Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Information

  • Patent Grant
  • 9069267
  • Patent Number
    9,069,267
  • Date Filed
    Friday, June 28, 2013
    11 years ago
  • Date Issued
    Tuesday, June 30, 2015
    9 years ago
Abstract
An electrophotographic photosensitive member has a laminated body, and a hole transporting layer formed on the laminated body, wherein the laminated body is a laminated body having a conductive support, an electron transporting layer and a charge generating layer. When an impedance is measured by forming a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm on a surface of the charge generating layer of the laminated body by sputtering, and applying an alternating electric field of 100 mV and 0.1 Hz between the conductive support and the gold electrode, the laminated body of the electrophotographic photosensitive member satisfies the following expression (1): R_opt/R_dark≦0.95  (1)
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to an electrophotographic photosensitive member, and a process cartridge and an electrophotographic apparatus having an electrophotographic photosensitive member.


2. Description of the Related Art


As electrophotographic photosensitive members used for process cartridges and electrophotographic apparatuses, electrophotographic photosensitive members containing an organic photoconductive substance mainly prevail at present. The electrophotographic photosensitive member generally has a support and a photosensitive layer formed on the support. Then, an undercoating layer is provided between the support and the photosensitive layer in order to suppress the charge injection from the support side to the photosensitive layer (charge generating layer) side and to suppress the generation of image defects such as fogging.


Charge generating substances having a higher sensitivity have recently been used. However, such a problem arises that a charge is liable to be retained in a photosensitive layer due to that the amount of charge generated becomes large along with making higher the sensitivity of the charge generating substance, and the ghost is liable to occur. Specifically, a phenomenon of a so-called positive ghost, in which the density of only portions irradiated with light in the preceding rotation time becomes high, is liable to occur in a printed-out image.


A technology of reducing such a ghost phenomenon is disclosed in which an undercoating layer is made to be a layer (hereinafter, also referred to as an electron transporting layer) having an electron transporting capability by incorporating an electron transporting substance in the undercoating layer. National Publication of International Patent Application No. 2009-505156 discloses a condensed polymer (electron transporting substance) having an aromatic tetracarbonylbisimide skeleton and a crosslinking site, and an electron transporting layer containing a polymer with a crosslinking agent. Japanese Patent Application Laid-Open No. 2003-330209 discloses that a polymer of an electron transporting substance having a non-hydrolyzable polymerizable functional group is incorporated in an undercoating layer. Japanese Patent Application Laid-Open No. 2005-189764 discloses a technology of making the electron mobility of an undercoating layer to be 10−7 cm2/V·sec or more in order to improve the electron transporting capability.


The demand for the quality of electrophotographic images has recently been raised increasingly, and the allowable range for the early-stage positive ghost and the long-term positive ghost after repeated use has remarkably become severe. As a result of exhaustive studies by the present inventors, it has been found that with respect to the reduction of the positive ghost, technologies disclosed in National Publication of International Patent Application No. 2009-505156 and Japanese Patent Application Laid-Open Nos. 2003-330209 and 2005-189764 still have room for improvement.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide an electrophotographic photosensitive member reduced in the positive ghost in the early stage and after the long-term repeated use, and a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.


The present invention relates to an electrophotographic photosensitive member including a laminated body, and a hole transporting layer formed on the laminated body, wherein the laminated body has a conductive support, an electron transporting layer formed on the conductive support, and a charge generating layer formed on the electron transporting layer; and the laminated body satisfies the following expression (1):

R_opt/R_dark≦0.95  (1),

where, in the above expression (1), R_opt represents impedance of the laminated body measured by the steps of: forming, on a surface of the charge generating layer, a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm by sputtering, and applying, between the conductive support and the circular-shaped gold electrode, an alternating electric field having a voltage of 100 mV and a frequency of 0.1 Hz while irradiating the surface of the charge generating layer with light having intensity of 30 μJ/cm2·sec, and measuring the impedance, and R_dark represents impedance of the laminated body measured by the steps of: forming, on a surface of the charge generating layer, a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm by sputtering, and applying, between the conductive support and the circular-shaped gold electrode, an alternating electric field having a voltage of 100 mV and a frequency of 0.1 Hz without irradiating the surface of the charge generating layer with light, and measuring the impedance.


The present invention relates also to a process cartridge detachably attachable to a main body of an electrophotographic apparatus, wherein the process cartridge integrally supports: the electrophotographic photosensitive member, and at least one unit selected from the group consisting of a charging unit, a developing unit, a transfer unit and a cleaning unit.


The present invention relates also to an electrophotographic apparatus having the electrophotographic photosensitive member, and a charging unit, a light irradiation unit, a developing unit and a transfer unit.


The present invention can provide an electrophotographic photosensitive member reduced in the positive ghost in the early stage and after the long-term repeated use, and a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.


Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating one example of an outline constitution of a determination apparatus to carry out a determination method according to the present invention.



FIG. 2 is a diagram illustrating typical examples of R_dark and R_opt when the determination method according to the present invention is carried out.



FIG. 3 is a diagram illustrating an outline constitution of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member.



FIG. 4 is a diagram to describe an image for ghost evaluation used in ghost image evaluation.



FIG. 5A is a diagram to describe a one-dot keima (similar to knight's move) pattern image.



FIG. 5B is a diagram to describe a one-dot pattern image used after long-term repeated use.



FIG. 6 is a diagram illustrating one example of a layer constitution of the electrophotographic photosensitive member.





DESCRIPTION OF THE EMBODIMENTS

Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.


First, a determination method (hereinafter, referred to as “determination method according to the present invention”) for determining whether or not an electrophotographic photosensitive member satisfies the relation of the above expression (1) of the present invention will be described. The temperature and humidity condition when the determination method according to the present invention is carried out may be under the environment of using an electrophotographic apparatus having an electrophotographic photosensitive member. The condition can be under the normal temperature and normal humidity environment (23° C.±3° C., 50%±20% RH). The above measuring method involves using a laminated body having a conductive support, an electron transporting layer and a charge generating layer in this order.


At this time, a hole transporting layer is peeled off an electrophotographic photosensitive member having a laminated body and the hole transporting layer formed on the laminated body to thereby make a laminated body (hereinafter, also referred to as “electrophotographic photosensitive member for determination”), which can be used as a determination object. A method of peeling a hole transporting layer includes a method in which an electrophotographic photosensitive member is immersed in a solvent which dissolves the hole transporting layer and hardly dissolves an electron transporting layer and a charge generating layer, and a method in which the hole transporting layer is ground.


As the solvent which dissolves a hole transporting layer and hardly dissolves an electron transporting layer and a charge generating layer, a solvent used for a coating liquid for the hole transporting layer can be used. The kinds of the solvent will be described later. An electrophotographic photosensitive member is immersed in the solvent for a hole transporting layer to be dissolved in the solvent, and thereafter dried to thereby obtain an electrophotographic photosensitive member for determination. That a hole transporting layer may have been peeled off can be confirmed, for example, by that no resin components of the hole transporting layer cannot be observed by the ATR method (total reflection method) in the FTIR measuring method.


A method of grinding a hole transporting layer involves, for example, using a drum and tape grinding apparatus made by Canon Inc. and using a wrapping tape (C2000, made by Fujifilm Corp.). At this time, the measurement can be carried out at the time when all of the hole transporting layer is removed while the thickness of the hole transporting layer is successively measured so as not to be ground up to a charge generating layer due to excessive grinding of the hole transporting layer and the surface of an electrophotographic photosensitive member is being observed. The case where a thickness of the charge generating layer of 0.10 μm or more is left after the grinding is carried out up to the charge generating layer has been verified to give nearly the same value by the above-mentioned determination method as the case where the grinding is carried out not up to the charge generating layer. Therefore, even if not only a hole transporting layer but also up to a charge generating layer is ground, in the case where the thickness of the charge generating layer is 0.10 μm or more, the above-mentioned determination method can be used.



FIG. 1 illustrates one example of an outline constitution of a determination apparatus to carry out the determination method according to the present invention. In FIG. 1, reference numeral 101 denotes a part of an electrophotographic photosensitive member for determination (laminated body) obtained by cutting out the electrophotographic photosensitive member for determination into 2 cm (peripheral direction)×4 cm (long axis direction). Reference numeral 102 denotes a circular-shaped gold electrode having a diameter of 10 mm and a thickness of 300 nm formed on a surface of a charge generating layer of the above-mentioned laminated body by sputtering. A method for sputtering a gold electrode is not especially limited, but a Quick Auto Coater (SC-707AT) made by SANYU Electronic Co., Ltd., or the like can be used. The sputtering is carried out until the thickness of a gold electrode becomes 300 nm while a discharge current of 20 mA is maintained with a constitution in which a gold target is arranged over a surface of the charge generating layer, to thereby fabricate the gold electrode. Reference numeral 103 denotes an impedance measuring instrument, and it is illustrated that a lead wire 105 is connected to the gold electrode on the charge generating layer and the conductive support. Reference numeral 104 denotes an apparatus to oscillate laser light (apparatus to carry out light irradiation), and reference numeral 106 denotes irradiation light. As the impedance measuring instrument, for example, a measuring module being a combination of SI-1287-electrochemical-interface, SI-1260-impedance-gain-phase-analyzer and 1296-dielectric-interface, made by Toyo Corp., is used. The impedance (R_dark) under the condition of no light irradiation in the present invention is measured by covering the whole apparatus of FIG. 1 with a blackout film to shield indoor light, without light irradiation by the apparatus 104 to oscillate laser light. Then, an alternating electric field of 100 mV is applied between the conductive support of the laminated body and the gold electrode, and the impedance is measured by sweeping the frequency from a high frequency of 1 MHz to a low frequency of 0.1 Hz to thereby acquire an impedance (R_dark) at 0.1 Hz. That is, the impedance denotes an impedance measured by applying an alternating electric field of 100 mV and 0.1 Hz between the conductive support of the laminated body and the gold electrode under the condition of no irradiation of a surface of the charge generating layer with light.


Then, the impedance (R_opt) under the condition of light irradiation is measured as in the above-mentioned case of no light irradiation, except for continuously oscillating irradiation light 106 from the apparatus 104 to oscillate laser light to the electrophotographic photosensitive member for determination 101. With respect to irradiation light when the R_opt is measured, light of a wavelength suitable for the light absorption property of the charge generating layer is used, and irradiation with the light having an enough intensity to saturate the charge generating layer with light-excited carriers generated from a charge generating substance is carried out. Specifically, with irradiation with light having a wavelength of 400 nm to 800 nm and an irradiation intensity of 30 μJ/cm2·sec or more, light-excited carriers can be saturated sufficiently. Examples of the present invention used such an irradiation intensity that the impedance (R_opt) under light irradiation is saturated at the lowest value. Specifically, irradiation with laser light having a wavelength of 680 nm and an irradiation intensity of 30 μJ/cm2·sec was carried out. As to a time for the light irradiation, the light irradiation with the above irradiation intensity carried out for a period of time of 1 second or more can provide sufficient saturation of light-excited carriers, but the measurement of the impedance takes several minutes. The impedance is measured while the light irradiation is carried out at the above irradiation intensity, with the result that light-excited carriers are saturated sufficiently. That is, the impedance denotes an impedance measured by applying an alternating electric field of 100 mV and 0.1 Hz between the conductive support and the gold electrode under the condition of irradiation of the surface of the charge generating layer with light having an irradiation intensity of 30 μJ/cm2·sec. Whether or not the electrophotographic photosensitive member satisfies the relation of the above expression (1) can be determined by calculating the ratio of the measured R_dark and R_opt.



FIG. 2 illustrates typical examples of R_dark and R_opt. In FIG. 2, the frequency dependency of the impedances (R_dark and R_opt) measured by the above method is illustrated. Particularly on the low-frequency side, the change in the impedance becomes large depending on the presence and absence of light irradiation. That is, the ratio of R_opt/R_dark at 0.1 Hz indicates 0.95 or less.


In the present invention, in order to reduce the positive ghost in the early stage and after repeated use, the ratio of R_opt/R_dark is 0.95 or less. The present inventors presume the reason that the satisfaction of the relation of the above expression (1) can reduce the positive ghost in the early stage and after repeated use, as follows.


That is, in the case of an electrophotographic photosensitive member provided with an electron transporting layer (undercoating layer), a charge generating layer and a hole transporting layer on a support in this order, in portions on which irradiation light (image-irradiation light) has fallen, out of charges (holes and electrons) generated in the charge generating layer, holes are injected in the hole transporting layer, and electrons are injected in the electron transporting layer and transfer to the support. However, if electrons generated in the charge generating layer by light excitation do not completely move in the electron transporting layer before the following charging, the charge is retained in the charge generating layer, still causing electron movement even during the following charging. The electrons slow in movement are liable to cause the local decrease in the charging capability of portions irradiated with light after the following charging. These phenomena are caused also in the repeated use of an electrophotographic photosensitive member, and the charge retained in the charge generating layer is liable to increase gradually. The charge retained in the charge generating layer makes a cause of generating the positive ghost in the early stage and after repeated use.


Then, if the laminated body satisfies the relation of the above expression (1), the reception and delivery of electrons (electrons derived from light excitation and retained in the charge generating layer) slow in movement at the interface between the electron transporting layer and the charge generating layer is conceivably promoted. That is, in the determination method according to the present invention, if the resistance between the conductive support and the gold electrode does not change depending on the presence and absence of light irradiation in the state that the charge generating layer of the laminated body is saturated with the charge derived from light excitation, it is expressed that the injection of electrons from the charge generating layer to the electron transporting layer is insufficient, and electrons slow in movement are likely to be retained in the charge generating layer. Then, it is conceivable that the tendency corresponds to the case where R_opt/R_dark is 0.96 or more. By contrast, if the resistance between the conductive support and the gold electrode decreases by light irradiation in the state that the charge generating layer is saturated with electrons (charge derived from light excitation) slow in movement, it is conceivable that the injection of electrons from the charge generating layer to the electron transporting layer is sufficiently carried out, and the retention of electrons slow in movement in the charge generating layer can be reduced.


The state of the retention of electrons slow in movement can be clarified by paying attention to the impedance at low frequencies. Although 0.1 Hz is paid attention to as a low frequency in the evaluation method according to the present invention, it is conceivable that any frequency can express the impedance of electrons slow in movement as long as the frequency is a low frequency lower than 0.1 Hz. In the present invention, the impedance of electrons slow in movement is observed using the impedance at 0.1 Hz. 0.1 Hz is a period of about 10 sec, and a state is conceivably expressed that electrons responding to the electric field in a period of 10 sec are retained in the charge generating layer through repeated use, and the positive ghost is liable to occur.


It is conceivable that if the relation of the expression (1) is satisfied, such a state of good injectability that the retention of electrons slow in movement is reduced is exhibited, and in the repeated use, the retention of electrons in the early stage and after the repeated use in the charging-light irradiation process is reduced to thereby allow the reduction of the positive ghost. As shown in Comparative Examples described later, although electrophotographic photosensitive members of National Publication of International Patent Application No. 2009-505156 and the like have a sufficient conductivity of electron transporting layers, since electrons slow in movement are liable to be retained in charge generating layers, R_opt/R_dark becomes higher than 0.95, and the positive ghost after repeated use is liable to occur in some cases.


It is also conceivable that a technology of Japanese Patent Application Laid-Open No. 2005-189764 in which the electron mobility of an undercoating layer (electron transporting layer) is made to be 10−7 cm2/V·sec or more has an object to improve the movement of electrons to a faster movement, and does not solve the cause of the positive ghost due to the retention of electrons slow in movement. Japanese Patent Application Laid-Open No. 2010-145506 discloses that the charge mobility of a hole transporting layer and an electron transporting layer (undercoating layer) are made to be in specific ranges, but does not solve the cause of generating the positive ghost as in Japanese Patent Application Laid-Open No. 2005-189764. Additionally, in these Patent Literatures, the measurement of the electron mobility of an electron transporting layer is carried out by using a constitution in which an electron transporting layer is formed on a charge generating layer, which constitution is reverse to the layer constitution used in an electrophotographic photosensitive member. However, such a measurement cannot be said to be able to sufficiently evaluate the movement of electrons in an electron transporting layer of an electrophotographic photosensitive member.


For example, in the case where an electron transporting layer is made by incorporating an electron transporting substance in an undercoating layer, when coating liquids for a charge generating layer and a hole transporting layer as upper layers are applied to form the charge generating layer and the hole transporting layer, the electron transporting substance elutes in some cases. It is conceivable in this case that even if the electron mobility is measured by making the electron transporting layer and the charge generating layer as reversed layers as described above, since the electron transporting substance elutes in an electrophotographic photosensitive member, the movement of electrons of the electron transporting layer of the electrophotographic photosensitive member cannot sufficiently be evaluated. Therefore, it is believed that the determination needs to be carried out using an electron transporting layer from which a hole transporting layer has been peeled and a charge generating layer after the charge generating layer and the hole transporting layer are formed on the electron transporting layer.


