The present disclosure relates generally to the field of aircraft antennas.
The functionality of various radars and systems for aircraft is greatly enhanced by the use of electronic antenna beam scanning What is needed is systems or methods that can be used to realize a cost effective, high performance antenna that enables rapid beam steering agility for various radar modes. Other features and advantages will be made apparent from the present specification. The teachings disclosed extend to those embodiments which fall within the scope of the appended claims, regardless of whether they accomplish one or more of the aforementioned needs.
One embodiment of the present disclosure relates to an aperture of an antenna for a radar system. The aperture comprises a first waveguide comprising a first protrusion and a second protrusion, each protrusion extending longitudinally along one side of the first waveguide. The aperture further comprises a second waveguide comprising a third protrusion and fourth protrusion, each protrusion extending longitudinally along one side of the second waveguide. The first and third protrusions adjoin and the second and fourth protrusions adjoin to form a radio frequency choke. The radio frequency choke at least partially suppresses cross polarization of radio frequencies between the first and second waveguides.
Another embodiment of the present disclosure relates to an aperture of an antenna for a radar system. The aperture comprises an array of waveguides, each waveguide comprising multiple radiation slots having an angle with respect to an edge of the waveguide and having a depth. The angle and depth of at least a portion of the multiple radiation slots for each waveguide compensate for excess feed coupling and aperture phase errors. The angle of each radiation slot is between about five and twenty five degrees and the depth of each radiation slot is between about eighty to one hundred and twenty thousandths of an inch.
Yet another embodiment of the present disclosure relates to an apparatus for electrically coupling a waveguide of an aperture to a feed manifold of an antenna for a radar system. The apparatus comprises a coupling slot receiving a signal in a direction orthogonal to the waveguide of the aperture. The apparatus further comprises a junction substantially parallel to the waveguide of the aperture. The coupling slot propagates a signal from the waveguide of the aperture to the junction, the propagated signal having the same mode in the junction as in the waveguide of the aperture. The junction comprises a notch at an upper surface for tuning a center frequency of a predetermined operating band.
Yet another embodiment of the present disclosure relates to a radar feed assembly of an antenna for a radar system. The assembly comprises a feed manifold configured to split a received radio frequency signal into multiple outputs, the feed manifold comprising multiple hybrid couplers. Each hybrid coupler is configured to split a signal received at a single input port into two signals at two output ports. The hybrid couplers have a coupling slot for adjusting the ratio of the split between the two output ports.
Yet another embodiment of the present disclosure relates to an apparatus for electrically coupling an aperture and feed manifold of an antenna for a radar system, the aperture having at least one waveguide. The apparatus comprises a first waveguide configured to receive a signal from the feed manifold in a first direction. The apparatus further comprises a second waveguide substantially parallel to the first waveguide and configured to output the signal in a second direction to the aperture, the second waveguide comprising a ridge. The apparatus further comprises a coupling slot for propagating a signal from the first waveguide to the second waveguide. The ridge of the first waveguide comprises a step to match the impedance of the second waveguide with the impedance of the first waveguide.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The invention will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like elements, in which:
Before describing in detail the particular improved system and method, it should be observed that the invention includes, but is not limited to, a novel structural combination of components, and not in the particular detailed configurations thereof. Accordingly, the structure, methods, functions, control and arrangement of conventional components have, for the most part, been illustrated in the drawings by readily understandable block representations and schematic diagrams, in order not to obscure the disclosure with structural details which will be readily apparent to those skilled in the art, having the benefit of the description herein. Further, the invention is not limited to the particular embodiments depicted in the exemplary diagrams, but should be construed in accordance with the language in the claims.
Referring generally to the figures, an antenna is disclosed that provides advantages over a current embodiment. The disclosed antenna may enable steering agility (e.g. rapid beam steering agility) for various radar modes, such as weather mapping, turbulence detection, wind sheer detection, terrain mapping, non-cooperative airborne collision avoidance, aircraft runway incursion, unmanned aerial system (UAS) seek and avoid, and other radar modes. Traditionally, low pulse repetition frequency (PRF) radar systems are limited in multi-mode operation. For example, a radar system may not be able to discern targets within less than a 3 dB beamwidth (5-10 degrees). Using the antenna of the present disclosure, digital signal processing (DSP) based synthetic beam sharpening algorithms may be used to allow for finer resolution to determine such targets. Rapid beam scanning can greatly enhance multi-mode radar operation by moving the side lobes adjacent to the main beam of the antenna (to eliminate radar ground clutter) and by interlacing multiple radar modes concurrently using rapid beam division. Beam division multiplexing is a rapid beam movement used to track multiple targets simultaneously. The antenna further allows for a wider angle of scan, according to an exemplary embodiment.
