1. Field of the Invention
The present invention relates to electrophotographic (EP) printers, and, more particularly, to such printers capable of and a method for changing fuser member speed and/or substrate transport assembly speed in order to minimize print defects caused by speed mismatches between the fuser member and the substrate transport assembly.
2. Description of the Related Art
Cost and market pressures promote the design of the smallest possible printer with the shortest possible length of substrate path. Short substrate paths mean that most substrates are involved in more than one operation at once. For example, a substrate in a printer may be at one or more imaging stations while it is also located in a fuser assembly.
Tandem color laser printers may use a substrate transport belt to move a substrate past successive imaging stations before fusing the final image onto the substrate. If a substrate is pulled taut between an imaging nip and a nip in the fuser assembly, a disturbance force transmitted via the substrate from the fuser assembly to the imaging nip defined by a photoconductive drum and the substrate transport belt may cause image registration or alignment errors. To prevent such errors, the fuser assembly may be under driven so that a substrate bubble accumulates between the transport belt and the fuser assembly. Since the fuser assembly runs more slowly, a substrate never becomes taut, so less disturbance force can be transmitted from the fuser assembly to the imaging nip. However, the pursuit of small machines means that substrate bubbles must be constrained to stay as small as possible. If a machine is designed for a certain maximum bubble size, large velocity variations can make the substrate form a bigger bubble. If this happens, the substrate may make contact structure within the printer which may scrape across the image area, causing print defects.
There is a need for driving the fuser assembly so that an outer surface speed of a rotating fuser member is less than the speed of the substrate transport assembly upstream from it such that a substrate bubble develops between the fuser assembly and the substrate transport assembly, yet, in the case of long substrates or envelopes, the bubble is not allowed to grow too large as to result in print defects.
In accordance with a first aspect of the present invention, a method is provided for operating an electrophotographic printer. The method comprises providing an electrophotographic printer comprising a substrate transport assembly including at least one substrate transport member and a fuser assembly including a fuser member, operating the substrate transport assembly such that the at least one substrate transport member is driven at a substrate transport linear speed, and operating the fuser assembly such that an outer surface of the fuser member moves at a fuser assembly linear or surface speed. Preferably, the fuser assembly linear speed is a first fractional amount of the substrate transport linear speed for at least normal size substrates such that a bubble in a normal size substrate between the paper transport assembly and the fuser assembly is created, and the fuser assembly linear speed is a second fractional amount of the substrate transport linear speed for envelopes. Preferably, the second fractional amount is greater than the first fractional amount.
The first fractional amount may be from about 0.988 to about 0.996. The second fractional amount may be from about 0.996 to about 0.9995.
The fuser assembly linear speed may also be a third fractional amount of the substrate transport linear speed for long substrates, wherein the third fractional amount is preferably greater than the first fractional amount. “Long substrates” may comprise substrates longer than an A4 substrate. The third fractional amount may be from about 0.994 to about 0.999.
Preferably, the substrate transport assembly comprises at least one of a belt and a plurality of rolls. It is also preferred that the fuser member comprise one of a roll and a belt.
In accordance with a second aspect of the present invention, an electrophotographic printer is provided comprising a substrate transport assembly including a first drive motor for driving at least one substrate transport member, a fuser assembly comprising a second drive motor for driving at least one fuser member, and control structure for controlling the operation of the first and second drive motors such that the first drive motor drives the at least one substrate transport member at a substrate transport linear speed and the second drive motor drives the fuser member such that an outer surface of the fuser member moves at a fuser assembly linear speed. Preferably, the fuser assembly linear speed is a first fractional amount of the substrate transport linear speed for at least normal size substrates such that a bubble in a normal size substrate between the paper transport assembly and the fuser assembly is created, and the fuser assembly linear speed is a second fractional amount of the substrate transport linear speed for envelopes, wherein the second fractional amount is greater than the first fractional amount.