The electrophotographic photosensitive member according to the present invention has a laminated body, and a hole transporting layer formed on the laminated body, and the laminated body has a conductive support, an electron transporting layer formed on the conductive support, and a charge generating layer formed on the electron transporting layer. FIG. 6 is a diagram illustrating one example of a layer constitution of the electrophotographic photosensitive member. In FIG. 6, reference numeral 21 denotes a conductive support; reference numeral 22 denotes an electron transporting layer; reference numeral 23 denotes a charge generating layer; and reference numeral 24 denotes a hole transporting layer.


As a usual electrophotographic photosensitive member, a cylindrical electrophotographic photosensitive member in which a photosensitive layer (a charge generating layer, a hole transporting layer) are formed on a cylindrical support is broadly used, but an otherwise shaped one such as a belt-shaped or sheet-shaped one may be used.


Electron Transporting Layer


The thickness of an electron transporting layer can be 0.1 μm or more and 1.5 μm or less, and is more preferably 0.2 μm or more and 0.7 μm or less.


If the above-mentioned laminated body satisfies the relation of the following expression (2), a larger positive ghost-reduction effect is acquired. Since a lower value of R_opt/R_dark gives a larger positive ghost-reduction effect, the value suffices if the value is higher than 0.

0<R_opt/R_dark 0.85  expression (2)

The value more preferably satisfies the following expression (3).

0.60≦R_opt/R_dark 0.85  Expression (3)


In the above expressions (2) and (3), R_opt represents an impedance measured by forming a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm on a surface of the charge generating layer of the laminated body by sputtering, applying an alternating electric field of 100 mV and 0.1 Hz between the conductive support and the gold electrode under the condition of irradiation of the surface of the charge generating layer with light having an irradiation intensity of 30 μJ/cm2·sec, and measuring the impedance. R_dark represents an impedance measured by forming a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm on a surface of the charge generating layer of the laminated body by sputtering, applying an alternating electric field of 100 mV and 0.1 Hz between the conductive support and the gold electrode under the condition of no light irradiation of the surface of the charge generating layer, and measuring the impedance.


Then, the constitution of an electron transporting layer will be described. An electron transporting layer can contain an electron transporting substance or a polymer of an electron transporting substance. The electron transporting layer can further contain a polymer obtained by polymerizing a composition including an electron transporting substance having polymerizable functional groups, a thermoplastic resin having polymerizable functional groups and a crosslinking agent.


Electron Transporting Substance


Examples of electron transporting substances include quinone compounds, imide compounds, benzimidazole compounds and cyclopentadienylidene compounds. An electron transporting substance can be an electron transporting substance having polymerizable functional groups. The polymerizable functional group includes a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group.


Hereinafter, specific examples of the electron transporting substance are shown. The electron transporting substance includes compounds represented by one of the following formulae (A1) to (A9).




embedded image


embedded image


In the formulae (A1) to (A9), R101 to R111, R201 to R210, R301 to R308, R401 to R408, R501 to R510, R601 to R606, R701 to R708, R801 to R810 and R901 to R908 each independently represent a monovalent group represented by the following formula (A), a hydrogen atom, a cyano group, a nitro group, a halogen atom, an alkoxycarbonyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group. One of carbon atoms in the main chain of the alkyl group may be replaced by O, S, NH or NR1001 (R1001 is an alkyl group). The substituent of the substituted alkyl group includes an alkyl group, an aryl group, an alkoxycarbonyl group and a halogen atom. The substituent of the substituted aryl group and the substituent of the substituted heterocyclic group include a halogen atom, a nitro group, a cyano group, an alkyl group and an alkyl halide group. Z201, Z301, Z401 and Z501 each independently represent a carbon atom, a nitrogen atom or an oxygen atom. In the case where Z201 is an oxygen atom, R209 and R210 are not present, and in the case where Z201 is a nitrogen atom, R210 is not present. In the case where Z301 is an oxygen atom, R307 and R308 are not present, and in the case where Z301 is a nitrogen atom, R308 is not present. In the case where Z401 is an oxygen atom, R407 and R408 are not present, and in the case where Z401 is a nitrogen atom, R408 is not present. In the case where Z501 is an oxygen atom, R509 and R510 are not present, and in the case where Z501 is a nitrogen atom, R510 is not present.

private use character Parenopenstαprivate use character Parenclosestlprivate use character Parenopenstβprivate use character Parenclosestmγ  (A)


In the formula (A), at least one of α, β and γ is a group having a substituent, and the substituent is at least one group selected from the group consisting of a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group. l and m are each independently 0 or 1, and the sum of l and m is 0 to 2.


α represents an alkylene group having 1 to 6 atoms in the main chain, an alkylene group having 1 to 6 atoms in the main chain and being substituted with an alkyl group having 1 to 6 carbon atoms, an alkylene group having 1 to 6 atoms in the main chain and being substituted with a benzyl group, an alkylene group having 1 to 6 atoms in the main chain and being substituted with an alkoxycarbonyl group, or an alkylene group having 1 to 6 atoms in the main chain and being substituted with a phenyl group, and these groups may have at least one substituent selected from the group consisting of a hydroxy group, a thiol group, an amino group and a carboxyl group. One of carbon atoms in the main chain of the alkylene group may be replaced by O, S, NH or NR1002 (R1002 is an alkyl group).


β represents a phenylene group, a phenylene group substituted with an alkyl group having 1 to 6 carbon atoms, a nitro group-substituted phenylene group, a halogen group-substituted phenylene group or an alkoxy group-substituted phenylene group, and these groups may have at least one substituent selected from the group consisting of a hydroxy group, a thiol group, an amino group and a carboxyl group.


γ represents a hydrogen atom, an alkyl group having 1 to 6 atoms in the main chain, or an alkyl group having 1 to 6 atoms in the main chain and being substituted with an alkyl group having 1 to 6 carbon atoms, and these groups may have at least one substituent selected from the group consisting of a hydroxy group, a thiol group, an amino group and a carboxyl group. One of carbon atoms in the main chain of the alkyl group may be replaced by O, S, NH or NR100 (R1003 is an alkyl group).


Among electron transporting substances represented by one of the above formulae (A-1) to (A-9), electron transporting substances are more preferable which have a polymerizable functional group being a monovalent group represented by the above formula (A) for at least one of R101 to R106, at least one of R201 to R210, at least one of R301 to R308, at least one of R401 to R408, at least one of R501 to R510, at least one of R601 to R606, at least one of R701 to R708, at least one of R801 to R810 and at least one of R901 to R908.


A polymer can be formed which is obtained by polymerizing a composition containing an electron transporting substance having polymerizable functional groups, a thermoplastic resin having polymerizable functional groups, and a crosslinking agent. A method for forming an electron transporting layer involves forming a coating film of a coating liquid for the electron transporting layer containing a composition including an electron transporting substance having polymerizable functional groups, a thermoplastic resin having polymerizable functional groups and a crosslinking agent, and drying the coating film by heating to polymerize the composition to thereby form the electron transporting layer. Hereinafter, specific examples of electron transporting substances having polymerizable functional groups will be described. The heating temperature when the coating film of a coating liquid for an electron transporting layer is dried by heating can be 100 to 200° C.


In the Tables, the symbol A′ is represented by the same structure as the symbol A, specific examples of the monovalent group are shown in the columns of A and A′.


Hereinafter, specific examples of the electron transporting substance having polymerizable functional groups will be described. Specific examples of compounds represented by the above formula (A1) are shown in Table 1-1, Table 1-2, Table 1-3, Table 1-4, Table 1-5 and Table 1-6. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.
















TABLE 1-1







Compound






A
















Example
R101
R102
R103
R104
R105
R106
α
β
γ





A101
H
H
H
H


embedded image


A


embedded image









A102
H
H
H
H


embedded image


A


embedded image









A103
H
H
H
H


embedded image


A



embedded image




embedded image







A104
H
H
H
H


embedded image


A



embedded image




embedded image







A105
H
H
H
H


embedded image


A



embedded image




embedded image







A106
H
H
H
H


embedded image


A


embedded image









A107
H
H
H
H


embedded image


A


embedded image









A108
H
H
H
H


embedded image


A


embedded image









A109
H
H
H
H


embedded image


A
—C5H10—OH







A110
H
H
H
H
—C6H13
A


embedded image









A111
H
H
H
H


embedded image


A



embedded image




embedded image







A112
H
H
H
H


embedded image


A



embedded image








A113
H
H
H
H


embedded image


A



embedded image








A114
H
H
H
H


embedded image


A



embedded image








A115
H
H
H
H


embedded image


A



embedded image








A116
H
H
H
H


embedded image


A



embedded image

























TABLE 1-2







Compound








Example
R101
R102
R103
R104
R105
R106





A117
H
H
H
H


embedded image


A





A118
H
H
H
H


embedded image


A





A119


embedded image


H
H


embedded image




embedded image


A





A120
CN
H
H
CN


embedded image


A





A121
A
H
H
H


embedded image




embedded image







A122
H
NO2
H
NO2


embedded image


A





A123
H
H
H
H


embedded image


A





A124
H
H
H
H
A
A


A125
H
H
H
H
A
A


A126
H
H
H
H
A
A


A127
H
H
H
H
A
A


A128
H
H
H
H
A
A


A129
H
H
H
H
A
A


A130
H
H
H
H
A
A





A131
H
H
H
H


embedded image


A





A132
H
H
H
H


embedded image


A





A133
H
H
H
H


embedded image


A











Compound
A










Example
α
β
γ





A117



embedded image








A118



embedded image




embedded image







A119


embedded image









A120


embedded image









A121


—COOH





A122


embedded image









A123


embedded image









A124


embedded image









A125



embedded image




embedded image







A126



embedded image








A127



embedded image








A128



embedded image








A129



embedded image








A130



embedded image








A131


embedded image









A132


embedded image









A133


embedded image


























TABLE 1-3







Compound








Example
R101
R102
R103
R104
R105
R106





A134
H
H
H
H


embedded image


A





A135
H
H
H
H
A
A


A136
H
H
H
H
A
A


A137
H
H
H
H
A
A


A138
H
H
H
H
A
A





A139
H
H
H
H


embedded image


A





A140
H
H
H
H


embedded image


A





A141
H
H
H
H


embedded image


A





A142
H
H
H
H
A
A





A143
CN
H
H
CN


embedded image


A





A144
H
H
H
H
—C2H4—O—C2H5
A





A145
H
H
H
H


embedded image


A





A146
H
H
H
H
A
A





A147
H
H
H
H


embedded image


A





A148
H
H
H
H


embedded image


A





A149
H
H
H
H


embedded image


A





A150
H
H
H
H


embedded image


A





A151
H
H
H
H
A
A











Compound
A










Example
α
β
γ





A134


embedded image









A135


embedded image









A136


embedded image









A137


embedded image









A138



embedded image




embedded image







A139


embedded image









A140


embedded image









A141


embedded image









A142


embedded image









A143


embedded image









A144


embedded image









A145
—C2H4—O—C2H4—OH







A146


embedded image









A147


embedded image









A148
—C2H4—O—C2H4—OH







A149


embedded image




embedded image








A150



embedded image








A151



embedded image




embedded image
























TABLE 1-4







Compound Example
R101
R102
R103
R104
R105
R106





A152
H
H
H
H
A
A′


A153
H
H
H
H
A
A′


A154
H
H
H
H
A
A′


A155
H
H
H
H
A
A′


A156
H
H
H
H
A
A′












Compound
A
A′













Example
α
β
γ
α
β
γ





A152


embedded image






embedded image









A153



embedded image




embedded image




embedded image









A154



embedded image




embedded image




embedded image









A155



embedded image





embedded image




embedded image








A156


embedded image






embedded image




embedded image


























TABLE 1-5







Compound






A
















Example
R101
R102
R103
R104
R105
R106
α
β
γ





A157
H
H
H
H
A
A


embedded image









A158
H
H
H
H
A
A


embedded image









A159
H
H
H
H
A
A


embedded image









A160
H
H
H
H
—C6H12—OH
A


embedded image









A161
H
H
H
H


embedded image


A


embedded image









A162
H
H
H
H
A
A


embedded image









A163
H
H
H
H


embedded image


A
—C2H4—S—C2H4—OH







A164
H
H
H
H
A
A


embedded image









A165
H
H
H
H
A
A


embedded image









A166
H
H
H
H
—C2H4—O—C2H5
A


embedded image









A167
H
H
H
H
—C2H4—S—C2H5
A


embedded image









A168
H
H
H
H


embedded image


A


embedded image









A169
H
H
H
H


embedded image


A


embedded image









A170
H
H
H
H


embedded image


A


embedded image




























TABLE 1-6







Compound






A
A′



















Example
R101
R102
R103
R104
R105
R106
α
β
γ
α
β
γ





A171
H
H
H
H
A
A′


embedded image






embedded image









A172
H
H
H
H
A
A′
—C2H4—O—C2H4—OH




embedded image









A173
H
H
H
H
A
A′
—C6H12—OH




embedded image









A174
H
H
H
H
A
A′


embedded image






embedded image









A175
H
H
H
H
A
A′
—C2H4—O—C2H4—OH




embedded image









A176
H
H
H
H
A
A′
—C2H4—O—C2H4—OH




embedded image









A177
H
H
H
H
A
A′
—C2H4—S—C2H4—OH




embedded image









A178
H
H
H
H
A
A′


embedded image






embedded image









A179
H
H
H
H
A
A′


embedded image






embedded image









A180
H
H
H
H
A
A′


embedded image






embedded image









A181
H
H
H
H
A
A′
—C2H4—S—C2H4—OH




embedded image













Specific examples of compounds represented by the above formula (A2) are shown in Table 2-1, Table 2-2 and Table 2-3. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.




















TABLE 2-1







Compound













Example
R201
R202
R203
R204
R205
R206
R207
R208
R209
R210
Z201





A201
H
H
A
H
H
H
H
H


O


A202
H
H
A
H
H
H
H
H


O


A204
H
H
A
H
H
H
H
H


O


A205
H
H
A
H
H
H
H
H


O


A206
H
H
A
H
H
H
H
H


O


A207
H
H
H
H
H
H
H
H
A

N


A208
H
H
H
H
H
H
H
H
A

N


A209
H
H
H
H
H
H
H
H
A

N


A210
H
H
H
H
H
H
H
H
A

N


A211
CH3
H
H
H
H
H
H
CH3
A

N


A212
H
Cl
H
H
H
H
Cl
H
A

N





A213
H
H


embedded image


H
H


embedded image


H
H
A

N





A214
H
H


embedded image


H
H


embedded image


H
H
A

N





A215
H
H
H
NO2
NO2
H
H
H
A

N


A216
H
H
A
H
H
A
H
H


O


A217
H
H
A
H
H
A
H
H


O











Compound
A










Example
α
β
γ





A201



embedded image




embedded image







A202



embedded image




embedded image







A204



embedded image








A205



embedded image








A206



embedded image








A207



embedded image




embedded image







A208



embedded image








A209



embedded image








A210


embedded image









A211



embedded image




embedded image







A212



embedded image




embedded image







A213



embedded image




embedded image







A214



embedded image




embedded image







A215



embedded image




embedded image







A216



embedded image




embedded image







A217



embedded image





























TABLE 2-2







Compound












Example
R201
R202
R203
R204
R205
R206
R207
R208
R209
R210





A218
H
H
A
H
H
A
H
H




A219
H
H
A
H
H
A
H
H




A220
H
H
A
H
H
A
H
H




A221
H
H
A
H
H
A
H
H




A222
H
H
A
H
H
A
H
H




A223
H
H
A
H
H
A
H
H




A224
H
A
H
H
H
H
A
H




A225
H
H
A
H
H
A
H
H
CN
CN


A226
H
H
A
H
H
A
H
H
CN
CN


A227
H
H
A
H
H
A
H
H
CN
CN


A228
H
H
A
H
H
A
H
H
CN
CN





A229
H
H
A
H
H
A
H
H
CN


embedded image







A230
H
H
A
H
H
A
H
H


embedded image




embedded image







A231
H
H
H
H
H
H
H
H
A
A


A232
H
NO2
H
H
H
H
NO2
H
A



A233
H
H

H
H
A
H
H














Compound

A











Example
Z201
α
β
γ





A218
O



embedded image








A219
O



embedded image








A220
O


embedded image









A221
O


embedded image









A222
O


COOH


A223
O


NH2





A224
O



embedded image




embedded image







A225
C



embedded image




embedded image







A226
C



embedded image








A227
C



embedded image








A228
C



embedded image








A229
C



embedded image




embedded image







A230
C



embedded image




embedded image







A231
C


COOH





A232
N



embedded image




embedded image







A233
O



embedded image




embedded image





























TABLE 2-3







Compound













Example
R201
R202
R203
R204
R205
R206
R207
R208
R209
R210
Z201





A234
H
A
H
H
H
H
A′
H


O


A235
H
A
H
H
H
H
A′
H


O


A236
H
A′
H
H
H
H
A′
H


O












Compound
A
A′













Example
α
β
γ
α
β
γ





A234


embedded image







embedded image




embedded image







A235



embedded image




embedded image




embedded image









A236



embedded image




embedded image




embedded image













Specific examples of compounds represented by the above formula (A3) are shown in Table 3-1, Table 3-2 and Table 3-3. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.

