Referring to
In
Referring now to
Referring also to
Referring generally to
Referring now to
In the embodiment of
Each waveguide (or “stick”) has a high directivity (narrow beam) along its respective waveguide axis (the E-plane or side of waveguide 502) and a broadbeam in its orthogonal axis (the H-plane or “top” of waveguide 502). The length of the waveguides provides the high directivity along the waveguide axis. The narrow width of the waveguides provides the broadbeam along the orthogonal axis. The waveguide is a first order waveguide with a high length to width aspect ratio, according to an exemplary embodiment.
Referring now to
Waveguides 702, 704 additionally include protrusions 720, 722, 724, 726 extending longitudinally on the opposite side of the waveguide from protrusions 710-716. Protrusions 720-726 are used to adjoin to protrusions from other waveguides of similar construction of waveguides 702, 704 of the aperture. For example, in the embodiment of
The formed choke is used to minimize or at least partially suppress a cross polarization effect between waveguides (e.g., waveguides 702, 704), according to an exemplary embodiment. The construction of chokes 802, 804 minimizes cross polarization as the antenna beam of antenna 300 is electronically scanned off boresight (the optical axis of the antenna where there is rotation). According to one exemplary embodiment, a small offset in the floor of the choke may be used to enhance the cross polarization suppression by approximately −2.0 decibels (dB).
The protrusions can align adjacent waveguides laterally and vertically. This configuration ensures that the surface of the waveguides are in the same place and simplifies fixturing for the final assembly and dip braze of the waveguide. For example, as shown in
Referring to
The bent wing shape (e.g., “wings” 910, 912 and top 914) of end 506 allows for self-fixing to the ends 916 of waveguides 502 (using notches 900, 902) and for remaining in place during dip brazing assembly of the waveguides. The protrusions of waveguides 502 may be joined during dip brazing to stiffen the structure of aperture 302, according to an exemplary embodiment. Waveguides 502 may be made of thin-walled aluminum, according to an exemplary embodiment.
Notches 900, 902 may be used to receive a termination (or load) to realize a traveling wave feed configuration. The termination may be self-fixed to remain in place during dip brazing and notches 2100, 2102 may permit moisture drainage.
Referring now to
Referring to
Junction 1104 is parallel to waveguide 502. Junction 1104 includes a tuning notch 1108 on its upper surface for tuning a center frequency. The center frequency may be of a predetermined operating band, according to an exemplary embodiment. Junction 1104 additionally includes a conducting wall 1102. Wall 1102 may function as an RF short for setting up the field with coupling slot 1106 to ensure proper feed to waveguide 502 coupling.
According to one exemplary embodiment, junction 1104 is attached to the center feed of each waveguide 502. According to other exemplary embodiments, waveguide 502 may be compatible with other feed transmission lines topologies (e.g., microstrip, stripline, co-planar waveguide, finline, etc.).
Referring generally to
Each waveguide 1200, 1250 has multiple slots (e.g., radiation slots) having an angle with respect to an edge of the waveguide 1200, 1250 and having a depth. The angle and depth of at least some of the multiple slots of waveguide 1200 may be adjusted to compensate to enable low side lobe center feeding (e.g., to compensate for excess feed coupling and aperture phase errors), resulting in the adjusted slots as shown in waveguide 1250. The slot compensation system allows a desired amplitude tapering to be achieved.
With reference to
The waveguides of the aperture may be adjusted for various ideal excitations (e.g., a Taylor synthesis, another pattern synthesis, etc.). According to one exemplary embodiment, waveguide 1250 is designed such that the co-polarized sidelobe levels are less than or equal to −30 dB with a 3 dB range or width.
According to an exemplary embodiment, the angles and depths of the slots may further be adjusted. Since there is center feeding for the waveguides, the center slots may be “corrupted” (e.g., the adjustments made as described above may cause spikes in the amplitude and phase distribution to occur). Therefore, according to an exemplary embodiment, the compensation system further optimally rolls the angles and adjusts depths of the middle three slots. Moreover, the depth δ of the slots before the last slots (towards the plunders of the aperture) are adjusted as well. These adjustments allow for a smoothing out of the amplitude and phase distribution (e.g., smoothing out the “spikes” as illustrated in graphs 1260, 1270).