In accordance with a third aspect of the present invention, a method is provided for operating an electrophotographic printer. The method comprises providing an electrophotographic printer comprising a substrate transport assembly including at least one substrate transport member and a fuser assembly including a fuser member, operating the substrate transport assembly such that the at least one substrate transport member is driven at a substrate transport linear speed, and operating the fuser assembly such that an outer surface of the fuser member moves at a fuser assembly linear speed. Preferably, a first ratio of the fuser assembly linear speed to the substrate transport linear speed is equal to a first value less than 1 for at least normal size substrates such that a bubble in a normal size substrate between the paper transport assembly and the fuser assembly is created, and a second ratio of the fuser assembly linear speed to the substrate transport linear speed is equal to a second value less than 1 for multilayer substrates. Preferably, the second value is greater than the first value.
The first value may be from about 0.988 to about 0.996. The second value may be from about 0.996 to about 0.9995.
A third ratio of the fuser assembly linear speed to the substrate transport linear speed may be equal to a third value less than 1 for long substrates, wherein the third value is preferably greater than the first value. The third value may be from about 0.994 to about 0.999.
In accordance with a fourth aspect of the present invention, a method is provided for operating an electrophotographic printer. The method comprises providing an electrophotographic printer comprising a substrate transport assembly including at least one substrate transport member and a fuser assembly including a fuser member, operating the substrate transport assembly such that the at least one substrate transport member is driven at a substrate transport linear speed, and operating the fuser assembly such that an outer surface of the fuser member moves at a fuser assembly linear speed. Preferably, the fuser assembly linear speed is a first fractional amount of the substrate transport linear speed for at least normal size substrates such that a bubble in a normal size substrate between the paper transport assembly and the fuser assembly is created, and the fuser assembly linear speed is another fractional amount of the substrate transport linear speed for long substrates and the other fractional amount is greater than the first fractional amount.
Referring now to the drawings and particularly to
In the embodiment shown, color imaging station 22 is a black (K) color imaging station; color imaging station 24 is a magenta (M) color imaging station; color imaging station 26 is a cyan (C) color imaging station; and color imaging station 28 is a yellow (Y) color imaging station. Color imaging station 22 comprises a photoconductive (PC) drum 22A; color imaging station 24 comprises a PC drum 24A; color imaging station 26 comprises a PC drum 44; and color imaging station 28 comprises a PC drum 46. The PC drums 22A and 24A are coupled to and driven by a first PC drum drive motor 23 via conventional coupling structure 23A shown schematically in
Substrate transport belt 18 transports an individual substrate 14, see
In an alternative embodiment, the hot roll 34 may be replaced by a belt fuser, such as disclosed in United States Published Patent Application US 2004/0035843 A1, entitled “Large Area Alumina Ceramic Heater,” filed on Aug. 26, 2002 by Hamilton et al., the entire disclosure of which is incorporated herein by reference. In a further alternative embodiment, the backup-roll 36 may be replace by a back-up belt, such as disclosed in United States Published Patent Application US 2005/0163542 A1, entitled “Backup Belt Assembly for Use in a Fusing System and Fusing Systems Therewith,” filed on Jan. 28, 2004 by Gilmore et al., the entire disclosure of which is incorporated herein by reference.
In
The substrate 14, after passing through a nip defined by the PC drum 22A and the transport belt 18, is electrostatically tacked to the belt 18.
An outer surface 34A of the driven hot fuser roll 34 moves at a fuser assembly linear speed. The fuser assembly linear speed defines the linear speed of a substrate 14 as it moves through the nip 35 defined by the rolls 34 and 36. It is undesirable to overdrive the fuser roll 34 such that the fuser assembly linear speed exceeds the substrate transport linear speed of the transport belt 18. The force on the substrate 14 from the fuser roll 34 and back-up roll 36 typically is larger than the combination of the forces from the nips at the PC drums 44 and 46 and the transport belt 18 and the electrostatic forces tacking the substrate 14 to the transport belt 18 and, thus, the nip pressure and fuser assembly linear speed at fuser assembly nip 35 tend to dominate over the substrate transport linear speed of the transport belt 18 and the speed of one or more of the PC drums 22A, 24A, 44 and 46. If the fuser roll 34 is overdriven such that the fuser assembly linear speed is greater than the substrate transport linear speed, then print defects may occur on a substrate 14 due, at least in part, to the substrate 14 being pulled through the nips defined by the PC drums 44 and 46 and the transport belt 18. For this reason, the fuser roll 34 is preferably under driven to cause a slight bubble 54, see
The present invention addresses two scenarios where excessive substrate bubble size may cause print defects. First, if a substrate 14 comprises a multilayer substrate such as an envelope, and the difference between the fuser assembly linear speed and the substrate transport linear speed it too great, then the bubble(s) formed in the envelope may become too large causing a trailing edge of the envelope to “tailflip” and contact structure within the printer 10. Second, if a substrate 14 is long, e.g., has a length greater than the length of an A4 substrate, and the difference between the fuser assembly linear speed and the substrate transport linear speed is too great, then the bubble(s) formed in the substrate 14 may become too large causing the substrate 14 to also contact structure within the printer 10.