TABLE 3-1







Compound










Example
R301
R302
R303
R304
R305
R306
R307
R308





A301
H
A
H
H
H
H




A302
H
A
H
H
H
H




A303
H
A
H
H
H
H




A304
H
A
H
H
H
H




A305
H
A
H
H
H
H




A306
H
H
H
H
H
H
A



A307
H
H
H
H
H
H
A



A308
H
H
H
H
H
H
A



A309
CH3
H
H
H
H
CH3
A



A310
H
H
Cl
Cl
H
H
A






A311
H


embedded image


H
H


embedded image


H
A






A312
H


embedded image


H
H


embedded image


H
A






A313
H
H
H
H
H
H
A



A314
H
A
H
H
A
H




A315
H
A
H
H
A
H














Compound

A











Example
Z301
α
β
γ





A301
O



embedded image




embedded image







A302
O



embedded image




embedded image







A303
O



embedded image








A304
O



embedded image








A305
O



embedded image








A306
N



embedded image




embedded image







A307
N



embedded image








A308
N


embedded image









A309
N



embedded image




embedded image







A310
N



embedded image




embedded image







A311
N



embedded image




embedded image







A312
N



embedded image




embedded image







A313
N



embedded image




embedded image







A314
O



embedded image




embedded image







A315
O



embedded image





























TABLE 3-2







Com-












pound












Exam-









A



















ple
R301
R302
R303
R304
R305
R306
R307
R308
Z301
α
β
γ





A316
H
A
H
H
A
H


O



embedded image








A317
H
A
H
H
A
H


O



embedded image








A318
H
A
H
H
A
H


O


embedded image









A319
H
A
H
H
A
H


O


embedded image









A320
H
A
H
H
A
H


O


COOH


A321
H
A
H
H
A
H


O


NH2





A322
H
H
A
A
H
H


O



embedded image




embedded image







A323
H
A
H
H
A
H
CN
CN
C



embedded image




embedded image







A324
H
A
H
H
A
H
CN
CN
C



embedded image








A325
H
A
H
H
A
H
CN
CN
C



embedded image








A326
H
A
H
H
A
H
CN
CN
C



embedded image








A327
H
A
H
H
A
H
CN


embedded image


C



embedded image




embedded image







A328
H
A
H
H
A
H


embedded image




embedded image


C



embedded image




embedded image







A329
H
H
H
H
H
H
A
A
C


COOH





A330
H
H
H
H
H
H
A

N



embedded image




embedded image





























TABLE 3-3







Com-













pound













Ex-













am-









A
A′






















ple
R301
R302
R303
R304
R305
R306
R307
R308
Z301
α
β
γ
α
β
γ





A331
H
A
H
H
A′
H
H
H
O


embedded image







embedded image




embedded image







A332
H
A′
H
H
A
H
H
H
O



embedded image




embedded image




embedded image









A333
H
A
H
H
A′
H
H
H
O



embedded image




embedded image




embedded image













Specific examples of compounds represented by the above formula (A4) are shown in Table 4-1 and Table 4-2. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.



















TABLE 4-1







Com-












pound












Exam-









A



















ple
R401
R402
R403
R404
R405
R406
R407
R408
Z401
α
β
γ





A401
H
H
A
H
H
H
CN
CN
C



embedded image




embedded image







A402
H
H
A
H
H
H
CN
CN
C



embedded image




embedded image







A403
H
H
A
H
H
H
CN
CN
C



embedded image








A404
H
H
A
H
H
H
CN
CN
C



embedded image








A405
H
H
A
H
H
H
CN
CN
C



embedded image








A406
H
H
H
H
H
H
A

N



embedded image




embedded image







A407
H
H
H
H
H
H
A

N



embedded image








A408
H
H
H
H
H
H
A

N



embedded image








A409
H
H
H
H
H
H
A

N


embedded image









A410
CH3
H
H
H
H
CH3
A

N



embedded image




embedded image







A411
H
Cl
H
H
Cl
H
A

N



embedded image




embedded image







A412
H
H


embedded image




embedded image


H
H
A

N



embedded image




embedded image







A413
H
H


embedded image




embedded image


H
H
A

N



embedded image




embedded image







A414
H
H
H
H
H
H
A

N



embedded image




embedded image







A415
H
H
A
A
H
H
CN
CN
C



embedded image




embedded image




























TABLE 4-2







Com-












pound












Exam-









A



















ple
R401
R402
R403
R404
R405
R406
R407
R408
Z401
α
β
γ





A416
H
H
A
A
H
H
CN
CN
C



embedded image








A417
H
H
A
A
H
H
CN
CN
C



embedded image








A418
H
H
A
A
H
H
CN
CN
C



embedded image








A419
H
H
A
A
H
H
CN
CN
C


embedded image









A420
H
H
A
A
H
H
CN
CN
C


embedded image









A421
H
H
A
A
H
H
CN
CN
C


COOH


A422
H
H
A
A
H
H
CN
CN
C


NH2





A423
H
A
H
H
A
H
CN
CN
C



embedded image




embedded image







A423
H
H
A
A
H
H


O



embedded image




embedded image







A424
H
H
A
A
H
H


O



embedded image








A425
H
H
A
A
H
H


O



embedded image








A426
H
H
A
A
H
H


O



embedded image








A427
H
H
A
A
H
H
CN


embedded image


C



embedded image




embedded image







A428
H
H
A
A
H
H


embedded image




embedded image


C



embedded image




embedded image







A429
H
H
H
H
H
H
A
A
C


COOH





A430
H
H
H
A
H
H
CN
CN
C



embedded image




embedded image







A431
H
H


embedded image


A
H
H


embedded image



N



embedded image




embedded image











Specific examples of compounds represented by the above formula (A5) are shown in Table 5-1 and Table 5-2. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.





















TABLE 5-1







Com-














pound














Ex-














am-











A





















ple
R501
R502
R503
R504
R505
R506
R507
R508
R509
R510
Z501
α
β
γ





A501
H
A
H
H
H
H
H
H
CN
CN
C



embedded image




embedded image







A502
H
A
H
H
H
H
H
H
CN
CN
C



embedded image




embedded image







A503
H
A
H
H
H
H
H
H
CN
CN
C



embedded image








A504
H
A
H
H
H
H
H
H
CN
CN
C



embedded image








A505
H
A
H
H
H
H
H
H
CN
CN
C



embedded image








A506
H
NO2
H
H
NO2
H
NO2
H
A

N



embedded image




embedded image







A507
H
H
H
H
H
H
H
H
A

N



embedded image








A508
H
H
H
H
H
H
H
H
A

N



embedded image








A509
H
H
H
H
H
H
H
H
A

N


embedded image









A510
CH3
H
H
H
H
H
H
CH3
A

N



embedded image




embedded image







A511
H
H
Cl
H
H
Cl
H
H
A

N



embedded image




embedded image







A512
H


embedded image


H
H
H
H


embedded image


H
A

N



embedded image




embedded image







A513
H


embedded image


H
H
H
H


embedded image


H
A

N



embedded image




embedded image







A514
H
NO2
H
H
NO2
H
NO2
H
A

N



embedded image




embedded image







A515
H
A
H
H
H
H
A
H
CN
CN
C



embedded image




embedded image







A516
H
A
H
H
H
H
A
H
CN
CN
C



embedded image































TABLE 5-2







Com-














pound














Ex-














am-











A





















ple
R501
R502
R503
R504
R505
R506
R507
R508
R509
R510
Z501
α
β
γ





A517
H
A
H
H
H
H
A
H
CN
CN
C



embedded image








A518
H
A
H
H
H
H
A
H
CN
CN
C



embedded image








A519
H
A
H
H
H
H
A
H
CN
CN
C


embedded image









A520
H
A
H
H
H
H
A
H
CN
CN
C


embedded image









A521
H
A
H
H
H
H
A
H
CN
CN
C


COOH


A522
H
A
H
H
H
H
A
H
CN
CN
C


NH2





A523
H
H
A
H
H
A
H
H
CN
CN
C



embedded image




embedded image







A524
H
A
H
H
H
H
A
H


O



embedded image




embedded image







A525
H
A
H
H
H
H
A
H


O



embedded image








A526
H
A
H
H
H
H
A
H


O



embedded image








A527
H
A
H
H
H
H
A
H


O



embedded image








A528
H
A
H
H
H
H
A
H
CN


embedded image


C



embedded image




embedded image







A529
H
A
H
H
H
H
A
H


embedded image




embedded image


C



embedded image




embedded image







A530
H
H
H
H
H
H
H
H
A
A
C


COOH





A531
H
A
H
H
H
H
A
H
CN
CN
C



embedded image




embedded image







A532
H
A
H
H
H
H




embedded image



N



embedded image




embedded image











Specific examples of compounds represented by the above formula (A6) are shown in Table 6. In the Table, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.
















TABLE 6







Compound






A
















Example
R601
R602
R603
R604
R605
R606
α
β
γ





A601
A
H
H
H
H
H



embedded image




embedded image







A602
A
H
H
H
H
H



embedded image




embedded image







A603
A
H
H
H
H
H



embedded image








A604
A
H
H
H
H
H



embedded image








A605
A
H
H
H
H
H



embedded image








A606
A
H
H
H
H
H


embedded image









A607
A
H
H
H
H
H


embedded image









A608
A
H
H
H
H
H


COOH


A609
A
H
H
H
H
H


NH2


A610
A
CN
H
H
H
H


NH2


A611
CN
CN
A
H
H
H


NH2


A612
A
H
H
H
H
H


OH


A613
H
H
A
H
H
H


OH


A614
CH3
H
A
H
H
H


OH


A615
H
H
A
H
H
A


OH





A616
A
A
H
H
H
H



embedded image




embedded image







A617
A
A
H
H
H
H


embedded image









A618
A
A
H
H
H
H


embedded image









A619
A
A
H
H
H
H


COOH









Specific examples of compounds represented by the above formula (A7) are shown in Table 7-1, Table 7-2 and Table 7-3. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.


















TABLE 7-1







Com-











pound











Exam-








A


















ple
R701
R702
R703
R704
R705
R706
R707
R708
α
β
γ





A701
A
H
H
H
H
H
H
H



embedded image




embedded image







A702
A
H
H
H
H
H
H
H



embedded image




embedded image







A703
A
H
H
H
H
H
H
NO2



embedded image




embedded image







A704
A
H
H
H
H
H
H
H



embedded image








A705
A
H
H
H
H
H
H
H



embedded image








A706
A
H
H
H
H
H
H
H



embedded image








A707
A
H
H
H
H
H
H
H


embedded image









A708
A
H
H
H
H
H
H
H


COOH





A709
A
H
H
H


embedded image


H
H
H


COOH





A710
A
H
H
H
A
H
H
H



embedded image




embedded image







A711
A
H
H
H
A
H
H
H



embedded image




embedded image







A712
A
H
H
NO2
A
H
H
NO2



embedded image




embedded image







A713
A
H
F
H
A
H
F
H



embedded image




embedded image







A714
A
H
H
H
A
H
H
H



embedded image








A715
A
H
H
H
A
H
H
H



embedded image




























TABLE 7-2







Com-











pound











Exam-








A


















ple
R701
R702
R703
R704
R705
R706
R707
R708
α
β
γ





A716
A
H
H
H
A
H
H
H



embedded image








A717
A
H
H
H
A
H
H
H


embedded image









A718
A
H
H
H
A
H
H
H


COOH


A719
H
A
H
H
H
A
H
H


COOH


A720
A
H
H
H
A
F
H
H


COOH


A721
A
H
H
CH3
CH3
H
H
H


COOH


A722
A
H
H
C4H9
C4H9
H
H
H


COOH





A723
A
H
H


embedded image




embedded image


H
H
H


COOH





A724
A
H
H
CH3
CH3
H
H
H



embedded image




embedded image







A725
A
H
H
C4H9
C4H9
H
H
H



embedded image




embedded image







A726
A
H
H


embedded image




embedded image


H
H
H



embedded image




embedded image







A727
A
H
H
C4H9
C4H9
H
H
H



embedded image








A728
A
H
H
C4H9
C4H9
H
H
H



embedded image








A729
A
H
H
C4H9
C4H9
H
H
H



embedded image





























TABLE 7-3







Com-












pound












Exam-








A
A′





















ple
R701
R702
R703
R704
R705
R706
R707
R708
α
β
γ
α
β
γ





A730
A
H
H
H
A′
H
H
H


embedded image







embedded image




embedded image







A731
A
H
H
H
A′
H
H
H



embedded image




embedded image




embedded image









A733
A
H
H
H
A′
H
H
H



embedded image




embedded image




embedded image













Specific examples of compounds represented by the above formula (A8) are shown in Table 8-1, Table 8-2 and Table 8-3. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.




















TABLE 8-1







Com-













pound













Exam-










A




















ple
R801
R802
R803
R804
R805
R806
R807
R808
R809
R810
α
β
γ





A801
H
H
H
H
H
H
H
H


embedded image


A


embedded image









A802
H
H
H
H
H
H
H
H


embedded image


A


embedded image









A803
H
H
H
H
H
H
H
H


embedded image


A



embedded image




embedded image







A804
H
H
H
H
H
H
H
H


embedded image


A



embedded image




embedded image







A805
H
H
H
H
H
H
H
H


embedded image


A



embedded image




embedded image







A806
H
H
H
H
H
H
H
H


embedded image


A


embedded image









A807
H
H
H
H
H
H
H
H


embedded image


A


embedded image









A808
H
H
H
H
H
H
H
H


embedded image


A


embedded image









A809
H
H
H
H
H
H
H
H


embedded image


A
—C5H10—OH







A810
H
H
H
H
H
H
H
H
—C6H13
A


embedded image









A811
H
H
H
H
H
H
H
H


embedded image


A



embedded image




embedded image







A812
H
H
H
H
H
H
H
H


embedded image


A



embedded image








A813
H
H
H
H
H
H
H
H


embedded image


A



embedded image








A814
H
H
H
H
H
H
H
H


embedded image


A



embedded image








A815
H
H
H
H
H
H
H
H


embedded image


A



embedded image






























TABLE 8-2







Com-













pound













Ex-













am-










A




















ple
R801
R802
R803
R804
R805
R806
R807
R808
R809
R810
α
β
γ





A816
H
H
H
H
H
H
H
H


embedded image


A



embedded image








A817
H
H
H
H
H
H
H
H


embedded image


A



embedded image








A818
H
H
H
H
H
H
H
H


embedded image


A



embedded image




embedded image







A819
H
CN
H
H
H
H
CN
H


embedded image


A


embedded image









A820
H


embedded image


H
H
H
H


embedded image


H


embedded image


A


embedded image









A821
H
A
H
H
H
H
H
H


embedded image




embedded image




—COOH





A822
H
Cl
Cl
H
H
Cl
Cl
H


embedded image


A


embedded image









A823
H
H
H
H
H
H
H
H


embedded image


A


embedded image









A824
H
H
H
H
H
H
H
H
A
A


embedded image









A825
H
H
H
H
H
H
H
H
A
A



embedded image




embedded image







A826
H
H
H
H
H
H
H
H
A
A



embedded image








A827
H
H
H
H
H
H
H
H
A
A



embedded image








A828
H
H
H
H
H
H
H
H
A
A



embedded image








A829
H
H
H
H
H
H
H
H
A
A



embedded image








A830
H
H
H
H
H
H
H
H
A
A



embedded image








A831
H


embedded image


H
H
H
H


embedded image


H


embedded image


A



embedded image




embedded image




























TABLE 8-3







Com-












pound












Ex-












am-












ple
R801
R802
R803
R804
R805
R806
R807
R808
R809
R810





A832
H
H
H
H
H
H
H
H
A
A′


A833
H
H
H
H
H
H
H
H
A
A′


A834
H
H
H
H
H
H
H
H
A
A′


A835
H
H
H
H
H
H
H
H
A
A′
















Com-








pound








Ex-















am-
A
A′













ple
α
β
γ
α
β
γ





A832


embedded image






embedded image









A833



embedded image




embedded image




embedded image









A834



embedded image




embedded image




embedded image









A835



embedded image





embedded image




embedded image












Specific examples of compounds represented by the above formula (A9) are shown in Table 9-1 and Table 9-2. In the Tables, the case where γ is “-” indicates a hydrogen atom, and the hydrogen atom for the γ is incorporated into the structure given in the column of α or β.


















