Electronically controlled sample warper, rotary creel assembly, and warping method

Information

  • Patent Grant
  • 6449819
  • Patent Number
    6,449,819
  • Date Filed
    Friday, March 2, 2001
    23 years ago
  • Date Issued
    Tuesday, September 17, 2002
    22 years ago
Abstract
An electronically controlled sample warper having a yarn exchanging mechanism is provided which comprises a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound and a bobbin station supporting a plurality of bobbins on which different kinds and/or the same kind of yarns are wound in a standby state. With this construction, it is possible to employ various kinds of yarns and perform yarn exchanging thereof unlimitedly, thus enabling various pattern warping to be freely performed with the reduced warping time.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a novel electronically controlled sample warper, wherein a rotary creel supporting detachably a plurality of bobbins around which different kinds and/or the same kind of yarns are wound and a bobbin station supporting detachably a plurality of bobbins in a standby state are used, and various kinds of yarns are exchanged according to the preset pattern data (yarn order), so that more kinds of yarns than the conventional ones can be wound on a warper drum, a rotary creel assembly used in the electronically controlled sample warper, and a novel warping method using the rotary creel assembly.




2. Description of the Related Art




As an electronically controlled sample warper which has been used conventionally, there is known a structure as disclosed, for example, in Japanese Patent No. 1529104, where using a fixed creel supporting a plurality of bobbins around which different kinds (different colors or different twists) and/or the same kind of yarns are wound, the yarns are wound on a warper drum with a yarn introduction means while the yarn exchanging is performed by yarn selection guides according to the preset pattern data (yarn order).




Also, there has been known an electronically controlled sample warper which can warp a plurality of yarns concurrently, wherein time loss required for the yarn exchanging is cancelled and a plurality of yarns can concurrently be wound on a warper drum by using a rotary creel as well as omitting the yarn exchanging step, and further a period of time required for the warping work can be reduced (see Japanese Patent No. 1767706, U.S. Pat. No. 4, 972,662, and EP No. 0375480).




Since the fixed creel has a plurality of bobbins around which different kinds and/or the same kind of yarns (mainly different kinds of yarns) are wound and it is used for warping the yarns one by one, it is advantageously possible to perform pattern warping, but the yarns are wound on a warper drum one by one, so it takes disadvantageously much time to perform warping work correspondingly. Meanwhile, the rotary creel has a plurality of bobbins around which the same kind and/or different kinds of yarns are wound, and it is used for the plain warping (for example, only red color yarns), and the limited pattern warping, such as one to one warping (for example, repetition of a yarn of red color and a yarn of white color, or repetition of a yarn of S twist and a yarn of Z twist), two to two warping (for example, repetition of two yarns of red color and two yarns of white color, or repetition of two yarns of S twist and two yarns of Z twist). With the rotary creel, it is disadvantageously impossible to perform pattern warping other than the limited pattern warping, but it is advantageously possible to wind a plurality of yarns concurrently on the warper drum so that the warping time is reduced largely.




SUMMARY OF THE INVENTION




With the foregoing drawbacks of the prior art in view, it is an object of the present invention to provide an electronically controlled sample warper, a rotary creel assembly, and a warping method wherein, using a rotary creel, it is possible to freely perform the yarn exchanging of various yarns, thereby various pattern warping and reduction of the warping time being realized.




To attain the foregoing object, the first aspect of an electronically controlled sample warper of the present invention comprises: a warper drum; a plurality of yarn introduction means each mounted to a side surface of the warper drum for winding a yarn on the warper drum; a plurality of yarn selection guides arranged in one end portion of a base for supporting the warper drum in correspondence to the yarn introduction means, each the yarn selection guide being pivotally moved to protrude to a yarn exchanging position when a yarn is exchanged and pivotally moved to retract to a standby position when a yarn is stored; a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, the rotary creel being positioned adjacent corresponding ones of the plurality of yarn selection guides; and a bobbin station supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound in a standby state, wherein yarns are passed between the yarn introduction means and the yarn selection guides as well as the bobbins are passed between the rotary creel and the bobbin station such that the bobbin for a yarn held by the yarn introduction means and wound on the warper drum is supported on the rotary creel while the bobbin for a yarn stored in the yarn selection guide is supported by the bobbin station in a standby state, so that the yarns are exchanged according to the preset yarn order to be wound on the warper drum.