Referring now to
In
As part of the present invention, it has been found that with multilayer substrates including envelopes, there is less tolerance for large speed mismatches between the fuser assembly 32 and the transport belt 18 as compared with a standard size substrate since a multilayer substrate is more prone to “tailflip.” Hence, in accordance with the present invention, the electrical processing circuit 42 controls the drive motors 40 and 41 such that the fuser assembly linear speed is a first fractional amount of the substrate transport linear speed for a normal size substrates, e.g., substrates having a length equal to or less than an A4 substrate, and the fuser assembly linear speed is a second fractional amount of the substrate transport linear speed for multilayer substrates, such as envelopes. The second fractional amount is preferably greater than the first fractional amount so as to reduce the size of any bubbles formed in an envelope. For example, the first fractional amount may be from about 0.988 to about 0.996, while the second fractional amount may be from about 0.996 to about 0.9995. Hence, when the substrate transport linear speed is equal to 106.68 mm/s for normal size substrates, the fuser assembly linear speed may equal 0.992×106.68 mm/s=105.827 mm/s for normal size substrates. When the substrate transport linear speed is equal to 53.34 mm/s for envelopes, the fuser assembly linear speed may equal 0.998×53.34 mm/s=53.233 mm/s for envelopes.
In
In
Accordingly, as part of the present invention, it has also been found that with long substrates, e.g., those having a length greater than an A4 substrate, there is less tolerance for large speed mismatches between the fuser assembly 32 and the transport belt 18. This is because there is no more room within the printer 10, i.e., between the substrate transport assembly 17 and the fuser assembly 32, for receiving substrate bubbles when printing long substrates as compared to short substrates. Hence, in accordance with the present invention, the electrical processing circuit 42 controls the drive motors 40 and 41 such that the fuser assembly linear speed is a first fractional amount of the substrate transport linear speed for at least normal size substrates, substrates having a length equal to or less than the length of an A4 substrate, and the fuser assembly linear speed is a third fractional amount of the substrate transport linear speed for long substrates. The third fractional amount is preferably greater than the first fractional amount so as to reduce the size of any bubbles formed in a long substrate. For example, the first fractional amount may be from about 0.988 to about 0.996, while the third fractional amount may be from about 0.994 to about 0.999. Hence, when the substrate transport linear speed is equal to 106.68 mm/s for normal size substrates, the fuser assembly linear speed may equal 0.992×106.68 mm/s=105.827 mm/s for normal size substrates. When the substrate transport linear speed is equal to 106.68 mm/s for long substrates, the fuser assembly linear speed may equal 0.996×106.68 mm/s=106.253 mm/s for long substrates.
In accordance with the illustrated embodiment, the electrical processing circuit 42 determines when the fuser assembly linear speed is equal to the substrate transport linear speed using the technique disclosed in United States Published Patent Application US 2005/0214010 A1, entitled “Method of Determining a Relative Speed Between Independently Driven Members in an Image Forming Apparatus,” filed on Mar. 25, 2004 by Kietzman et al., the entire disclosure of which is incorporated by reference herein. Briefly, this technique involves the following. At the end of manufacturing the printer 10, a calibration operation is effected involving the circuit 42 monitoring a commanded voltage to the fuser motor 40 during the printing of a plurality, e.g., eight, sample substrates. A speed control system defined by the processing circuit 42 and an encoder provided in the drive or fuser motor 40 controls the pulse-width-modulated voltage provided to the fuser motor 40 such that the fuser motor 40 and hence the driven fuser roll 34 operate at a desired constant rotational speed. When the load on the motor 40 increases slightly and its speed drops slightly, the circuit 42 increases the pulse-width-modulated voltage provided to the motor 40 in order to restore the speed of the motor 40, as sensed by the motor encoder, to the desired value. The load on the motor 40 increases when a substrate 14 is positioned within the nip 35 defined by the rolls 34 and 36 in the fuser assembly 32 and at least the nip defined by the PC drum 46 and the transport belt 18, and the fuser assembly linear speed is greater than the substrate transport linear speed causing the substrate transport assembly 17 and at least PC drum 46 to exert a drag force on the substrate.