TABLE 9-1







Com-











pound











Exam-








A


















ple
R901
R902
R903
R904
R905
R906
R907
R908
α
β
γ





A901
A
H
H
H
H
H
H
H
—CH2—OH







A902
A
H
H
H
H
H
H
H


embedded image









A903
A
H
H
H


embedded image


H
H
H


embedded image









A904
A


embedded image


H
H


embedded image


H
H
H


embedded image









A905
A
NO2
H
H
H
NO2
H
H


embedded image









A906
A
H
H
H
H
A
H
H


embedded image









A907
A
H
H
H
A
H
H
H


embedded image









A908
A
H
H
H
A
H
H
H



embedded image








A909
A
H
H
A
H
H
H
H


embedded image









A910
A
H
H
A
H
H
H
H



embedded image








A911
H
H
H
H
H
H
H
A
—CH2—OH







A912
H
H
H
H
H
H
H
A


embedded image









A913
H
NO2
H
H
H
NO2
H
A


embedded image









A914
H
H
H
H
H
H
H
A



embedded image








A915
H
H
H
H
H
H
H
A



embedded image




embedded image







A916
H
H
H
H
H
H
H
A



embedded image








A917
H
H
H
H
H
H
H
A



embedded image








A918
H
H
H
H
H
H
H
A



embedded image








A919
H
CN
H
H
H
H
CN
A



embedded image








A920
A
A
H
H
H
H
H
H


embedded image









A921
A
A
H
NO2
H
H
NO2
H


embedded image









A922
H
A
A
H
H
H
H
H


OH





A923
H
H
A
H
H
H
H
H


embedded image









A924
H
H
A
H
H
H
H
A



embedded image




embedded image




























TABLE 9-2







Com-












pound












Exam-








A
A′





















ple
R901
R902
R903
R904
R905
R906
R907
R908
α
β
γ
α
β
γ





A925
A
H
H
H
A′
H
H
H


embedded image







embedded image








A926
A
H
H
A′
H
H
H
H


embedded image







embedded image








A927
H
A′
H
H
H
H
H
A


embedded image







embedded image












A derivative (derivative of an electron transporting substance) having a structure of (A1) can be synthesized by a well-known synthesis method described, for example, in U.S. Pat. Nos. 4,442,193, 4,992,349 and 5,468,583 and Chemistry of Materials, Vol. 19, No. 11, 2703-2705 (2007). The derivative can also be synthesized by a reaction of a naphthalenetetracarboxylic dianhydride and a monoamine derivative, which are commercially available from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc.


A compound represented by (A1) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A1) structure includes a method of directly incorporating the polymerizable functional groups in the derivative having an (A1) structure, and a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups in the derivative having an (A1) structure. Examples of the latter method include, based on a halide of a naphthylimide derivative, a method of incorporating a functional group-containing aryl group for example, by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation. There is a method of using a naphthalenetetracarboxylic dianhydride derivative or a monoamine derivative having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups as a raw material for synthesis of the naphthylimide derivative.


Derivatives having an (A2) structure are commercially available, for example, from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc. The derivatives can also be synthesized based on a phenanthrene derivative or a phenanthroline derivative by synthesis methods described in Chem. Educator No. 6, 227-234 (2001), Journal of Synthetic Organic Chemistry, Japan, vol. 15, 29-32 (1957) and Journal of Synthetic Organic Chemistry, Japan, vol. 15, 32-34 (1957). A dicyanomethylene group can also be incorporated by a reaction with malononitrile.


A compound represented by (A2) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A2) structure includes a method of directly incorporating the polymerizable functional groups in the derivative having an (A2) structure, and a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups in the derivative having an (A2) structure. Examples of the latter method include, based on a halide of phenathrenequinone, a method of incorporating a functional group-containing aryl group by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation.


Derivatives having an (A3) structure are commercially available from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc. The derivatives can also be synthesized based on a phenanthrene derivative or a phenanthroline derivative by a synthesis method described in Bull. Chem. Soc., Jpn., Vol. 65, 1006-1011 (1992). A dicyanomethylene group can also be incorporated by a reaction with malononitrile.


A compound represented by (A3) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having the structure of the above formula (A3) includes a method of directly incorporating the polymerizable functional groups in the derivative having the structure of formula (A3), and a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups in the derivative having the structure of formula (A3). Examples of the latter method include, based on a halide of phenathrolinequinone, a method of incorporating a functional group-containing aryl group by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation.


Derivatives having an (A4) structure are commercially available, for example, from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc. The derivatives can also be synthesized based on an acenaphthenequinone derivative by synthesis methods described in Tetrahedron Letters, 43 (16), 2991-2994 (2002) and Tetrahedron Letters, 44 (10), 2087-2091 (2003). A dicyanomethylene group can also be incorporated by a reaction with malononitrile.


A compound represented by the formula (A4) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A4) structure includes a method of directly incorporating the polymerizable functional groups in the derivative having an (A4) structure, and a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups in the derivative having an (A4) structure. Examples of the latter method include, based on a halide of acenaphthenequinone, a method of incorporating a functional group-containing aryl group for example, by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation.


Derivatives having an (A5) structure are commercially available, for example, from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc. The derivatives can also be synthesized using a fluorenone derivative and malononitrile by a synthesis method described in U.S. Pat. No. 4,562,132. The derivatives can also be synthesized using a fluorenone derivative and an aniline derivative by synthesis methods described in Japanese Patent Application Laid-Open Nos. H05-279582 and H07-70038.


A compound represented by the formula (A5) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A5) structure includes a method of directly incorporating the polymerizable functional groups in the derivative having an (A5) structure, and a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups in the derivative having an (A5) structure. Examples of the latter method include, based on a halide of fluorenone, a method of incorporating a functional group-containing aryl group for example, by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation.


Derivatives having an (A6) structure can be synthesized by synthesis methods described in, for example, Chemistry Letters, 37(3), 360-361 (2008) and Japanese Patent Application Laid-Open No. H09-151157. The derivatives are commercially available from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc.


A compound represented by the formula (A6) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A6) structure includes a method of directly incorporating the polymerizable functional groups in a naphthoquinone derivative, and a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups in a naphthoquinone derivative. Examples of the latter method include, based on a halide of naphthoquinone, a method of incorporating a functional group-containing aryl group for example, by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation.


Derivatives having an (A7) structure can be synthesized by synthesis methods described in Japanese Patent Application Laid-Open No. H01-206349 and Proceedings of PPCI/Japan Hard Copy '98, Proceedings, p. 207 (1998). The derivatives can be synthesized, for example, using phenol derivatives commercially available from Tokyo Chemical Industry Co., Ltd., or Sigma-Aldrich Japan Co., Ltd., as a raw material.


A compound represented by (A7) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A7) structure includes a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups. Examples of the method include, based on a halide of diphenoquinone, a method of incorporating a functional group-containing aryl group for example, by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation.


Derivatives having an (A8) structure can be synthesized by a well-known synthesis method described in, for example, Journal of the American Chemical Society, Vol. 129, No. 49, 15259-78 (2007). The derivatives can also be synthesized by a reaction of perylenetetracarboxylic dianhydride and a monoamine derivative commercially available from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc.


A compound represented by the formula (A8) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A8) structure includes a method of directly incorporating the polymerizable functional groups in the derivative having an (A8) structure, and a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups in the derivative having an (A8) structure. Examples of the latter method include, based on a halide of a peryleneimide derivative, a method of using a cross coupling reaction using a palladium catalyst and a base and a method of using a cross coupling reaction using an FeCl3 catalyst and a base. There is a method of using perylenetetracarboxylic dianhydride derivative or a monoamine derivative having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups as a raw material for synthesis of the peryleneimide derivative.


Derivatives having an (A9) structure are commercially available, for example, from Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich Japan Co., Ltd. and Johnson Matthey Japan Inc.


A compound represented by the formula (A9) has polymerizable functional groups (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group) polymerizable with a crosslinking agent. A method for incorporating these polymerizable functional groups in a derivative having an (A9) structure includes a method of incorporating structures having the polymerizable functional groups or functional groups capable of becoming precursors of polymerizable functional groups, in an anthraquinone derivative commercially available. Examples of the method include, based on a halide of anthraquinone, a method of incorporating a functional group-containing aryl group for example, by using a cross coupling reaction using a palladium catalyst and a base, a method of incorporating a functional group-containing alkyl group by using a cross coupling reaction using an FeCl3 catalyst and a base and a method of incorporating a hydroxyalkyl group and a carboxyl group by making an epoxy compound or CO2 to act after lithiation.


Crosslinking Agent


Then, a crosslinking agent will be described. As a crosslinking agent, a compound can be used which polymerizes with or crosslinks with an electron transporting substance having polymerizable functional groups and a thermoplastic resin having polymerizable functional groups. Specifically, compounds described in “Crosslinking Agent Handbook”, edited by Shinzo Yamashita, Tosuke Kaneko, published by Taiseisha Ltd. (1981) (in Japanese), and the like can be used.


Crosslinking agents used for an electron transporting layer can be isocyanate compounds and amine compounds. The crosslinking agents are more preferably crosslinking agents (isocyanate compounds, amine compounds) having 3 to 6 groups of an isocyanate group, a blocked isocyanate group or a monovalent group represented by —CH2—OR1 from the viewpoint of providing a uniform layer of a polymer.


As the isocyanate compound, an isocyanate compound having a molecular weight in the range of 200 to 1,300 can be used. An isocyanate compound having 3 to 6 isocyanate groups or blocked isocyanate groups can further be used. Examples of the isocyanate compound include isocyanurate modifications, biuret modifications, allophanate modifications and trimethylolpropane or pentaerythritol adduct modifications of triisocyanatobenzene, triisocyanatomethylbenzene, triphenylmethane triisocyanate, lysine triisocyanate, and additionally, diisocyanates such as tolylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, xylylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, methyl-2,6-diisocyanate hexanoate and norbornane diisocyanate. Above all, the modified isocyanurate and the modified adducts are more preferable.


A blocked isocyanate group is a group having a structure of —NHCOX1 (X1 is a blocking group). X1 may be any blocking group as long as X1 can be incorporated to an isocyanate group, but is more preferably a group represented by one of the following formulae (H1) to (H7).




embedded image


Hereinafter, specific examples of isocyanate compounds will be described.




embedded image


embedded image


embedded image


embedded image


embedded image


The amine compound can be at least one selected from the group consisting of compounds represented by the following formula (C1), oligomers of compounds represented by the following formula (C1), compounds represented by the following formula (C2), oligomers of compounds represented by the following formula (C2), compounds represented by the following formula (C3), oligomers of compounds represented by the following formula (C3), compounds represented by the following formula (C4), oligomers of compounds represented by the following formula (C4), compounds represented by the following formula (C5), and oligomers of compounds represented by the following formula (C5).




embedded image


In the formulae (C1) to (C5), R11 to R26, R22 to R25, R31 to R34, R41 to R44 and R51 to R54 each independently represent a hydrogen atom, a hydroxy group, an acyl group or a monovalent group represented by —CH2—OR1; at least one of R11 to R26, at least one of R22 to R25, at least one of R31 to R34, at least one of R41 to R44, and at least one of R51 to R54 are a monovalent group represented by —CH2—OR1; R1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; the alkyl group can be a methyl group, an ethyl group, a propyl group (n-propyl group, iso-propyl group) or a butyl group (n-butyl group, iso-butyl group, tert-butyl group) from the viewpoint of the polymerizability; R21 represents an aryl group, an alkyl group-substituted aryl group, a cycloalkyl group or an alkyl group-substituted cycloalkyl group.


Hereinafter, specific examples of compounds represented by one of formulae (C1) to (C5) will be described. Oligomers (multimers) of compounds represented by one of formulae (C1) to (C5) may be contained. Compounds (monomers) represented by one of formulae (C1) to (C5) can be contained in 10% by mass or more in the total mass of the amine compounds from the viewpoint of providing a uniform layer of a polymer. The degree of polymerization of the above-mentioned multimer can be 2 or more and 100 or less. The above-mentioned multimer and monomer may be used as a mixture of two or more.


Examples of compounds represented by the above formula (C1) usually commercially available include Supermelami No. 90 (made by NOF Corp.), Superbekamine(R) TD-139-60, L-105-60, L127-60, L110-60, J-820-60 and G-821-(made by DIC Corporation), Yuban 2020 (made by Mitsui Chemicals Inc.), Sumitex Resin M-3 (made by Sumitomo Chemical Co., Ltd.), and Nikalac MW-30, MW-390 and MX-750LM (Nihon Carbide Industries, Co., Inc.). Examples of compounds represented by the above formula (C2) usually commercially available include Superbekamine(R) L-148-55, 13-535, L-145-60 and TD-126 (made by Dainippon Ink and Chemicals, Inc.), and Nikalac BL-60 and BX-4000 (Nihon Carbide Industries, Co., Inc.). Examples of compounds represented by the above formula (C3) usually commercially available include Nikalac MX-280 (Nihon Carbide Industries, Co., Inc.). Examples of compounds represented by the above formula (C4) usually commercially available include Nikalac MX-270 (Nihon Carbide Industries, Co., Inc.). Examples of compounds represented by the above formula (C5) usually commercially available include Nikalac MX-290 (Nihon Carbide Industries, Co., Inc.).


Hereinafter, specific examples of compounds of the formula (C1) will be described.




embedded image


embedded image


Hereinafter, specific examples of compounds of the formula (C2) will be described.




embedded image


embedded image


embedded image


Hereinafter, specific examples of compounds of the formula (C3) will be described.




embedded image


Hereinafter, specific examples of compounds of the formula (C4) will be described.




embedded image


embedded image


Hereinafter, specific examples of compounds of the formula (C5) will be described.




embedded image


Resin


Then, the thermoplastic resin having polymerizable functional groups will be described. The thermoplastic resin having polymerizable functional groups can be a thermoplastic resin having a structural unit represented by the following formula (D).




embedded image


In the formula (D), R61 represents a hydrogen atom or an alkyl group; Y1 represents a single bond, an alkylene group or a phenylene group; and W1 represents a hydroxy group, a thiol group, an amino group, a carboxyl group or a methoxy group.


A resin (hereinafter, also referred to as a resin D) having a structural unit represented by the formula (D) can be obtained by polymerizing, for example, a monomer commercially available from Sigma-Aldrich Japan Co., Ltd. and Tokyo Chemical Industry Co., Ltd. and having a polymerizable functional group (a hydroxy group, a thiol group, an amino group, a carboxyl group and a methoxy group).


The resins are usually commercially available. Examples of resins commercially available include polyether polyol-based resins such as AQD-457 and AQD-473 made by Nippon Polyurethane Industry Co., Ltd., and Sunnix GP-400, GP-700 and the like made by Sanyo Chemical Industries, Ltd., polyester polyol-based resins such as Phthalkid W2343 made by Hitachi Chemical Co., Ltd., Watersol S-118 and CD-520 and Beckolite M-6402-50 and M-6201-401M made by DIC Corporation, Haridip WH-1188 made by Harima Chemicals Group, Inc. and ES3604, ES6538 and the like made by Japan UPICA Co., Ltd., polyacryl polyol-based resins such as Burnock WE-300 and WE-304 made by DIC Corporation, polyvinylalcohol-based resins such as Kuraray Poval PVA-203 made by Kuraray Co., Ltd., polyvinyl acetal-based resins such as BX-1, BM-1, KS-1 and KS-5 made by Sekisui Chemical Co., Ltd., polyamide-based resins such as Toresin FS-350 made by Nagase ChemteX Corp., carboxyl group-containing resins such as Aqualic made by Nippon Shokubai Co., Ltd. and Finelex SG2000 made by Namariichi Co., Ltd., polyamine resins such as Rackamide made by DIC Corporation, and polythiol resins such as QE-340M made by Toray Industries, Inc. Above all, polyvinyl acetal-based resins, polyester polyol-based resins and the like are more preferable from the viewpoint of the polymerizability and the uniformity of an electron transporting layer.


