward the valve closing side of the PCV opening degree TB based on the intake air amount GA is set to maximum. Further, when the intermediate correction factor kTL is sufficiently large, that is, when the intermediate correction factor kTL deviates from the reference correction factor kFL1 so as to be sufficiently large, the opening degree correction factor kTB is set such that the degree of correction toward the valve closing side of the PCV opening degree TB based on the intermediate correction factor kTL is large. Thus, even under the above conditions, the occurrence of over enrichment of the actual value AFR of the air-fuel ratio is reliably inhibited.
The above embodiment may be modified as follows.
In the above embodiment, the procedure for calculating the opening degree correction factor kTB may be modified as follows. That is, for example, a calculation map in which the relationship between the intake air amount GA and the reducing side correction factor kFL (the degree of enrichment), and the opening degree correction factor kTB is previously specified may be provided, and the opening degree correction factor kTB corresponding to the intake air amount GA and the reducing side correction factor kFL at any given time may be calculated based on the calculation map.
In the above embodiment, the reducing side correction factor kFL is regarded as the degree of enrichment of the actual value AFR of the air-fuel ratio, and the PCV opening degree TB is corrected based on the degree of enrichment. However, instead of this, the PCV opening degree TB may be corrected based on a deviation amount between the actual value AFR of the air-fuel ratio detected by the air-fuel ratio sensor 66 and the target value AFT of the air-fuel ratio. In short, the degree of enrichment of the actual value AFR of the air-fuel ratio may be acquired not only in the manner described in the above embodiment, but also in any other suitable manner.
Although the in-cylinder injection engine is used in the above embodiment, the present invention may be applied to any type of engine as long as it performs air-fuel ratio control in which the air-fuel ratio correction factor is updated such that the fuel injection amount is reduced based on the deviation of the actual air-fuel ratio to the rich side with respect to the target air-fuel ratio. Moreover, the blow-by gas returning apparatus may have configurations other than the configuration shown in the above embodiment as long as it has an electronically controlled PCV valve.
Number | Date | Country | Kind |
---|---|---|---|
2008-069946 | Mar 2008 | JP | national |