The second aspect of an electronically controlled sample warper of the present invention comprises: a warper drum; a plurality of yarn introduction means each mounted to a side surface of the warper drum for winding a yarn on the warper drum; a plurality of yarn selection guides arranged in one end portion of a base for supporting the warper drum in correspondence to the yarn introduction means, each the yarn selection guide being pivotally moved to protrude to a yarn exchanging position when a yarn is exchanged and pivotally moved to retract to a standby position when a yarn is stored; and a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, the rotary creel being positioned adjacent corresponding ones of the plurality of yarn selection guides, wherein yarns are passed between the yarn introduction means and the yarn selection guides, so that the yarns are exchanged according to the preset yarn order to be wound on the warper drum.




A rotary creel assembly of the present invention comprises: a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, the rotary creel being positioned adjacent corresponding ones of the plurality of yarn selection guides; and a bobbin station supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound in a standby state.




A warping method of the present invention, using an electronically controlled sample warper having: a warper drum; a plurality of yarn introduction means each mounted to a side surface of a warper drum for winding a yarn on the warper drum; a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, the rotary creel being positioned adjacent corresponding ones of the plurality of yarn selection guides; and a bobbin station supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound in a standby state, wherein the bobbins are passed between the rotary creel and the bobbin station such that the bobbin for a yarn held by the yarn introduction means and wound on the warper drum is supported by the rotary creel while the bobbin for a yarn stored in the yarn selection guide is supported by the bobbin station in a standby state, so that the yarns are exchanged according to the preset yarn order to be wound on the warper drum.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an entire explanatory view schematically showing an embodiment of an electronically controlled sample warper according to the present invention;





FIG. 2

is a partial explanatory view showing the manner in which a yarn selection guide is arranged;





FIG. 3

is the first partial explanatory view showing a movement of a yarn selection guide; and





FIG. 4

is the second partial explanatory view showing another movement of a yarn selection guide.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The present invention will hereinafter be described in connection with embodiments with reference to the accompanying drawings.




In

FIG. 1

, an electronically controlled sample warper W of the present invention comprises: a warper drum A; a plurality of yarn introduction means


6




a


to


6




d


(four in the illustrated embodiment) each mounted to a side surface of the warper drum for winding yarns


22




a


to


22




e


on the warper drum A; and a plurality of yarn selection guides


27


arranged in one end portion of a base for supporting the warper drum A in correspondence to the yarn introduction means


6




a


to


6




d


, each the yarn selection guide


27


being pivotally moved to protrude to a yarn exchanging position when the yarns


22




a


to


22




e


are exchanged and pivotally moved to retract to a standby position when the yarns


22




a


to


22




e


are stored, wherein yarns


22




a


to


22




e


are passed between the yarn introduction means


6




a


to


6




d


and the yarn selection guides


27


, so that the yarns


22




a


to


22




e


are exchanged according to the preset yarn order to be wound on the warper drum A. The basic structure and operation of the electronically controlled sample warper W are well-known from the above-mentioned patent publications, and detailed description thereof will be omitted.




In the electronically controlled sample warper W of the present invention, there are positioned adjacent corresponding ones of the plurality of yarn selection guides


27


a rotary creel F supporting a plurality of bobbins


100




a


to


100




e


(five in the illustrated embodiment) around which different kinds and/or the same kind of yarns


22




a


to


22




e


are wound, and a bobbin station


102


supporting a plurality of bobbins


100




a


to


100




e


around which different kinds and/or the same kind of yarns are wound in a standby state.




The characteristic structure of the present invention resides in that the bobbins


100




a


to


100




e


can detachably be supported by the rotary creel F and the bobbin station


102


, respectively, and the bobbins


100




a


to


100




e


can be passed freely between the rotary creel F and the bobbin station


102


.