The weight-average molecular weight (Mw) of a resin D can be in the range of 5,000 to 400,000, and is more preferably in the range of 5,000 to 300,000. Examples of a method for quantifying a polymerizable functional group in the resin include the titration of a carboxyl group using potassium hydroxide, the titration of an amino group using sodium nitrite, the titration of a hydroxy group using acetic anhydride and potassium hydroxide, the titration of a thiol group using 5,5′-dithiobis(2-nitrobenzoic acid), and a calibration curve method using IR spectra of samples in which the incorporation ratio of a polymerizable functional group is varied.


In Table 10 hereinafter, specific examples of the resin D will be described.













TABLE 10








Structure
Mol Number per 1 g

Molecular














R61
Y
W
of Functional Group
Another Site
Weight





D1
H
single bond
OH
3.3 mmol
butyral
1 × 105


D2
H
single bond
OH
3.3 mmol
butyral
4 × 104


D3
H
single bond
OH
3.3 mmol
butyral
2 × 104


D4
H
single bond
OH
1.0 mmol
polyolefin
1 × 105


D5
H
single bond
OH
3.0 mmol
ester
8 × 104


D6
H
single bond
OH
2.5 mmol
polyether
5 × 104


D7
H
single bond
OH
2.8 mmol
cellulose
3 × 104


D8
H
single bond
COOH
3.5 mmol
polyolefin
6 × 104


D9
H
single bond
NH2
1.2 mmol
polyamide
2 × 105


D10
H
single bond
SH
1.3 mmol
polyolefin
9 × 103


D11
H
phenylene
OH
2.8 mmol
polyolefin
4 × 103


D12
H
single bond
OH
3.0 mmol
butyral
7 × 104


D13
H
single bond
OH
2.9 mmol
polyester
2 × 104


D14
H
single bond
OH
2.5 mmol
polyester
6 × 103


D15
H
single bond
OH
2.7 mmol
polyester
8 × 104


D16
H
single bond
COOH
1.4 mmol
polyolefin
2 × 105


D17
H
single bond
COOH
2.2 mmol
polyester
9 × 103


D18
H
single bond
COOH
2.8 mmol
polyester
8 × 102


D19
CH3
alkylene
OH
1.5 mmol
polyester
2 × 104


D20
C2H5
alkylene
OH
2.1 mmol
polyester
1 × 104


D21
C2H5
alkylene
OH
3.0 mmol
polyester
5 × 104


D22
H
single bond
OCH3
2.8 mmol
polyolefin
7 × 103


D23
H
single bond
OH
3.3 mmol
butyral
2.7 × 105 


D24
H
single bond
OH
3.3 mmol
butyral
4 × 105


D25
H
single bond
OH
2.5 mmol
acetal
4 × 105









An electron transporting substance having polymerizable functional groups can be 30% by mass or more and 70% by mass or less with respect to the total mass of a composition including the electron transporting substance having polymerizable functional groups, a crosslinking agent and a resin having polymerizable functional groups.


Conductive Support


As an conductive support (also referred to as a support), for example, supports made of a metal or an alloy of aluminum, nickel, copper, gold, iron or the like can be used. The support includes supports in which a metal thin film of aluminum, silver, gold or the like is formed on an insulating support of a polyester resin, a polycarbonate resin, a polyimide resin, a glass or the like, and supports in which a conductive material thin film of indium oxide, tin oxide or the like is formed.


The surface of a support may be subjected to a treatment such as an electrochemical treatment such as anodic oxidation, a wet honing treatment, a blast treatment and a cutting treatment, in order to improve electric properties and suppress interference fringes.


A conductive layer may be provided between a support and an undercoating layer described later. The conductive layer is obtained by forming a coating film of a coating liquid for a conductive layer in which a conductive particle is dispersed in a resin, on the support, and drying the coating film. Examples of the conductive particle include carbon black, acetylene black, metal powders such as aluminum, nickel, iron, nichrome, copper, zinc and silver, and metal oxide powders such as conductive tin oxide and ITO.


Examples of the resin include polyester resins, polycarbonate resins, polyvinyl butyral resins, acryl resins, silicone resin, epoxy resins, melamine resins, urethane resins, phenol resins and alkyd resins.


Examples of a solvent of a coating liquid for a conductive layer include etheric solvents, alcoholic solvents, ketonic solvents and aromatic hydrocarbon solvents. The thickness of a conductive layer can be 0.2 μm or more and 40 μm or less, is more preferably 1 μm or more and 35 μm or less, and still more preferably 5 μm or more and 30 μm or less.


Charge Generating Layer


A charge generating layer is provided on an undercoating layer (electron transporting layer).


A charge generating substance includes azo pigments, perylene pigments, anthraquinone derivatives, anthoanthrone derivatives, dibenzopyrenequinone derivatives, pyranthrone derivatives, violanthrone derivatives, isoviolanthrone derivatives, indigo derivatives, thioindigo derivatives, phthalocyanine pigments such as metal phthalocyanines and non-metal phthalocyanines, and bisbenzimidazole derivatives. Above all, at least one of azo pigments and phthalocyanine pigments can be used. Among phthalocyanine pigments, oxytitanium phthalocyanine, chlorogallium phthalocyanine and hydroxygallium phthalocyanine can be used.


Examples of a binder resin used for a charge generating layer include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic ester, methacrylic ester, vinylidene fluoride and trifluoroethylene, polyvinyl alcohol resins, polyvinyl acetal resins, polycarbonate resins, polyester resins, polysulfone resins, polyphenylene oxide resins, polyurethane resins, cellulosic resins, phenol resins, melamine resins, silicon resins and epoxy resins. Above all, polyester resins, polycarbonate resins and polyvinyl acetal resins can be used, and polyvinyl acetal is more preferable.


In a charge generating layer, the ratio (charge generating substance/binder resin) of a charge generating substance and a binder resin can be in the range of 10/1 to 1/10, and is more preferably in the range of 5/1 to 1/5. A solvent used for a coating liquid for a charge generating layer includes alcoholic solvents, sulfoxide-based solvents, ketonic solvents, etheric solvents, esteric solvents and aromatic hydrocarbon solvents. The thickness of a charge generating layer can be 0.05 μm or more and 5 μm or less.


Hole Transporting Layer


A hole transporting layer is provided on a charge generating layer. Examples of a hole transporting substance include polycyclic aromatic compounds, heterocyclic compounds, hydrazone compounds, styryl compounds, benzidine compounds, and triarylamine compounds, triphenylamine, and polymers having a group derived from these compounds in the main chain or side chain. Above all, triarylamine compounds, benzidine compounds and styryl compounds can be used.


Examples of a binder resin used for a hole transporting layer include polyester resins, polycarbonate resins, polymethacrylic ester resins, polyarylate resins, polysulfone resins and polystyrene resins. Above all, polycarbonate resins and polyarylate resins can be used. With respect to the molecular weight thereof, the weight-average molecular weight (Mw) can be in the range of 10,000 to 300,000.


In a hole transporting layer, the ratio (hole transporting substance/binder resin) of a hole transporting substance and a binder resin can be 10/5 to 5/10, and is more preferably 10/8 to 6/10. The thickness of a hole transporting layer can be 3 μm or more and 40 μm or less. The thickness is more preferably 5 μm or more and 16 μm or less from the viewpoint of the thickness of the electron transporting layer. A solvent used for a coating liquid for a hole transporting layer includes alcoholic solvents, sulfoxide-based solvents, ketonic solvents, etheric solvents, esteric solvents and aromatic hydrocarbon solvents.


Another layer such as a second undercoating layer which does not contain a polymer according to the present invention may be provided between a support and the electron transporting layer and between the electron transporting layer and a charge generating layer.


A surface protecting layer may be provided on a hole transporting layer. The surface protecting layer contains a conductive particle or a charge transporting substance and a binder resin. The surface protecting layer may further contain additives such as a lubricant. The binder resin itself of the protecting layer may have conductivity and charge transportability; in this case, the protecting layer does not need to contain a conductive particle and a charge transporting substance other than the binder resin. The binder resin of the protecting layer may be a thermoplastic resin, and may be a curable resin capable of being polymerized by heat, light, radiation (electron beams) or the like.


A method for forming each layer such as an electron transporting layer, a charge generating layer and a hole transporting layer constituting an electrophotographic photosensitive member can be a method in which a coating liquid obtained by dissolving and/or dispersing a material constituting the each layer in a solvent is applied, and the obtained coating film is dried and/or cured. Examples of a method of applying the coating liquid include an immersion coating method, a spray coating method, a curtain coating method and a spin coating method. Above all, an immersion coating method can be used from the viewpoint of efficiency and productivity.


Process Cartridge and Electrophotographic Apparatus



FIG. 3 illustrates an outline constitution of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member.


In FIG. 3, reference numeral 1 denotes a cylindrical electrophotographic photosensitive member, which is rotationally driven at a predetermined peripheral speed in the arrow direction around a shaft 2 as a center. A surface (peripheral surface) of the rotationally driven electrophotographic photosensitive member 1 is uniformly charged at a predetermined positive or negative potential by a charging unit 3 (primary charging unit: charging roller or the like). Then, the surface is subjected to irradiation light (image-exposure light) 4 from a light irradiation unit (exposure unit, not illustrated) such as slit light irradiation or laser beam scanning light irradiation. Electrostatic latent images corresponding to objective images are successively formed on the surface of the electrophotographic photosensitive member 1 in such a manner.


The electrostatic latent images formed on the surface of the electrophotographic photosensitive member 1 are developed with a toner contained in a developer of a developing unit 5 to thereby make toner images. Then, the toner images formed and carried on the surface of the electrophotographic photosensitive member 1 are successively transferred to a transfer material (paper or the like) P by a transferring bias from a transfer unit (transfer roller or the like) 6. The transfer material P is delivered from a transfer material feed unit (not illustrated) and fed to between the electrophotographic photosensitive member 1 and the transfer unit 6 (to a contacting part) synchronously with the rotation of the electrophotographic photosensitive member 1.


The transfer material P having the transferred toner images is separated from the surface of the electrophotographic photosensitive member 1, introduced to a fixing unit 8 to be subjected to image fixation, and printed out as an image-formed matter (print, copy) outside the apparatus.


The surface of the electrophotographic photosensitive member 1 after the toner image transfer is subjected to removal of the untransferred developer (toner) by a cleaning unit (cleaning blade or the like) 7 to be thereby cleaned. Then, the surface is subjected to a charge-neutralizing treatment with irradiation light (not illustrated) from a light irradiation unit (exposure unit, not illustrated), and thereafter used repeatedly for image formation. As illustrated in FIG. 3, in the case where the charging unit 3 is a contacting charging unit using a charging roller or the like, the light irradiation is not necessarily needed.


A plurality of some constituting elements out of constituting elements including the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5, the transfer unit 6 and the cleaning unit 7 described above may be selected and accommodated in a container and integrally constituted as a process cartridge; and the process cartridge may be constituted detachably from an electrophotographic apparatus body of a copying machine, a laser beam printer or the like. In FIG. 3, the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5 and the cleaning unit 7 are integrally supported and made as a cartridge to thereby make a process cartridge 9 attachable to and detachable from an electrophotographic apparatus body by using a guiding unit 10 such as rails of the electrophotographic apparatus body.


EXAMPLES

Then, the manufacture and evaluation of electrophotographic photosensitive members will be described. “Parts” in Examples indicate “parts by mass.”


Example 1

An aluminum cylinder (JIS-A3003, an aluminum alloy) of 260.5 mm in length and 30 mm in diameter was made to be a support (conductive support).


Then, 50 parts of a titanium oxide particle coated with an oxygen-deficient tin oxide (powder resistivity: 120 Ω·cm, coverage factor of tin oxide: 40%), 40 parts of a phenol resin (Plyophen J-325, made by DIC Corporation, resin solid content: 60%), and 50 parts of methoxypropanol as a solvent (dispersion solvent) were placed in a sand mill using a glass bead of 0.8 mm in diameter, and subjected to a dispersion treatment for 3 hours to thereby prepare a dispersion liquid. After the dispersion, 0.01 part of a silicone oil SH28PA (made by Dow Corning Toray Co., Ltd.) and a silicone microparticle (Tospearl 120CA) as an organic resin particle were added to the dispersion liquid, and stirred to thereby prepare a coating liquid for a conductive layer. The content of the silicone microparticle was a sum of the solid content thereof and 5% by mass of (the total mass of the titanium oxide particle and the phenol resin). The coating liquid for a conductive layer was immersion coated on the support, and the obtained coating film was dried and heat polymerized for 30 min at 150° C. to thereby form a conductive layer having a thickness of 16 μm.


The average particle diameter of the titanium oxide particle coated with an oxygen-deficient tin oxide in the coating liquid for a conductive layer was measured by a centrifugal precipitation method using tetrahydrofuran as a dispersion medium at a rotation frequency of 5,000 rpm by using a particle size distribution analyzer (trade name: CAPA700) made by HORIBA Ltd. As a result, the average particle diameter was 0.31 μm.


Then, 4 parts of the electron transporting substance (A101), 7.3 parts of the crosslinking agent (B1: blocking group (H1)=5.1:2.2 (mass ratio)), 0.9 part of the resin (D1) and 0.05 part of dioctyltin laurate as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer (undercoating layer) having a thickness of 0.53 μm.


The content of the electron transporting substance with respect to the total mass of the electron transporting substance, the crosslinking agent and the resin was 33% by mass.


Then, 10 parts of a hydroxylgallium phthalocyanine crystal (charge generating substance) having a crystal form exhibiting strong peaks at Bragg angles (2θ±0.2°) of 7.5°, 9.9°, 12.5°, 16.3°, 18.6°, 25.1° and 28.3° in CuKα characteristic X-ray diffractometry, 0.1 part of a compound represented by the following formula (17), 5 parts of a polyvinyl butyral resin (trade name: Eslec BX-1, made by Sekisui Chemical Co., Ltd.) and 250 parts of cyclohexanone were placed in a sand mill using a glass bead of 0.8 mm in diameter, and subjected to a dispersion treatment for 1.5 hours. Then, 250 parts of ethyl acetate was added thereto to thereby prepare a coating liquid for a charge generating layer.




embedded image


The coating liquid for a charge generating layer was immersion coated on the electron transporting layer, and the obtained coating film was dried for 10 min at 100° C. to thereby form a charge generating layer having a thickness of 0.15 μm. A laminated body having the conductive support, the conductive layer, the electron transporting layer, and the charge generating layer was formed in such a manner.


Then, 4 parts of each of a triarylamine compound represented by the following formula (9-1) and a benzidine compound represented by the following formula (9-2) and 10 parts of a polyarylate resin having a repeating structural unit represented by the following formula (10-1) and a repeating structural unit represented by the following formula (10-2) in a proportion of 5/5, and having a weight-average molecular weight (Mw) of 100,000 were dissolved in a mixed solvent of 40 parts of dimethoxymethane and 60 parts of chlorobenzene to thereby prepare a coating liquid for a hole transporting layer. The coating liquid for a hole transporting layer was immersion coated on the charge generating layer, and the obtained coating film was dried for 40 min at 120° C. to thereby form a hole transporting layer having a thickness of 15 μm.




embedded image


In such a manner, an electrophotographic photosensitive member having the laminated body and the hole transporting layer for evaluating the positive ghost was manufactured. Further as in the above, one more electrophotographic photosensitive member was manufactured, and made as an electrophotographic photosensitive member for determination.


(Determination Test)


The electrophotographic photosensitive member for determination described above was immersed for 5 min under the application of an ultrasonic wave in a mixed solvent of 40 parts of dimethoxymethane and 60 parts of chlorobenzene to peel the hole transporting layer, and thereafter, the resultant was dried for 10 min at 100° C. to thereby fabricate a laminated body having the support, the electron transporting layer and the charge generating layer, and the laminated body was made as an electrophotographic photosensitive member for determination. The surface thereof was confirmed to have no components of the hole transporting layer by using an FTIR-ATR method.


Then, a measurement portion was cut out in 2 cm (peripheral direction of the electrophotographic photosensitive member)×4 cm (long axis direction thereof) from the electrophotographic photosensitive member for determination, and a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm was fabricated on the charge generating layer by the above-mentioned sputtering.