Referring to
An impedance matched condition may further be established for each waveguide using the slot compensation method. Usually, there may be excessive amplitude energy and phase perturbation at the centermost slots of the waveguide, which may cause distortion. The slot compensation system may adjusts the parameters of the slots (angle and depth) to help avoid such a condition.
Referring to
According to an exemplary embodiment, slot couplers 1300, 1302 may be used to function as junction 1104 of
Referring generally to
Transition 1410 accepts the output from feed 306 and relays the output to phase shifters 308 to shift the phase of the output as needed. The output is then fed into transition 1412 for directing the output through antenna 300. The construction and function of transitions 1410, 1412 are shown in greater detail in
Referring generally to
The insertion loss of feed 306 is an important consideration in the antenna as the feed losses contribute significantly to the noise figure of the receiver. Additionally, the amplitude distribution of feed 306 directly impacts the antenna pattern performance in terms of side lobes, gain, and beamwidth. An amplitude distribution should be maintained in feed 306 to achieve a desired side lobe level (SLL) performance, according to an exemplary embodiment.
Referring to
Referring to
Referring to
Referring generally to
Referring to
Splitter 1600 equally splits the power input from sum port 1402 and/or delta port 1404 to ports 1606, 1608. If only sum port 1402 accepts an input, the outputs are in phase; if only delta port 1404 accepts an input, the outputs are 180 degrees out of phase, allowing for a single axis monopulse operation of antenna 300, according to an exemplary embodiment. Ports 1606, 1608 may output the signal to be sent and split throughout feed 306.
Referring to
Hybrid coupler 1700 is used to either split or combine the RF signal to be transmitted or received, according to an exemplary embodiment. Port 1702 may be provided an input signal. The signal is split at a specific ratio determined by the depth 1722 and length 1720 of the coupling slot in the common wall of the two ridge waveguides of coupler 1700. According to an exemplary embodiment, the ratio of the split signal may be a function of length 1720 and depth 1722. Ports 1704, 1708 may provide an output for the two portions of the split signal, and the phase of port 1708 is −90 degrees with respect to the phase of port 1704 (allowing the two signals to be output in different directions). According to an exemplary embodiment, coupler 1700 may provide inherit isolation between ports 1704 and 1708. Coupler 1700 may additionally combine two signals together. For combining, an opening in the sidewall of a ridge waveguide of coupler 1700 may be used to accept the two signals and to combine the signals together.
According to one exemplary embodiment, there may be 34 hybrid couplers 1700 in feed 306, allowing for 34 splits (even or uneven splits) of the input signal. Feed 306 may include 18 of the 34 hybrid couplers 1800 at the “end” of feed 306, allowing feed 306 to provide 36 outputs to transition 1410.
There is a 90 degree difference in the output signals of coupler 1700 that may be corrected for in phase shifters 308, according to an exemplary embodiment.
Referring to the construction and assembly of coupler 1700, the waveguide ridge, bottom wall, and side walls (including the slots) of the coupler may be machined from a single piece of aluminum, according to an exemplary embodiment. The top wall may be stamped or machined and staked to the bottom section and dip brazed together. Load 1710 is inserted from the top of coupler 1700 and glued into place.
Referring to
Referring to
Referring to
Feed 306 may be symmetric (e.g., the two “halves”, a left half and right half, of feed 306 may be symmetric), according to an exemplary embodiment. The subcomponents of
Referring to
Referring back to
Referring to
Referring to
Waveguide transition 2300 includes a first waveguide 2302 with a port 2304 and a second waveguide 2306 with a port 2308, along with a coupling slot 2310. Second waveguide 2306 may be parallel to first waveguide 2302. Transition 2300 may provide a redirection of an input signal, transitioning the input signal from first port 2304 heading in a first direction to second port 2308 heading in the opposite direction and vice versa. Transition 2300 may be configured to direct the RF signal up or down one “layer” (e.g., higher or lower in antenna 300).
Port 2304 of first waveguide 2302 may be provided with a signal. The signal travels down first waveguide 2302 and coupled through coupling slot 2310 at the end of first waveguide 2302 into second waveguide 2306. Coupling slot 2310 is used to propagate the signal from first waveguide 2302 to second waveguide 2306. The signal continues to propagate down second waveguide 2306. Compared to first waveguide 2302, there is a redirection in the direction of propagation (e.g., a 180 degree turn). Waveguide transition 2300 is reciprocal. First waveguide 2302 of waveguide transition 2300 includes an inductive step 2312 in the ridge for impedance matching between the two waveguides 2302, 2306.