In

FIG. 1

, reference numerals


104




a


to


104




e


denote bobbin bodies, which are composed of bobbin frames


106




a


to


106




e


and the bobbins


100




a


to


100




e


attachable thereto, thereby the attaching and detaching operation of the bobbins


100




a


to


100




e


being easy. The basic structure of the rotary creel F is not changed from a conventional one. However, the rotary creel F is provided at its front portion with a plurality of bobbin receiving recesses


108


(four in the illustrated embodiment), into which the bobbin bodies


104




a


to


104




e


are detachably inserted.




It is enough for the above bobbin station


102


to retain the plurality of bobbin bodies


104




a


to


104




e


detachably in a standby state, and there are no need any specific constructions therefor. In the embodiment shown in

FIG. 1

, however, a plurality of bobbin receiving portions


112


(four in the illustrated embodiment) are formed on two rail members


110


,


110


opposing to each other, and the bobbin bodies


104




a


to


104




e


are detachably set in the bobbin receiving portions


112


.




The bobbin station


102


(or the rail members


110


,


110


in the illustrated embodiment) may be movable so that the bobbin bodies


104




a


to


104




e


are easily passed between the rotary creel F and the bobbin receiving recesses


108


. Also, it is preferable that the bobbin bodies


104




a


to


104




e


are automatically passed by a known robot hand or the like according to the preset pattern data (yarn order).




As the above-mentioned yarn selection guides


27


, such conventional ones as shown in

FIG. 2

can be used. In

FIG. 2

, the plurality of yarn selection guides


27


selectively guide yarns


22




a


to


22




e


according to the instructions from a program setting unit. The yarn selection guides


27


are attached one to each rotary solenoid


29


. When the individual rotary solenoid


29


is energized, the corresponding yarn selection guide


27


is pivotally moved to advance to its operative position (yarn exchanging position) as shown with a phantom line in

FIG. 3

; when the rotary solenoid


29


is de-energized, the yarn selection guide


27


is reversely pivotally moved to its standby position (yarn storing position) as shown with a solid line in FIG.


3


.




The movements of the yarn


22


during the yarn exchanging are shown in

FIGS. 3 and 4

. The distal end of the yarn introduction means


6


is inwardly bent to provide a yarn introduction part


6


′ which is disposed against the front end of the outer periphery of the warper drum. The yarn


22




k


caught by the selection guide


27


initially located in its standby position (yarn storing position) assumes its yarn position


221


as the selection guide


27


is pivotally moved to advance to its operative position(yarn exchanging position) as shown with a phantom line. From this position, the yarn


221


is caught by the yarn introduction part


6


′ and wound around the warper drum A. The yarn selection guide


27


from which the yarn is removed is returned to the standby position (yarn storing position).


22




m


designates the posture in which the yarn


22


is moved one turn, and when the yarn is not exchanged the yarn is wound around the warper drum A passing through an upper side of a guide plate S as in this posture.




When the yarn


22




m


being caught by the yarn introduction part


6


′ and wound on the warper drum A is removed therefrom by a yarn removing unit


32


, the yarn


22




m


is pulled back to the direction of the rotary creel by a pulling-back device (not shown) and guided to a lower side of the guide plate S by a guide bar


59




a


, then assuming its posture


22




n


. The yarn selection guide


27


is pivotally moved to advance to its operative position to catch the removed yarn, and returns to the standby position (yarn storing position) with holding the yarn. The yarn in the standby position assumes its posture


22




p


in FIG.


4


.




In

FIGS. 2

to


4


,


16


designates a drum spoke of the warper drum A;


17


, a conveyor belt provided on the drum spoke


16


;


59


, a yarn introduction cover arranged on one side of the warper drum A;


59




a


, a guide bar attached on the inner surface of a lower portion of the yarn introduction cover


59


; and E, a yarn fastener mounted to a base Y.




The operation of the above-described electronically controlled sample warper W will now be described.