Then, the electrophotographic photosensitive member for determination was allowed to stand for 24 hours in an environment of a temperature of 25° C. and a humidity of 50% RH, and thereafter, a sample was fabricated which was constituted of the support, the conductive layer, the electron transporting layer, the charge generating layer and the gold electrode with the above-mentioned determination method. First, the whole sample was covered with a blackout film; and the impedance (R_dark) when an alternating electric field of 100 mV and 0.1 Hz was applied between the conductive support and the gold electrode was measured by sweeping the frequency from 1 MHz to 0.1 Hz and under the condition of no light irradiation of the surface of the charge generating layer. The impedance (R_opt) when an alternating electric field of 100 mV and 0.1 Hz was applied between the conductive support and the gold electrode was further measured under the condition that the surface of the charge generating layer was irradiated with light having an irradiation intensity of 30 μJ/cm2·sec in the state that laser light having a wavelength of 680 nm was oscillated and the charge generating layer and the gold electrode side of the sample were irradiated with the light so that the irradiation intensity became 30 μJ/cm2·sec. R_opt/R_dark was calculated from the acquired R_dark and R_opt. The measurement results are shown in Table 11.


(Evaluation of the Positive Ghost)


The manufactured electrophotographic photosensitive member for evaluating the positive ghost was mounted on a remodeled machine (primary charging: roller contacting DC charging, process speed: 120 mm/sec, laser light irradiation), a power source of whose pre-light irradiation unit was cut off, of a laser beam printer (trade name: LBP-2510) made by Canon Corp., and the evaluations of the early-stage printed-out image (early-stage ghost) and the positive ghost in the repeated use were carried out. Details are as follows.


1. Early-Stage Ghost


A process cartridge for a cyan color of the laser beam printer was remodeled, and a potential probe (model: 6000B-8, made by Trek Japan KK) was mounted on a development position; and the manufactured electrophotographic photosensitive member was mounted, and the potential of the center portion of the electrophotographic photosensitive member was measured under an environment of a temperature of 23° C. and a humidity of 50% RH by using a surface electrometer (model: 344, made by Trek Japan KK). The charging voltage and the irradiation light intensity were adjusted so that the dark area potential (Vd) of the surface potential of the electrophotographic photosensitive member became −600 V and the light area potential (Vl) thereof became −200 V.


Then, the electrophotographic photosensitive member was mounted on the process cartridge for a cyan color of the laser beam printer, and the process cartridge was mounted on a process cartridge station for cyan, and images were printed out. Images were continuously printed out in the order of one sheet of a solid white image, 5 sheets of an image for ghost evaluation, one sheet of a solid black image and 5 sheets of an image for ghost evaluation.


The image for ghost evaluation, as illustrated in FIG. 4, had a “white image” printed out in the lead part thereof in which square “solid images” were printed, and had a “halftone image of a one-dot keima pattern” illustrated in FIG. 5A, fabricated after the lead part. In FIG. 4, “ghost” parts were parts where ghosts caused by the “solid images” may have emerged.


The evaluation of the positive ghost was carried out by measuring the density difference between the image density of the halftone image of a one-dot keima pattern described above and the image density of a ghost part. 10 points of the density differences were measured in one sheet of an image for ghost evaluation by a spectrodensitometer (trade name: X-Rite 504/508, made by X-Rite Inc.). This operation was carried out for all of 10 sheets of the image for ghost evaluation, and the average of 100 points in total was calculated. The results are shown in Table 11. It is found that a higher density of a ghost part caused a stronger positive ghost. It is meant that a smaller Macbeth density difference more suppressed the positive ghost. A ghost image density difference (Macbeth density difference) of 0.05 or more gave a level thereof having a visually obvious difference, and a ghost image density difference of less than 0.05 gave a level thereof having no visually obvious difference.


2. Long-Term Ghost


Continuous 1,000-sheets image printing-out was carried out using halftone images of a one-dot pattern illustrated in FIG. 5B described above with the adjusted charging voltage and the adjusted irradiation light intensity being fixed to those determined in the evaluation of “1. Early-stage ghost” described above. Within 2 min after the image printing-out of 1,000th sheet, image printing-out was carried out as illustrated in FIG. 4 as in the case of the early-stage ghost, and the positive ghost evaluation (image density evaluation using a spectrodensitometer) after the 1,000-sheets image printing-out was carried out. The results are shown in Table 11.


Examples 2 to 5

Electrophotographic photosensitive members were manufactured and evaluated as in Example 1, except for altering the thickness of an electron transporting layer from 0.53 μm to 0.38 μm (Examples 2), 0.25 μm (Examples 3), 0.20 μm (Examples 4) and 0.15 μm (Examples 5) as shown in Table 11. The results are shown in Table 11.


Example 6

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 11.


4 parts of the electron transporting substance (A101), 5.5 parts of the isocyanate compound (B1: blocking group (H1)=5.1:2.2 (mass ratio)), 0.3 part of the resin (D1) and 0.05 part of dioctyltin laurate as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.61 μm.


Examples 7 to 12

Electrophotographic photosensitive members were manufactured and evaluated as in Example 6, except for altering the thickness of the electron transporting layer from 0.61 μm to those shown in Table 11. The results are shown in Table 11.


Example 13

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 11.


5 parts of the electron transporting substance (A-101), 2.3 parts of the amine compound (C1-3), 3.3 parts of the resin (D1) and 0.1 part of dodecylbenzenesulfonic acid as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.51 μm.


Examples 14 to 17

Electrophotographic photosensitive members were manufactured and evaluated as in Example 13, except for altering the thickness of the electron transporting layer from 0.51 μm to those shown in Table 11. The results are shown in Table 11.


Example 18

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 11.


5 parts of the electron transporting substance (A-101), 1.75 parts of the amine compound (C1-3), 2 parts of the resin (D1) and 0.1 part of dodecylbenzenesulfonic acid as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.70 μm.


Examples 19 to 24

Electrophotographic photosensitive members were manufactured and evaluated as in Example 18, except for altering the thickness of the electron transporting layer from 0.70 μm to those shown in Table 11. The results are shown in Table 11.


Examples 25 to 45

Electrophotographic photosensitive members were manufactured and evaluated as in Example 6, except for altering the electron transporting substance of Example 6 from (A-101) to electron transporting substances shown in Table 11, and altering the thickness of the electron transporting layer to those shown in Table 11. The results are shown in Table 11.


Examples 46 to 66

Electrophotographic photosensitive members were manufactured and evaluated as in Example 18, except for altering the electron transporting substance of Example 18 from (A-101) to electron transporting substances shown in Table 11, and altering the thickness of the electron transporting layer to those shown in Table 11. The results are shown in Table 11.


Examples 67 to 72

Electrophotographic photosensitive members were manufactured and evaluated as in Example 8, except for altering the crosslinking agent (B1: blocking group (H1)=5.1:2.2 (mass ratio)) of Example 8 to crosslinking agents shown in Table 11. The results are shown in Tables 11 and 12.


Examples 73 and 74

Electrophotographic photosensitive members were manufactured and evaluated as in Example 21, except for altering the crosslinking agent (C1-3) of Example 21 to crosslinking agents shown in Table 11. The results are shown in Table 12.


Example 75

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


4 parts of the electron transporting substance (A-101), 4 parts of the amine compound (C1-9), 1.5 parts of the resin (D1) and 0.2 part of dodecylbenzenesulfonic acid as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.35 μm.


Examples 76 and 77

Electrophotographic photosensitive members were manufactured and evaluated as in Example 75, except for altering the crosslinking agent (C1-9) of Example 75 to crosslinking agents shown in Table 12. The results are shown in Table 12.


Examples 78 to 81

Electrophotographic photosensitive members were manufactured and evaluated as in Example 9, except for altering the resin (D1) of Example 9 to resins shown in Table 12. The results are shown in Table 12.


Example 82

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


6 parts of the electron transporting substance (A-124), 2.1 parts of the amine compound (C1-3), 1.2 parts of the resin (D1) and 0.1 part of dodecylbenzenesulfonic acid as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.45 μm.


Examples 83 and 84

Electrophotographic photosensitive members were manufactured and evaluated as in Example 82, except for altering the electron transporting substance of Example 82 from (A-124) to electron transporting substances shown in Table 12. The results are shown in Table 12.


Example 85

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


6 parts of the electron transporting substance (A-125), 2.1 parts of the amine compound (C1-3), 0.5 part of the resin (D1) and 0.1 part of dodecylbenzenesulfonic acid as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to thereby form an electron transporting layer having a thickness of 0.49 μm.


Example 86

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


6.5 parts of the electron transporting substance (A-125), 2.1 parts of the amine compound (C1-3), 0.4 part of the resin (D1) and 0.1 part of dodecylbenzenesulfonic acid as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.49 μm.


Example 87 to 89

An electrophotographic photosensitive member was manufactured and evaluated as in Example 85, except for altering the thickness of the electron transporting layer from 0.49 μm to those shown in Table 12. The results are shown in Table 12.


Example 90

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


3.6 parts of the electron transporting substance (A101), 7 parts of the isocyanate compound (B1: blocking group (H1)=5.1:2.2 (mass ratio)), 1.3 parts of the resin (D1) and 0.05 part of dioctyltin laurate as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.53 μm.


Example 91

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for altering the thickness of the charge generating layer from 0.53 μm to 0.15 μm. The results are shown in Table 12.


Example 92

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming a charge generating layer as follows. The results are shown in Table 12.


10 parts of oxytitanium phthalocyanine exhibiting strong peaks at Bragg angles (2θ±0.2°) of 9.0°, 14.2°, 23.9° and 27.1° in CuKα X-ray diffractometry was used, and 166 parts of a solution was prepared in which a polyvinyl butyral resin (trade name: Eslec BX-1, made by Sekisui Chemical Co., Ltd.) was dissolved in a mixed solvent of cyclohexanone:water=97:3 to make a 5% by mass solution. The solution and 150 parts of the mixed solvent of cyclohexanone:water=97:3 were together dispersed for 4 hours in a sand mill apparatus using 400 parts of a glass bead of 1 mmφ, and thereafter, 210 parts of the mixed solvent of cyclohexanone:water=97:3 and 260 parts of cyclohexanone were added thereto to thereby prepare a coating liquid for a charge generating layer. The coating liquid for a charge generating layer was immersion coated on the electron transporting layer, and the obtained coating film was dried for 10 min at 80° C. to thereby form a charge generating layer having a thickness of 0.20 μm.


Example 93

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming charge generating layer as follows. The results are shown in Table 12.


20 parts of a bisazo pigment represented by the following structural formula (II) and 10 parts of a polyvinyl butyral resin (trade name: Eslec BX-1, made by Sekisui Chemical Co., Ltd.) were mixed and dispersed in 150 parts of tetrahydrofuran to thereby prepare a coating liquid for a charge generating layer. Then, the coating liquid was immersion coated on the electron transporting layer, and the obtained coating film was dried at 110° C. for 30 min to thereby form a charge generating layer having a thickness of 0.30 μm.




embedded image


Example 94

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for altering the benzidine compound represented by the above formula (9-2) of Example 1 to a styryl compound (hole transporting substance) represented by the following formula (9-3). The results are shown in Table 13.




embedded image


Examples 95 and 96

Electrophotographic photosensitive members were manufactured and evaluated as in Example 1, except for altering the thickness of the hole transporting layer from 15 μm to 10 μm (Example 95) and 25 μm (Example 96). The results are shown in Table 13.


Example 97

An aluminum cylinder (JIS-A3003, an aluminum alloy) of 260.5 mm in length and 30 mm in diameter was made to be a support (conductive support).


Then, 214 parts of a titanium oxide (TiO2) particle coated with an oxygen-deficient tin oxide (SnO2) as a metal oxide particle, 132 parts of a phenol resin (trade name: Plyophen J-325) as a binder resin, and 98 parts of 1-methoxy-2-propanol as a solvent were placed in a sand mill using 450 parts of a glass bead of 0.8 mm in diameter, and subjected to a dispersion treatment under the conditions of a rotation frequency of 2,000 rpm, a dispersion treatment time of 4.5 hours and a set temperature of a cooling water of 18° C. to thereby obtain a dispersion liquid. The glass bead was removed from the dispersion liquid by a mesh (mesh opening: 150 μm). A silicone resin particle (trade name: Tospearl 120, made by Momentive Performance Materials Inc., average particle diameter: 2 μm) as a surface-roughening material was added to the dispersion liquid after the removal of the glass bead so as to become 10% by mass with respect to the total mass of the metal oxide particle and the binder resin in the dispersion liquid; and a silicone oil (trade name: SH28PA, made by Dow Corning Toray Co., Ltd.) as a leveling agent was added to the dispersion liquid so as to become 0.01% by mass with respect to the total mass of the metal oxide particle and the binder resin in the dispersion liquid; and the resultant mixture was stirred to thereby prepare a coating liquid for a conductive layer. The coating liquid for a conductive layer was immersion coated on a support, and the obtained coating film was dried and heat cured for 30 min at 150° C. to thereby form a conductive layer having a thickness of 30 μm.


Then, 6.2 parts of the electron transporting substance (A157), 8.0 parts of the crosslinking agent (B1: blocking group (H5)=5.1:2.9 (mass ratio)), 1.1 parts of the resin (D25) and 0.05 part of zinc(II) hexanote as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer (undercoating layer) having a thickness of 0.53 μm. The content of the electron transporting substance with respect to the total mass of the electron transporting substance, the crosslinking agent and the resin was 34% by mass.


Then, a charge generating layer having a thickness of 0.15 μm was formed as in Example 1.


9 parts of the triarylamine compound represented by the above structural formula (9-1), 1 part of a benzidine compound (hole transporting substance) represented by the following structural formula (18), 3 parts of a polyester resin E (weight-average molecular weight: 90,000) having a repeating structural unit represented by the following formula (24), and a repeating structural unit represented by the following formula (26) and a repeating structural unit represented by the following formula (25) in a ratio of 7:3, and 7 parts of a polyester resin F (weight-average molecular weight: 120,000) having a repeating structural unit represented by the following formula (27) and a repeating structural unit represented by the following formula (28) in a ratio of 5: were dissolved in a mixed solvent of 30 parts of dimethoxymethane and 50 parts of orthoxylene to thereby prepare a coating liquid for a hole transporting layer. Here, the content of the repeating structural unit represented by the following formula (24) in the polyester resin E was 10% by mass, and the content of the repeating structural units represented by the following formulae (25) and (26) therein was 90% by mass.




embedded image


The coating liquid for a hole transporting layer was immersion coated on the charge generating layer, and dried for 1 hour at 120° C. to thereby form a hole transporting layer having a thickness of 16 μm. The formed hole transporting layer was confirmed to have a domain structure in which a matrix containing the hole transporting substance and the polyester resin F contained the polyester resin E.


The evaluation was carried out as in Example 1. The results are shown in Table 13.


Example 98

An electrophotographic photosensitive member was manufactured as in Example 1, except for forming a hole transporting layer as follows. The results are shown in Table 13.


9 parts of the triarylamine compound represented by the above structural formula (9-1), 1 part of the benzidine compound represented by the above structural formula (18), 10 parts of a polycarbonate resin G (weight-average molecular weight: 70,000) having a repeating structural unit represented by the following formula (29), and 0.3 part of a polycarbonate resin H (weight-average molecular weight: 40,000) having a repeating structural unit represented by the following formula (29), a repeating structural unit represented by the following formula (30) and a structure of at least one terminal represented by the following formula (31) were dissolved in a mixed solvent of 30 parts of dimethoxymethane and 50 parts of orthoxylene to thereby prepare a coating liquid for a hole transporting layer. Here, the total mass of the structures represented by the following formulae (30) and (31) in the polycarbonate resin H was 30% by mass. The coating liquid for a hole transporting layer was immersion coated on the charge generating layer, and dried for 1 hour at 120° C. to thereby form a hole transporting layer having a thickness of 16 μm.




embedded image


Example 99

An electrophotographic photosensitive member was manufactured and evaluated as in Example 98, except for altering 10 parts of the polycarbonate resin G (weight-average molecular weight: 70,000) in the coating liquid for a hole transporting layer of Example 98 to 10 parts of the polyester resin F (weight-average molecular weight: 120,000). The results are shown in Table 13.


Example 100

An electrophotographic photosensitive member was manufactured and evaluated as in Example 97, except for forming a conductive layer as follows. The results are shown in Table 13.


207 parts of a titanium oxide (TiO2) particle coated with a tin oxide (SnO2) doped with phosphorus (P) as a metal oxide particle, 144 parts of a phenol resin (trade name: Plyophen J-325) as a binder resin, and 98 parts of 1-methoxy-2-propanol as a solvent were placed in a sand mill using 450 parts of a glass bead of 0.8 mm in diameter, and subjected to a dispersion treatment under the conditions of a rotation frequency of 2,000 rpm, a dispersion treatment time of 4.5 hours and a set temperature of a cooling water of 18° C. to thereby obtain a dispersion liquid. The glass bead was removed from the dispersion liquid by a mesh (mesh opening: 150 μm).