Referring to the construction and assembly of transition 2300, first waveguide 2302 may be machined and dip brazed as part of the larger feed 306, according to an exemplary embodiment. Second waveguide 2306 may be separately machined and dip brazed and later attached to first waveguide 2302 using screws, according to an exemplary embodiment.
According to one exemplary embodiment, there are 36 transitions 2300 in feed 306. With reference to transition 1410 of
While the detailed drawings, specific examples, detailed algorithms, and particular configurations given describe preferred and exemplary embodiments, they serve the purpose of illustration only. The inventions disclosed are not limited to the specific forms shown. For example, the methods may be performed in any of a variety of sequence of steps or according to any of a variety of mathematical formulas. The hardware and software configurations shown and described may differ depending on the chosen performance characteristics and physical characteristics of the radar and processing devices. For example, the type of system components and their interconnections may differ. The systems and methods depicted and described are not limited to the precise details and conditions disclosed. The specific data types and operations are shown in a non-limiting fashion. Furthermore, other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the exemplary embodiments without departing from the scope of the invention as expressed in the appended claims.
This application is a Divisional of U.S. application Ser. No. 12/211,703, filed Sep. 16, 2008, now issued as U.S. Pat. No. 8,098,207, incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4039975 | Debski | Aug 1977 | A |
4777654 | Conti | Oct 1988 | A |
5541612 | Josefsson | Jul 1996 | A |
6046702 | Curtis et al. | Apr 2000 | A |
6064349 | Robertson | May 2000 | A |
6075494 | Milroy | Jun 2000 | A |
6115002 | Fischer et al. | Sep 2000 | A |
6972727 | West et al. | Dec 2005 | B1 |
6977621 | Kelly et al. | Dec 2005 | B2 |
6995726 | West et al. | Feb 2006 | B1 |
7423604 | Nagai | Sep 2008 | B2 |
8098207 | Herting et al. | Jan 2012 | B1 |
20020175875 | Verstraeten | Nov 2002 | A1 |
20080150832 | Ingram et al. | Jun 2008 | A1 |
Entry |
---|
B. N. Dan, et al., “Resonant Conductance of Inclined Slots in the Narrow wall of Rectangular Waveguide,” IEEE Trans. Antenna Propagation, vol. 32. pp. 759-761. Jul. 1984. |
M. W. ElSallal, et al., “Planar edge slot waveguide antenna array design using COTS EM tools,”In Antenna Applications Symposium, Monticello, IL, 2007, pp. 76-89. |
R. B. Gosselin, “A Computer-Aided Approach for Designing Edge-Slot Waveguide Arrays,” Antenna Application Symposium, Sep. 20, 2003. |
R. B. Gosselin, et al., “Design of Resonant Edge-Slot Waveguide Array for Lightweight Rainfall Radiometer (LRR),” IEEE Proceeding of Geoscience and Remote Sensing Symposium, v.1, Jul. 21-25, 2004, pp. 509-511. |
P. James, “A Waveguide Array for Unmanned Airborne Vechile (UAV),” IEE International Conference on Antennas and Propagation, Apr. 17-20, 2001, pp. 810-813. |
R. Kinsey, “Monopulse Stick Phased Array,” Antenna Application Symposium, Sep. 20, 1995. |
L. A. Kurtz, et al., “Second-Order Beams of Two-Dimensional Slot Arrays,” IEEE Trans. on Antennas and Propagation, vol. 5, No. 4, Oct. 1957, pp. 356-362. |
D. J. Lewis, et al., “A Single-Plane Electronically Scanned Antenna for Airborne Radar Application,” pp. 366-370 in “Practical Phased-Array Antenna Systems,” by Eli Brookner. Artech House. Dec. 1991. |
W. H. Watson, “Resonant Slots,” IEE Journal, vol. 93, Part 3A, pp. 747-777. |
J. C. Young, et al., “Analysis of a Rectangular Waveguide, Edge Slot Array With Finite Wall Thickness,” IEEE Trans. on Antennas and Propagation, vol. 55, No. 3, Mar. 2007, pp. 812-818. |
Number | Date | Country | |
---|---|---|---|
Parent | 12211703 | Sep 2008 | US |
Child | 13330515 | US |