Firstly, as shown in

FIG. 1

, the bobbin bodies


104




a


,


104




b


are inserted into the bobbin receiving recesses


108


,


108


of the rotary creel F, and yarns


22




a


,


22




b


are wound around the warper drum A by the yarn introduction means


6




a


,


6




b


. On the other hand, the bobbin bodies


104




c


,


104




d


are set in the bobbin receiving portions


112


,


112


of the bobbin station


102


in a standby state, and yarns


22




c


,


22




d


are out of operation.




Next, when winding of four yarns


22




a


to


22




d


is performed, the bobbin bodies


104




c


,


104




d


are inserted into the remaining bobbin receiving portions


108


,


108


of the rotary creel F, and the yarn selection guides


27


are operated so that the yarns


22




c


,


22




d


are moved to advance to the yarn exchanging positions from the yarn storing positions to be held by the yarn introduction means


6




c


and


6




d


,thereby the yarns being wound around the warper drum A.




When winding of the yarns


22




a


,


22




b


is out of operation, the bobbin bodies


104




a


,


104




b


are detached from the bobbin receiving recesses


108


,


108


, then the yarns


22




a


,


22




b


are removed from the yarn introduction means


6




a


,


6




b


and caught by the yarn selection guide


27


to be stored, and the bobbin bodies


104




a


,


104




b


are set to the bobbin receiving portions


112


,


112


of the bobbin station


102


.




Furthermore, when winding of a new yarn


22




e


is performed, the bobbin body


104




e


is mounted to an empty bobbin receiving recess


108


of the rotary creel F, and on the other hand the yarn selection guide


27


is actuated to get the yarn introduction means


6




a


to catch the yarn


22




e


so that the yarn


22




e


can be wound around the warper drum.




Thus, it is easy to use larger number of the bobbins


100




a


to


100




e


(five in the illustrated embodiment) than the number of the yarn introduction means


6




a


to


6




d


(four in the illustrated embodiment) so that a wide variety of pattern warping may be unlimitedly performed. Also, the reduction of the warping time may be realized by concurrently winding a plurality of yarns on the warper drum A.




In the above-mentioned embodiment, there is described the case wherein four yarn introduction means


6




a


to


6




d


, four bobbin receiving recesses


108


of the rotary creel F, four bobbin receiving portions


112


of the bobbin station


102


, and five bobbins


100




a


to


100




e


are used. It is possible, however, to employ eight to sixteen or more of yarn introduction means


6


, eight to sixteen or more of bobbin receiving recesses


108


of the rotary creel F, eight to twenty or more of the bobbin receiving portions


112


of the bobbin station


102


, and eight to forty or more of the bobbins so as to perform ultimately a wide variety of pattern warping with various kinds of yarns.




In the above embodiment, there is explained the case wherein the yarn exchanging is performed by exchanging the bobbins of the rotary creel F for the ones of the bobbin station


102


. In the case where there is no need to use the bobbins of the bobbin station


102


, it is possible, as a matter of course, to warp only the yarns wound around the bobbins supported by the rotary creel F. In this case, the yarns wound around the bobbins supported by the rotary creel are guided to the yarn introduction means


6




a


to


6




d


through the yarn selection guides


27


. Thus, such a manner as the yarn selection guide


27


are applied to the rotary creel F is a novel inventive idea which does not reside in any conventional electronically controlled sample warpers. The structure where the yarns are guided to the yarn introduction means


6




a


to


6




d


through the yarn selection guides


27


may advantageously and largely save time and labor in exchanging the bobbins and so on in comparison with the conventional one where the yarns of bobbins are directly guided to the yarn introduction means


6




a


to


6




d


. In this embodiment, using one yarn introduction means with the rotary creel F being in an inoperative state, there is no doubt that pattern warping may be performed as in the aforementioned known fixed creel.




As described above, according to the electronically controlled sample warper of the present invention, though using the rotary creel, it is possible to employ various kinds of yarns and perform the yarn exchanging thereof unlimitedly, thus enabling various pattern warping to be freely performed with the reduced warping time.