A silicone resin particle (trade name: Tospearl 120) as a surface-roughening material was added to the dispersion liquid after the removal of the glass bead so as to become 15% by mass with respect to the total mass of the metal oxide particle and the binder resin in the dispersion liquid; and a silicone oil (trade name: SH28PA) as a leveling agent was added to the dispersion liquid so as to become 0.01% by mass with respect to the total mass of the metal oxide particle and the binder resin in the dispersion liquid; and the resultant mixture was stirred to thereby prepare a coating liquid for a conductive layer. The coating liquid for a conductive layer was immersion coated on a support, and the obtained coating film was dried and heat cured for 30 min at 150° C. to thereby form a conductive layer having a thickness of 30 μm.


Examples 101 to 119

Electrophotographic photosensitive members were manufactured and evaluated as in Example 97, except for altering the electron transporting substance of Example 97 from (A157) to electron transporting substances shown in Table 13. The results are shown in Table 13.


Comparative Example 1

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


2.4 parts of the electron transporting substance (A101), 4.2 parts of the isocyanate compound (B1: blocking group (H1)=5.1:2.2 (mass ratio)), 5.4 parts of the resin (D1) and 0.05 part of dioctyltin laurate as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.53 μm.


Comparative Example 2

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


3.2 parts of the electron transporting substance (A101), 5 parts of the isocyanate compound (B1: blocking group (H1)=5.1:2.2 (mass ratio)), 4.2 parts of the resin (D1) and 0.05 part of dioctyltin laurate as a catalyst were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.53 μm.


Comparative Examples 3 and 4

Electrophotographic photosensitive members were manufactured and evaluated as in Comparative Example 2, except for altering the thickness of the electron transporting layer from 0.53 μm to 0.40 μm and 0.32 μm. The results are shown in Table 12.


Comparative Examples 5 to 8

Electrophotographic photosensitive members were manufactured and evaluated as in Example 1, except for altering the thickness of the electron transporting layer from 0.53 μm to 0.78 μm, 1.03 μm, 1.25 μm and 1.48 μm. The results are shown in Table 12.


Comparative Example 9

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


4 parts of the electron transporting substance (A225), 3 parts of hexamethylene diisocyanate and 4 parts of the resin (D1) were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 1.00 μm.


Comparative Example 10

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


5 parts of the electron transporting substance (A124), 2.5 parts of 2,4-toluene diisocyanate and 2.5 parts of a poly(p-hydroxystyrene) (trade name: Malkalinker, made by Maruzen Petrochemical Co., Ltd.) were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.40 μm.


Comparative Example 11

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 12.


7 parts of the electron transporting substance (A124), 2 parts of 2,4-toluene diisocyanate and 1 part of a poly(p-hydroxystyrene) were dissolved in a mixed solvent of 100 parts of dimethylacetoamide and 100 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 160° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.40 μm.


















TABLE 11









Ratio of








Electron


Electron
Thickness of



Difference



Transporting
Crosslinking

Transporting
Undercoating
R_opt/
Early-Stage
Ghost After
Between


Example
Substance
Agent
Resin
Substance
Layer
R_dark
Ghost
1,000 Sheets
the Ghosts
























1
A101
B1:H1
D1
33%
0.53
0.85
0.03
0.03
0.00


2
A101
B1:H1
D1
33%
0.38
0.85
0.03
0.03
0.00


3
A101
B1:H1
D1
33%
0.25
0.85
0.03
0.03
0.00


4
A101
B1:H1
D1
33%
0.20
0.85
0.03
0.03
0.00


5
A101
B1:H1
D1
33%
0.15
0.95
0.04
0.05
0.01


6
A101
B1:H1
D1
41%
0.61
0.75
0.02
0.02
0.00


7
A101
B1:H1
D1
41%
0.52
0.75
0.02
0.02
0.00


8
A101
B1:H1
D1
41%
0.40
0.85
0.03
0.03
0.00


9
A101
B1:H1
D1
41%
0.26
0.85
0.03
0.03
0.00


10
A101
B1:H1
D1
41%
0.70
0.85
0.03
0.03
0.00


11
A101
B1:H1
D1
41%
0.90
0.90
0.04
0.05
0.01


12
A101
B1:H1
D1
41%
1.10
0.95
0.04
0.05
0.01


13
A101
C1-3
D1
47%
0.51
0.75
0.02
0.02
0.00


14
A101
C1-3
D1
47%
0.45
0.75
0.01
0.01
0.00


15
A101
C1-3
D1
47%
0.34
0.75
0.02
0.02
0.00


16
A101
C1-3
D1
47%
0.70
0.85
0.02
0.02
0.00


17
A101
C1-3
D1
47%
0.91
0.93
0.03
0.04
0.01


18
A101
C1-3
D1
57%
0.70
0.85
0.03
0.03
0.00


19
A101
C1-3
D1
57%
0.58
0.75
0.02
0.02
0.00


20
A101
C1-3
D1
57%
0.50
0.75
0.02
0.02
0.00


21
A101
C1-3
D1
57%
0.35
0.85
0.03
0.03
0.00


22
A101
C1-3
D1
57%
0.92
0.90
0.03
0.04
0.01


23
A101
C1-3
D1
57%
1.11
0.93
0.03
0.04
0.01


24
A101
C1-3
D1
57%
1.32
0.95
0.04
0.05
0.01


25
A106
B1:H1
D1
41%
0.52
0.75
0.02
0.02
0.00


26
A125
B1:H1
D1
41%
0.52
0.75
0.02
0.02
0.00


27
A125
B1:H1
D1
41%
0.20
0.75
0.02
0.02
0.00


28
A125
B1:H1
D1
41%
0.70
0.75
0.02
0.02
0.00


29
A136
B1:H1
D1
41%
0.51
0.75
0.02
0.02
0.00


30
A136
B1:H1
D1
41%
0.21
0.75
0.02
0.02
0.00


31
A136
B1:H1
D1
41%
0.69
0.75
0.02
0.02
0.00


32
A116
B1:H1
D1
41%
0.52
0.85
0.03
0.03
0.00


33
A119
B1:H1
D1
41%
0.52
0.85
0.03
0.03
0.00


34
A120
B1:H1
D1
41%
0.52
0.85
0.03
0.03
0.00


35
A124
B1:H1
D1
41%
0.52
0.85
0.03
0.03
0.00


36
A130
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


37
A156
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


38
A214
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


39
A310
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


40
A423
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


41
A523
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


42
A618
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


43
A731
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


44
A819
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


45
A919
B1:H1
D1
41%
0.52
0.95
0.04
0.05
0.01


46
A106
C1-3
D1
57%
0.48
0.65
0.01
0.01
0.00


47
A113
C1-3
D1
57%
0.48
0.65
0.01
0.01
0.00


48
A116
C1-3
D1
57%
0.48
0.65
0.01
0.01
0.00


49
A120
C1-3
D1
57%
0.48
0.65
0.01
0.01
0.00


50
A124
C1-3
D1
57%
0.48
0.65
0.01
0.01
0.00


51
A136
C1-3
D1
57%
0.48
0.65
0.01
0.01
0.00


52
A136
C1-3
D1
57%
0.15
0.85
0.02
0.02
0.00


53
A136
C1-3
D1
57%
0.65
0.60
0.01
0.01
0.00


54
A136
C1-3
D1
57%
0.75
0.65
0.01
0.01
0.00

























TABLE 12









Ratio of








Electron


Electron
Thickness of



Difference



Transporting
Crosslinking

Transporting
Undercoating
R_opt/
Early-Stage
Ghost After
Between


Example
Substance
Agent
Resin
Substance
Layer
R_dark
Ghost
1,000 Sheets
the Ghosts
























55
A136
C1-3
D1
57%
0.90
0.75
0.02
0.02
0.00


56
A136
C1-3
D1
57%
1.12
0.77
0.02
0.02
0.00


57
A136
C1-3
D1
57%
1.30
0.80
0.02
0.02
0.00


58
A201
C1-3
D1
57%
1.30
0.85
0.03
0.03
0.00


59
A306
C1-3
D1
57%
1.30
0.85
0.03
0.03
0.00


60
A306
C1-3
D1
57%
1.30
0.75
0.02
0.02
0.00


61
A404
C1-3
D1
57%
1.30
0.75
0.02
0.02
0.00


62
A510
C1-3
D1
57%
1.30
0.75
0.02
0.02
0.00


63
A602
C1-3
D1
57%
1.30
0.85
0.03
0.03
0.00


64
A709
C1-3
D1
57%
1.30
0.85
0.03
0.03
0.00


65
A807
C1-3
D1
57%
1.30
0.75
0.02
0.02
0.00


66
A902
C1-3
D1
57%
1.30
0.75
0.02
0.02
0.00


67
A101
B1:H2
D1
41%
0.40
0.85
0.03
0.03
0.00


68
A101
B1:H3
D1
41%
0.40
0.85
0.03
0.03
0.00


69
A101
B4:H1
D1
41%
0.40
0.85
0.03
0.03
0.00


70
A101
B5:H1
D1
41%
0.40
0.85
0.03
0.03
0.00


71
A101
B7:H1
D1
41%
0.40
0.85
0.03
0.03
0.00


72
A101
B12:H1 
D1
41%
0.40
0.85
0.03
0.03
0.00


73
A101
C1-1
D1
57%
0.35
0.75
0.02
0.02
0.00


74
A101
C1-7
D1
57%
0.35
0.75
0.02
0.02
0.00


75
A101
C1-9
D1
41%
0.35
0.75
0.02
0.02
0.00


76
A101
C2-1
D1
41%
0.35
0.75
0.02
0.02
0.00


77
A101
C3-3
D1
41%
0.35
0.75
0.02
0.02
0.00


78
A101
B1:H1
D3
41%
0.26
0.85
0.03
0.03
0.00


79
A101
B1:H1
D5
41%
0.26
0.85
0.03
0.03
0.00


80
A101
B1:H1
 D19
41%
0.26
0.85
0.03
0.03
0.00


81
A101
B1:H1
 D20
41%
0.26
0.85
0.03
0.03
0.00


82
A124
C1-3
D1
65%
0.45
0.65
0.01
0.01
0.00


83
A130
C1-3
D1
65%
0.45
0.65
0.01
0.01
0.00


84
A156
C1-3
D1
65%
0.45
0.65
0.01
0.01
0.00


85
A125
C1-3
D1
70%
0.49
0.65
0.01
0.01
0.00


86
A125
C1-3
D1
72%
0.49
0.75
0.02
0.02
0.00


87
A125
C1-3
D1
70%
0.70
0.75
0.02
0.02
0.00


88
A125
C1-3
D1
70%
0.95
0.75
0.02
0.02
0.00


89
A125
C1-3
D1
70%
1.24
0.80
0.03
0.03
0.00


90
A101
B1:H1
D1
30%
0.53
0.95
0.04
0.05
0.01


91
A101
B1:H1
D1
33%
0.15
0.85
0.03
0.03
0.00


92
A101
B1:H1
D1
33%
0.53
0.95
0.04
0.05
0.01


93
A101
B1:H1
D1
33%
0.53
0.85
0.03
0.03
0.00


Comparative
A101
B1:H1
D1
20%
0.53
0.99
0.1
0.13
0.03


Example 1











Comparative
A101
B1:H1
D1
25%
0.53
0.98
0.07
0.10
0.03


Example 2











Comparative
A101
B1:H1
D1
25%
0.40
0.98
0.07
0.10
0.03


Example 3











Comparative
A101
B1:H1
D1
25%
0.32
0.97
0.07
0.09
0.02


Example 4











Comparative
A101
B1:H1
D1
33%
0.78
0.98
0.06
0.09
0.03


Example 5











Comparative
A101
B1:H1
D1
33%
1.03
0.99
0.07
0.10
0.03


Example 6











Comparative
A101
B1:H1
D1
33%
1.25
0.99
0.08
0.11
0.03


Example 7











Comparative
A101
B1:H1
D1
33%
1.48
1
0.09
0.13
0.04


Example 8











Comparative
A225
hexamethylene
D1
36%
1.00
0.99
0.07
0.10
0.03


Example 9

diisocyanate









Comparative
A124
2,4-toluene
poly(p-
50%
0.40
0.99
0.07
0.10
0.03


Example 10

diisocyanate
hydroxystyrene)








Comparative
A124
2,4-toluene
poly(p-
70%
0.40
0.98
0.06
0.09
0.03


Example 11

diisocyanate
hydroxystyrene)

























TABLE 13









Ratio of








Electron


Electron
Thickness of



Difference



Transporting
Crosslinking

Transporting
Undercoating
R_opt/
Early-Stage
Ghost After
Between


Example
Substance
Agent
Resin
Substance
Layer
R_dark
Ghost
1,000 Sheets
the Ghosts
























94
A101
B1:H1
D1 
33%
0.53
0.85
0.03
0.03
0.00


95
A106
B1:H6
D14
33%
0.53
0.85
0.03
0.03
0.00


96
A107
B1:H7
D15
33%
0.53
0.85
0.04
0.04
0.00


97
A157
B1:H5
D25
41%
0.47
0.80
0.03
0.03
0.00


98
A157
B1:H5
D25
41%
0.47
0.80
0.03
0.03
0.00


99
A157
B1:H5
D25
41%
0.47
0.80
0.03
0.03
0.00


100
A157
B1:H5
D25
41%
0.47
0.80
0.04
0.04
0.00


101
A124
B1:H5
D25
41%
0.47
0.80
0.04
0.04
0.00


102
A125
B1:H5
D25
41%
0.47
0.70
0.03
0.03
0.00


103
A152
B1:H5
D25
41%
0.47
0.85
0.04
0.04
0.00


104
A159
B1:H5
D25
41%
0.47
0.70
0.03
0.03
0.00


105
A164
B1:H5
D25
41%
0.47
0.65
0.03
0.03
0.00


106
A166
B1:H5
D25
41%
0.47
0.85
0.04
0.04
0.00


107
A167
B1:H5
D25
41%
0.47
0.80
0.04
0.04
0.00


108
A168
B1:H5
D25
41%
0.47
0.70
0.03
0.03
0.00


109
A172
B1:H5
D25
41%
0.47
0.75
0.03
0.03
0.00


110
A177
B1:H5
D25
41%
0.47
0.65
0.03
0.03
0.00


111
A178
B1:H5
D25
41%
0.47
0.65
0.03
0.03
0.00


112
A207
B1:H5
D25
41%
0.47
0.85
0.04
0.04
0.00


113
A315
B1:H5
D25
41%
0.47
0.85
0.04
0.04
0.00


114
A402
B1:H5
D25
41%
0.47
0.70
0.03
0.03
0.00


115
A509
B1:H5
D25
41%
0.47
0.70
0.03
0.03
0.00


116
A602
B1:H5
D25
41%
0.47
0.80
0.04
0.04
0.00


117
A707
B1:H5
D25
41%
0.47
0.65
0.03
0.03
0.00


118
A819
B1:H5
D25
41%
0.47
0.65
0.03
0.03
0.00


119
A908
B1:H5
D25
41%
0.47
0.70
0.03
0.03
0.00









Comparative Example 12

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


5 parts of the electron transporting substance (A922), 13.5 parts of an isocyanate compound (Sumidule 3173, made by Sumitomo Bayer Urethane Co., Ltd.), 10 parts of a butyral resin (BM-1, made by Sekisui Chemical Co., Ltd.) and 0.005 part of dioctyltin laurate as a catalyst were dissolved in a solvent of 120 parts of methyl ethyl ketone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 40 min at 170° C. to be polymerized to thereby form an electron transporting layer having a thickness of 1.00 μm.


Comparative Example 13

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


5 parts of the electron transporting substance (A101) and 2.4 parts of a melamine resin (Yuban 20HS, made by Mitsui Chemicals Inc.) were dissolved in a mixed solvent of 50 parts of tetrahydrofuran and 50 parts of methoxypropanol to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 60 min at 150° C. to be polymerized to thereby form an electron transporting layer having a thickness of 1.00 μm.


Comparative Example 14

An electrophotographic photosensitive member was manufactured and evaluated as in Comparative Example 12, except for altering the thickness of the electron transporting layer from 1.00 μm to 0.50 μm. The results are shown in Table 14.


Comparative Example 15

An electrophotographic photosensitive member was manufactured and evaluated as in Comparative Example 12, except for altering the melamine resin (Yuban 20HS, made by Mitsui Chemicals Inc.) of the electron transporting layer to the phenol resin (Plyophen J-325, made by DIC Corporation). The results are shown in Table 14.