The first sample substrate is printed with the fuser assembly linear speed clearly less than the substrate transport linear speed. For each subsequent sample substrate, the fuser assembly linear speed is increased slightly while the substrate transport linear speed is maintained constant. During the printing of successive sample substrates 14, each at a slightly different fuser assembly linear speed while the substrate transport linear speed is maintained constant, the pulse-width-modulated voltage provided to the drive motor 40 is monitored to determine when the voltage increases. As noted above, the increase in voltage results due to the load on the motor 40 increasing slightly and its speed dropping slightly. The circuit 42 determines that the fuser assembly linear speed corresponding to the speed at which the fuser assembly 32 is operating just before the voltage is increased to compensate for the increased load on the drive motor 40 substantially equals the substrate transport linear speed. The circuit also determines the speed of the drive motor 40 corresponding to the fuser assembly linear speed which is substantially equal to the substrate transport linear speed.
Once the electrical processing circuit 42 determines the speed of the drive motor 40 corresponding to the fuser assembly linear speed which is substantially equal to the substrate transport linear speed, the circuit 42 multiplies that speed of the drive motor 40 by a selected one of a first, second or third fractional amount, based on the type and/or length of substrate 14 being printed. Example first, second and third fractional values corresponding respectively to normal size, multilayer and long substrates are set out above. The first, second and third fractional amounts do not vary based on the selected substrate transport linear speed.
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4561756 | Lang | Dec 1985 | A |
4941021 | Uchida et al. | Jul 1990 | A |
5040781 | Matoba | Aug 1991 | A |
5043771 | Shibata et al. | Aug 1991 | A |
5075732 | Menjo | Dec 1991 | A |
5119146 | Nobumori et al. | Jun 1992 | A |
5166735 | Malachowski | Nov 1992 | A |
5493374 | Smith et al. | Feb 1996 | A |
5678127 | Suga | Oct 1997 | A |
5745831 | Nakazawa et al. | Apr 1998 | A |
5745832 | Yoshiuchi | Apr 1998 | A |
5768655 | Yoshino et al. | Jun 1998 | A |
6026276 | Malachowski | Feb 2000 | A |
6088567 | Miyashiro et al. | Jul 2000 | A |
6345171 | Suga | Feb 2002 | B1 |
6385406 | Funamizu et al. | May 2002 | B1 |
6577843 | Akita et al. | Jun 2003 | B2 |
6671487 | Stringham | Dec 2003 | B2 |
6674979 | Nagano | Jan 2004 | B2 |
6718155 | Kaji et al. | Apr 2004 | B2 |
6799000 | Aslam et al. | Sep 2004 | B2 |
6804478 | Martin et al. | Oct 2004 | B2 |
6816685 | Eda | Nov 2004 | B2 |
6816686 | Hooper et al. | Nov 2004 | B2 |
6892038 | Fukutani | May 2005 | B2 |
6898387 | Kawamura | May 2005 | B2 |
7054571 | Camp et al. | May 2006 | B2 |
7289744 | Shirakata et al. | Oct 2007 | B2 |
20040035843 | Hamilton et al. | Feb 2004 | A1 |
20050152710 | Camp et al. | Jul 2005 | A1 |
20050163542 | Gilmore et al. | Jul 2005 | A1 |
20050214010 | Kietzman et al. | Sep 2005 | A1 |
20080101813 | Maul et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
11038820 | Feb 1999 | JP |
2000137421 | May 2000 | JP |
2003345150 | Dec 2003 | JP |
2005284020 | Oct 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20070223951 A1 | Sep 2007 | US |