According to the rotary creel assembly of the present invention, it is possible to warp yarns on the warper drum with a plurality of bobbins supported by the rotary creel, set the remaining bobbins which are not used for warping yarns in the bobbin station in a standby state and perform the bobbin exchanging between the rotary creel F and the bobbin station


102


. Therefore, the rotary creel assembly is used very preferably when performing pattern warping with a number of yarns.




Also, according to the warping method of the present invention, using the above-mentioned rotary creel assembly of the present invention, it is possible to perform pattern warping with various kinds of yarns and warp concurrently a plurality of yarns with the reduced warping time.




Obviously, various minor changes and modifications of the present invention are possible in the light of the above teaching. It is therefore to be understood that within the scope of appended claims the invention may be practiced otherwise than as specifically described.



Claims
  • 1. An electronically controlled sample warper comprising:a warper drum; a plurality of yarn introduction means each mounted to a side surface of said warper drum for winding a yarn on said warper drum; a plurality of yarn selection guides arranged in one end portion of a base for supporting said warper drum in correspondence to said yarn introduction means, each said yarn selection guide being pivotally moved to protrude to a yarn exchanging position when a yarn is exchanged and pivotally moved to retract to a standby position when a yarn is stored; a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, said rotary creel being positioned adjacent corresponding ones of said plurality of yarn selection guides ;and a bobbin station supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound in a standby state, wherein yarns are passed between said yarn introduction means and said yarn selection guides as well as said bobbins are passed between said rotary creel and said bobbin station such that said bobbin for a yarn held by said yarn introduction means and wound on said warper drum is supported on said rotary creel while said bobbin for a yarn stored in said yarn selection guide is supported by said bobbin station in a standby state, so that said yarns are exchanged according to the preset yarn order to be wound on said warper drum.
  • 2. An electronically controlled sample warper of the present invention comprising:a warper drum; a plurality of yarn introduction means each mounted to a side surface of said warper drum for winding a yarn on said warper drum; a plurality of yarn selection guides arranged in one end portion of a base for supporting said warper drum in correspondence to said yarn introduction means, each said yarn selection guide being pivotally moved to protrude to a yarn exchanging position when a yarn is exchanged and pivotally moved to retract to a standby position when a yarn is stored; and a rotary creel detachably supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, said rotary creel being positioned adjacent corresponding ones of said plurality of yarn selection guides, wherein yarns are passed between said yarn introduction means and said yarn selection guides, so that said yarns are exchanged according to the preset yarn order to be wound on said warper drum.
  • 3. A rotary creel assembly comprising:a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, said rotary creel being positioned adjacent corresponding ones of said plurality of yarn selection guides; and a bobbin station supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound in a standby state.
  • 4. A warping method using an electronically controlled sample warper having: a warper drum; a plurality of yarn introduction means each mounted to a side surface of said warper drum for winding a yarn on said warper drum; a rotary creel supporting a plurality of bobbins around which different kinds and/or the same kind of yarns are wound, said rotary creel being positioned adjacent corresponding ones of said plurality of yarn selection guides; and a bobbin station supporting a plurality of bobbins on which different kinds and/or the same kind of yarns are wound in a standby state,wherein said bobbins are passed between said rotary creel and said bobbin station such that said bobbin for a yarn held by the yarn introduction means and wound on said warper drum is supported on said rotary creel while said bobbin for a yarn stored in said yarn selection guide is supported by said bobbin station in a standby state, so that said yarns are exchanged according to the preset yarn order to be wound on said warper drum.
Priority Claims (1)
Number Date Country Kind
2000-076720 Mar 2000 JP
US Referenced Citations (6)
Number Name Date Kind
4538776 Perry Sep 1985 A
4972562 Tanaka et al. Nov 1990 A
5630262 Tanaka May 1997 A
5950289 Tanaka Sep 1999 A
5970591 Tanaka et al. Oct 1999 A
6173480 Tanaka Jan 2001 B1
Foreign Referenced Citations (4)
Number Date Country
198 45 245 Sep 1999 DE
0 375 480 Jun 1990 EP
0 933 455 Aug 1999 EP
62-62942 Mar 1987 JP