Comparative Example 16

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


10 parts of a mixture of a compound having a structure represented by the following formula (12-1) and a compound having a structure represented by the following formula (12-2) was dissolved in a mixed solvent of 30 parts of N-methyl-2-pyrrolidone and 60 parts of cyclohexanone to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 30 min at 150° C. to be polymerized to thereby form an electron transporting layer having a structure represented by the following formula (12-3) and having a thickness of 0.20 μm.




embedded image


Comparative Examples 17 and 18

Electrophotographic photosensitive members were manufactured and evaluated as in Comparative Example 16, except for altering the thickness of the electron transporting layer from 0.20 μm to 0.30 μm and 0.60 μm. The results are shown in Table 14.


Comparative Example 19

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


10 parts of an electron transporting substance represented by the following formula (13) was dissolved in 60 parts of toluene to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was irradiated with electron beams under the conditions of an acceleration voltage of 150 kV and an irradiation dose of 10 Mrad to be polymerized to thereby form an electron transporting layer having a thickness of 1.00 μm.




embedded image


Comparative Example 20

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


5 parts of the electron transporting substance represented by the above formula (13), 5 parts of trimethylolpropane triacrylate (Kayarad TMPTA, Nippon Kayaku Co., Ltd.) and 0.1 part of AIBN (2,2-azobisisobutyronitrile) were dissolved in 190 parts of tetrahydrofuran (THF) to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 30 min at 150° C. to be polymerized to thereby form an electron transporting layer having a thickness of 0.80 μm.


Comparative Example 21

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


5 parts of the electron transporting substance represented by the above formula (13) and 5 parts of a compound represented by the following formula (14) were dissolved in 60 parts of toluene to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was irradiated with electron beams under the conditions of an acceleration voltage of 150 kV and an irradiation dose of 10 Mrad to be polymerized to thereby form an electron transporting layer having a thickness of 1.00 μm.




embedded image


Comparative Example 22

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


An electron transporting layer (a constitution of example 1 of National Publication of International Patent Application No. 2009-505156) was formed using a block copolymer represented by the following structure, blocked isocyanate and a vinyl chloride-vinyl acetate copolymer to thereby form an electron transporting layer having a thickness of 0.32 μm.




embedded image


Comparative Example 23

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


5 parts of the electron transporting substance (A101) and 5 parts of a polycarbonate resin (Z200, made by Mitsubishi Gas Chemical Co., Inc.) were dissolved in a mixed solvent of 50 parts of dimethylacetoamide and 50 parts of chlorobenzene to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 30 min at 120° C. to be polymerized to thereby form an electron transporting layer having a thickness of 1.00 μm.


Comparative Example 24

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


5 parts of an electron transporting substance (pigment) represented by the following structural formula (16) was added to a liquid in which 5 parts of the resin (D1) was dissolved in 200 parts of methyl ethyl ketone, and was subjected to a dispersion treatment for 3 hours using a sand mill to thereby prepare a coating liquid for an electron transporting layer. The coating liquid for an electron transporting layer was immersion coated on the conductive layer, and the obtained coating film was heated for 10 min at 100° C. to thereby form an electron transporting layer having a thickness of 1.50 μm.




embedded image


Comparative Example 25

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


An electron transporting layer was formed by using a coating liquid for an electron transporting layer in which a polymer of an electron transporting substance described in example 1 of Japanese Patent No. 4594444 was dissolved in a solvent, to thereby form an electron transporting layer having a thickness of 2.00 μm.


Comparative Example 26

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


An electron transporting layer was formed by using a particle of a copolymer containing an electron transporting substance described in example 1 of Japanese Patent No. 4,594,444, to thereby form an electron transporting layer having a thickness of 1.00 μm.


Comparative Example 27

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


An electron transporting layer (a constitution of example 1 of Japanese Patent Application Laid-Open No. 2006-030698) was formed by using a zinc oxide pigment having been subjected to a surface treatment with a silane coupling agent, alizarin (A922), a blocked isocyanate compound and a butyral resin, to thereby form an electron transporting layer of 25 μm.


Comparative Example 28

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


5 parts of a polyamide resin (N-methoxymethylated 6-nylon resin (trade name: Toresin EF-30T, made by Nagase ChemteX Corp., the degree of polymerization: 420, methoxymethylation ratio: 36.8%)) was dissolved in 100 parts of methanol and 100 parts of 1-butanol to thereby prepare a coating liquid for an undercoating layer. The coating liquid for an undercoating layer was immersion coated on the conductive layer, and the obtained coating film was dried at 100° C. for 10 min to thereby form an undercoating layer.


Comparative Example 29

An electrophotographic photosensitive member was manufactured and evaluated as in Example 1, except for forming an electron transporting layer as follows. The results are shown in Table 14.


An electron transporting layer (undercoating layer using an electron transporting pigment, a polyvinyl butyral resin, and a curable electron transporting substance having an alkoxysilyl group) described in example 25 of Japanese Patent Application Laid-Open No. H11-119458 was formed.














TABLE 14






Thickness of







Electron

Early-

Difference



Transporting
R_opt/
Stage
Ghost After
Between



Layer
R_dark
Ghost
1,000 Sheets
the Ghosts




















Comparative
1.00
0.99
0.10
0.13
0.03


Example 12







Comparative
1.00
1.00
0.07
0.10
0.03


Example 13







Comparative
0.50
1.00
0.06
0.10
0.04


Example 14







Comparative
1.00
1.01
0.08
0.12
0.04


Example 15







Comparative
0.20
0.99
0.07
0.10
0.03


Example 16







Comparative
0.30
0.99
0.07
0.10
0.03


Example 17







Comparative
0.60
1.00
0.08
0.11
0.03


Example 18







Comparative
1.00
0.99
0.09
0.12
0.03


Example 19







Comparative
0.80
0.99
0.09
0.13
0.04


Example 20







Comparative
1.00
0.99
0.10
0.13
0.03


Example 21







Comparative
0.32
0.99
0.07
0.10
0.03


Example 22







Comparative
1.00
0.99
0.09
0.13
0.04


Example 23







Comparative
1.50
1.00
0.10
0.13
0.03


Example 24







Comparative
2.00
1.02
0.10
0.14
0.04


Example 25







Comparative
1.00
1.10
0.11
0.14
0.03


Example 26







Comparative
25.00
1.05
0.11
0.15
0.04


Example 27







Comparative
0.80
1.10
0.05
0.12
0.07


Example 28







Comparative
3.00
0.99
0.06
0.09
0.03


Example 29









While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.


This application claims the benefit of Japanese Patent Application No. 2012-147158, filed Jun. 29, 2012, Japanese Patent Application No. 2013-093091, filed Apr. 25, 2013, and Japanese Patent Application No. 2013-130014, filed Jun. 20, 2013, which are hereby incorporated by reference herein in their entirety.

Claims
  • 1. An electrophotographic photosensitive member comprising: a laminated body, anda hole transporting layer formed on the laminated body, wherein the laminated body comprises:a conductive support,an electron transporting layer formed on the support, anda charge generating layer formed on the electron transporting layer,wherein the electron transporting layer comprises a polymerized product of a composition comprising:an electron transporting substance having a polymerizable functional group,a crosslinking agent, anda thermoplastic resin having a polymerizable functional group,wherein the polymerizable functional group is a hydroxy group, a thiol group, an amino group, a carboxyl group, or a methoxy group,wherein a content of the electron transporting substance in the composition is 30% by mass or more and 70% by mass or less with respect to the total mass of the composition, andwherein the laminated body satisfies the following expression (1): R—opt/R_dark≦0.95  (1)where, in the expression (1),R_opt represents impedance of the laminated body measured by the steps of:forming, on a surface of the charge generating layer, a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm by sputtering, andapplying, between the conductive support and the circular-shaped gold electrode, an alternating electric field having a voltage of 100 mV and a frequency of 0.1 Hz while irradiating the surface of the charge generating layer with light having intensity of 30 μJ/cm2·s, andmeasuring the impedance,andR_dark represents impedance of the laminated body measured by the steps of:forming, on a surface of the charge generating layer, a circular-shaped gold electrode having a thickness of 300 nm and a diameter of 10 mm by sputtering, andapplying, between the conductive support and the circular-shaped gold electrode, an alternating electric field having a voltage of 100 mV and a frequency of 0.1 Hz without irradiating the surface of the charge generating layer with light, andmeasuring the impedance.
  • 2. The electrophotographic photosensitive member according to claim 1, wherein the laminated body satisfies the following expression (2): 0<R—opt/R_dark≦0.85  (2).
  • 3. The electrophotographic photosensitive member according to claim 1, wherein the electron transporting layer has a thickness of 0.2 μm or more and 0.7 μm or less.
  • 4. The electrophotographic photosensitive member according to claim 1, wherein the crosslinking agent is a compound having 3 to 6 groups of an isocyanate group, a compound having 3 to 6 groups of a blocked isocyanate group or a compound having 3 to 6 groups of a monovalent group represented by —CH2—OR1 (R1 represents an alkyl group).
  • 5. The electrophotographic photosensitive member according to claim 1, wherein the charge generating layer comprises at least one charge generating substance selected from the group consisting of phthalocyanine pigments and azo pigments.
  • 6. The electrophotographic photosensitive member according to claim 1, wherein the hole transporting layer comprises at least one hole transporting substance selected from the group consisting of triarylamine compounds, benzidine compounds and styryl compounds.
  • 7. A process cartridge detachably attachable to a main body of an electrophotographic apparatus, wherein the process cartridge integrally supports: the electrophotographic photosensitive member according to claim 1, andat least one unit selected from the group consisting of a charging unit, a developing unit, a transfer unit and a cleaning unit.
  • 8. An electrophotographic apparatus comprising an electrophotographic photosensitive member according to claim 1, and a charging unit, a light irradiation unit, a developing unit and a transfer unit.
Priority Claims (3)
Number Date Country Kind
2012-147158 Jun 2012 JP national
2013-093091 Apr 2013 JP national
2013-130014 Jun 2013 JP national
US Referenced Citations (50)
Number Name Date Kind
4442193 Chen et al. Apr 1984 A
4562132 Ong et al. Dec 1985 A
4992349 Chen et al. Feb 1991 A
5455135 Maruyama et al. Oct 1995 A
5468583 Gruenbaum et al. Nov 1995 A
5604061 Sekido et al. Feb 1997 A
5641599 Markovics et al. Jun 1997 A
5693443 Nakamura et al. Dec 1997 A
5863688 Watanabe et al. Jan 1999 A
6110628 Sekiya et al. Aug 2000 A
6228546 Kashizaki et al. May 2001 B1
6372397 Maruyama et al. Apr 2002 B1
6436597 Maruyama et al. Aug 2002 B2
6664014 Kikuchi et al. Dec 2003 B1
6991881 Ogaki et al. Jan 2006 B2
6994941 Tanaka et al. Feb 2006 B2
7001699 Tanaka et al. Feb 2006 B2
7045261 Tanaka et al. May 2006 B2
7141341 Sekido et al. Nov 2006 B2
7171142 Kawakami et al. Jan 2007 B2
7378205 Sekiya et al. May 2008 B2
7541124 Molaire et al. Jun 2009 B2
7585604 Ogaki et al. Sep 2009 B2
7645547 Okuda et al. Jan 2010 B2
7655370 Kitamura et al. Feb 2010 B2
7702256 Nukada et al. Apr 2010 B2
7910274 Tanaka et al. Mar 2011 B2
7927774 Ogaki et al. Apr 2011 B2
8088541 Tanaka et al. Jan 2012 B2
8343699 Nagasaka et al. Jan 2013 B2
8455170 Nakamura et al. Jun 2013 B2
8465889 Sekido et al. Jun 2013 B2
8481236 Tanaka et al. Jul 2013 B2
8524430 Takagi et al. Sep 2013 B2
8546050 Maruyama et al. Oct 2013 B2
20070026332 Ferrar et al. Feb 2007 A1
20080280220 Chen et al. Nov 2008 A1
20100062171 Kaku et al. Mar 2010 A1
20110143273 Sekido et al. Jun 2011 A1
20110158683 Okuda et al. Jun 2011 A1
20120033994 Tanaka et al. Feb 2012 A1
20120114375 Fujii et al. May 2012 A1
20120230727 Sekido et al. Sep 2012 A1
20120301181 Ogaki et al. Nov 2012 A1
20120301182 Anezaki et al. Nov 2012 A1
20130202326 Shida et al. Aug 2013 A1
20130202327 Murai et al. Aug 2013 A1
20130236823 Noguchi et al. Sep 2013 A1
20130316283 Fujii et al. Nov 2013 A1
20130323632 Fujii et al. Dec 2013 A1
Foreign Referenced Citations (14)
Number Date Country
2 317 393 May 2011 EP
1-206349 Aug 1989 JP
5-279582 Oct 1993 JP
7-70038 Mar 1995 JP
9-151157 Jun 1997 JP
11-119458 Apr 1999 JP
2003-330209 Nov 2003 JP
2004093801 Mar 2004 JP
2005-189764 Jul 2005 JP
2006-30698 Feb 2006 JP
2009-505156 Feb 2009 JP
2010-145506 Jul 2010 JP
4594444 Dec 2010 JP
WO 2012002516 Jan 2012 WO
Non-Patent Literature Citations (19)
Entry
English language machine translation of JP 2004-093801 (Mar. 2004).
Jones, et al., “Cyanonaphthalene Diimide Semiconductors for Air-Stable, Flexible, and Optically Transparent n-Channel Field-Effect Transistors”, Chemistry of Materials, vol. 19, No. 11, May 29, 2007, pp. 2703-2705.
Callahan, et al., “Syntheses of Phencyclone Analogues. Applications for NMR Studies of Hindered Rotations and Magnetic Anisotropy in Crowded Diels-Alder Adducts”, Chem. Educator, vol. 6, 2001, pp. 227-234.
Kato, et al., “Nitration of Phenanthrenequinone”, Journal of Synthetic Organic Chemistry, Japan, vol. 15, 1957, pp. 29-32.
Kato, et al., “Syntheses of Amino-phenanthrenequinones by the Reduction of Nitro Compounds”, Journal of Synthetic Organic Chemistry, Japan, vol. 15, 1957, pp. 32-34.
Yamada, et al., “Synthesis and Properties of Diamino-Substituted Dipyrido [3,2-a: 2′,3′-c]phenazine”, Bulletin of the Chemical Society of Japan, vol. 65, No. 4, 1992, pp. 1006-1011.
Qian, et al., “4-Amino-1, 8-dicyanonaphthalene derivatives as novel fluorophore and fluorescence switches: efficient synthesis and fluorescence enhancement induced by transition metal ions and protons”, Tetrahedron Letters, vol. 43, 2002, pp. 2991-2994.
Xiao, et al., “Novel highly efficient fluoroionophores with a peri-effect and strong electron-donating receptors: TICT-promoted PET and signaling response to transition metal cations with low background emission”, Tetrahedron Letters, vol. 44, 2003, pp. 2087-2091.
Miyamura, et al., “Polymer Incarcerated Gold Catalyzed Aerobic Oxidation of Hydroquinones and Their Derivatives”, Chemistry Letters, vol. 37, No. 3, 2008, pp. 360-361.
Okada, et al., “Synthesis and Properties of a Novel Electron Transporting Compound, 3, 3′-dialkyl-4,4′-bisnaphthylquinone (DBNQ)”, PPCI/Japan Hardcopy '98 Papers, 1998, pp. 207-210.
Jones, et al., “Tuning Orbital Energetics in Arylene Diimide Semiconductors. Materials Design for Ambient Stability of n-Type Charge Transport”, J. Am. Chem. Soc., vol. 129, 2007, pp. 15259-15278.
Yamashita, et al., “Crosslinking Agent Handbook”, 1981, pp. 536-605.
European Search Report dated Oct. 22, 2013 in European Application No. 13174199.3.
Okuda, et al., U.S. Appl. No. 14/009,723, 371(c) Date: Oct. 3, 2013.
Okuda, et al., U.S. Appl. No. 14/009,721, 371(c) Date: Oct. 3, 2013.
Tokimitsu, et al., U.S. Appl. No. 13/913,910, filed Jun. 10, 2013.
Sekiya, et al., U.S. Appl. No. 13/930,341, filed Jun. 28, 2013.
Okuda, et al., U.S. Appl. No. 13/930,383, filed Jun. 28, 2013.
Fujii, et al., U.S. Appl. No. 13/972,688, filed Aug. 21, 2013.
Related Publications (1)
Number Date Country
20140004453 A1 Jan 2014 US